Context The Relational Data Model in a nutshell. 3.1 Logical schema design. Keep It simple, students KISS -

Size: px
Start display at page:

Download "Context The Relational Data Model in a nutshell. 3.1 Logical schema design. Keep It simple, students KISS -"

Transcription

1 3. Schema Design: Logical Design using the Relational Data Model 3.1 Logical Schema Design The Relational Data Model in a nutshell Keys, candidate keys and more 3.2 From onceptual to Logical Schema: Mapping ER to RDM Relationships to tables onsolidation Mapping generalization hierarchies and more Enforcing constraints 3.3 Triggers 3.4 Data types 3.5 Metadata Management Kemper/ Eickler: chap , Elmasri / Navathe: chap. 9 SQL/DDL: Melton/Simon: chap 2, 3.3, 4 System documentation (e.g. Postgres, Oracle, MySQL, see references) ontext Requirements analysis onceptual Design Schema design - logical ( create tables ) Schema design -physical ( create access path ) Loading, administration, tuning, maintenance, reorganization System analyst D designer pplication programmer pplication programmer D administrator D administrator 04-DS-ER-RDM Logical schema design Logical Schema design is the transformation of the conceptual schema (e.g. ERM) into the logical schema (e.g RDM) Easy: lgorithmic transformation using development tools (Oracle, Visio, DDesigner, several Eclipse plugins, Main concerns: - how to map relationships to tables - how to represent integrity constraints The Relational Data Model in a nutshell The Relational Data Model Simplicity and formal rigor as the guiding principle KISS - asically: an algebra of tables Keep It simple, students Table: data structure with a fixed number of d columns and an arbitray number of rows. 04-DS-ER-RDM-3 04-DS-ER-RDM-4 asics relation (table) attribute tuple Relation schema (simplified notation omitting types): Student(f,, , matrno) arla Müller Katz Maus Student mueller@... katz@... piep@... matrno SQL Data Definition Lanuage RETE TLE Student( f VRHR (20), VRHR (30) NOT NULL, VRHR (40), matrno INTEGER ) 04-DS-ER-RDM-5 Properties of the RDM No duplicate rows R is a set No tuple order ttributes have a primitive type, no constructed type single-valued ttributes may have no value (NULL value) Integrity constraints must hold for all states of the D over time ("invariant") Unique s in the relation and the D space using dot-notation: R.a, db.s.b Database relations are time variant update, insertion, deletion of tuples most DS today allow constructed and multivalued types 04-DS-ER-RDM-6 1

2 Keys and candidate keys Def.: key of R(a1,,an) is a subset of its its attributes, which uniquely determines the tuples (= rows) of R and is minimal Primary and andidate keys (i) relation R may have more than one potential key, i.e. identifying, minimal attribute subset of R. (ii) potential key of R is called andidate key * of R. (iii) The Primary Key of R is an arbitrary candidate key RETE TLE Student( f VRHR (20), VRHR (30)NOT NULL, VRHR (40), matrno INTEGER PRIMRY KEY) ut matrno ++ is not a PK not minimal ut two or more attributes together may constitute a key: ++ f?? 04-DS-ER-RDM-7 RETE TLE ( f VRHR (20), VRHR (30)NOT NULL, birthdate DTE, Primary key with VRHR (40), more than one jobdesc VRHR(200) attribute as ONSTRINT region_pk separate, table PRIMRY KEY (,birthdate)) constraint. user defined constraint,.. why? * Schlüsselkandidat nie Kandidatenschlüssel 04-DS-ER-RDM-8 rtificial Keys Sometimes useful, to assign an artificial key to relation R RETE TLE ( p# INTEGER PRIMRY KEY, f VRHR (20), VRHR (30), RETE TLE LogRecords( seq# INTEGER PRIMRY KEY, logtype HR, logentry VRHR (300), time TIMESTMP) Surrogates: system internal row keys for special purposes Not an artificial key, exists in reality. rtificial, should be e.g.: 1,2... Postgres: SERIL Oracle:use sequence generator Operations on tables Why "Relational lgebra"? arla Operations on tables result in tables! e.g. select some rows: "s in IT-" project columns: "Names of all employees" "join" columns: " location of Müller" arla deptm Müller IT Katz Sales Maus IT deptm Müller IT Katz Sales Maus IT p# p# boss location Sales cc IT MUE Sales cc IT boss location MUE 04-DS-ER-RDM-9 04-DS-ER-RDM-10 RDM: Foreign Keys Foreign key RETE TLE ( p# INTEGER PRIMRY KEY, f VRHR (20), VRHR (30), deptm VRHR(20) FOREIGN KEY FK_Dep REFERENES ) RETE TLE ( VRHR (20) PRIMRY KEY, boss Integer, location VRHR (5) Foreign Key FK_oss REFERENES ) Implements 1:N relationship 1 has N 04-DS-ER-RDM-11 Def: foreign key is one or more attributes FK of a relation S, with the properties: (1) attributes of FK have the same domains as the attributes of key* p k of a relation R and (2) a value of FK in row of S either occurs as a value of the primary key for some row in R or is NULL. Def.: Referential integrity of a database is preserved, if all (explicit) foreign key constraint hold. * Usually the primary key, but not required! 04-DS-ER-RDM-12 2

3 What next: : From entities to tables Map E-R design to relational schema Define relational schema, table s, attributes and types, invariants Design steps: Translate entities into relations Translate relationships into relations Simplify (consolidate) the design Formal analysis of the schema (postponed) Define tables in SQL Define additional invariants 3.2 From onceptual to Logical schema Entity (types) with keys tables (schema relations) Key attributes in the onceptual model are primary keys in the RDM Weak entities: add primary key of superior entity to partial key of weak entity Example: country(c_id,, gnp,..) region(, population, area,..) partial key region (c_id, 04-DS-ER-RDM-13 never NULL, why? 04-DS-ER-RDM-14 Mapping Relationships Relationships in general: tables (schema relations) Relationships to tables 1:1-relationship hose as key one of the keys of the involved relations Dep ttributes: keys of the involved relations and attributes of the relationship Key of the "relationship" table: one or all keys of the related relations (1,1) has (0,*) Has d_ emp# Empl Each has unique emp# row in D_E identifies by emp# key is emp# ountry ountry(c_id, or (0,1) isapital (1,1) isapital (c_id,,r_id) isapital (c_id,,r_id) ity ity (, r_id, 04-DS-ER-RDM DS-ER-RDM-16 Relationships to tables 1:N relationship Dep(, boss, location) 1 N (1,1) (0,*) has has (p#, ) (p#, f,..) table R representing an 1:N E-R-relationship has as attributes the keys of both relations and relationship attribute of any as its key the key of the "N-side entity type" N:M relationship Userccount user(account,, (1,*) (0,*) MailMessage M N hasmail hasmail(account, msgid) MM(msgId Neither account nor msgid alone have key property separate table R representing an M:N E-R relationship has as attributes the keys of both relations and relationship attribute of any as key the keys of both entities N-ary relationship: all keys make up the new key 04-DS-ER-RDM DS-ER-RDM-18 3

4 Multi-valued attributes Multiple value attribute weak entity with a single attribute onsolidation Def.: onsolidation (simplification) of a relational scheme is the process of merging those table (schemas) having the same key attributes into one table schema (recursively) ustomer : String f_: String c_#: Serial {phone: PhoneNo} streetno: String zip: Zipcode ity: String (1,1) (1,*) Phone pno: PhoneNo Relations: ustomer(, c_#,..) Phone(c_#, pno) R( k1,..,kn, a1, an), S( k1,,kn, b1, bm) RS( k1,,kn, a1, an,b1,,bm) Dep(, boss, location) has (p#, ) (p#, f,..)... or array-type / list type for attribute (Oracle, PostgresSQL and others). (p#, depname,, f,..) 04-DS-ER-RDM DS-ER-RDM-20 Example onsolidation: example 1 : 1 - relationship ountry (c_id,, isapital (c_id,, region) ountry(c_id,, capital, region, ) Foreign key red, path expression Region. not allowed RETE TLE ountry ( VRHR(32) NOT NULL, _ID VRHR(4) PRIMRY KEY, population INT, growth NUMERI(4,1), area INT, GNP INT, capital VRHR(25) NOT NULL, -- red region VRHR(4) NO NULL, type_of_gov VRHR(35), head_of_gov VRHR(70) ONSTRINT fk_capital FOREIGN KEY (capital, region) REFERENES ity) 04-DS-ER-RDM DS-ER-RDM-22 E-R R to RDM mapping: discussion Schema reengineering Transformation - unambiguous for relations representing 1:N relationship,... but consolidation optional. - 1:1 relationships: choice - merge with one of the entity- tables - M:N relationships: never merge Represented always by separate tables in the RDM Very simple process: Many D-Design tools model relationships directly by means of foreign keys! 04-DS-ER-RDM DS-ER-RDM-24 4

5 Discussion continued lways merge 1:N relationships? Example: Person(id,, phone#, Room (rno, building#, size, netsocket# Sits_in(id, rno,b#, since, gotkey, numberofkey, Merge would result in a relation with many NULL values Merging 1:N relationships makes sense in most cases If relationship has many attributes do not merge when many NULL values expected If attributes of relationship are used infrequently by applications, do not merge (*) Discussion(2) Never merge M:N relationships Person(id,, Hobby (hobby, kind, class_of_risk) has_h(id, hobby, casualty) Person(id,,..., hobby, casualty Key has been changed, redundancy introduced (*) efficiency argument: avoid unnecessary data transfers 04-DS-ER-RDM DS-ER-RDM E-R E R to RDM mapping: Generalization s: T1 x: T0 y: T1 t: T2 checking limit: num account.. saving interest: num Generalization: separate tables Second lternative: separate relations for, and make a one-to-one correspondence between every tuple from and the appropriate s..and the same for the s First alternative: One "big" -table with attributes from all specializations (x, y, s, t) NULLs, if subtypes are disjoint Empty, if subtypes are exhaustive i.e. each must belong to a subtype 04-DS-ER-RDM-27 (x, y) (x, s) (x, t) and are separate relations In this example: - disjoint specializations - not exhaustive Key of as foreign key and part of primary key in and (existence dependency) 04-DS-ER-RDM-28 E-R R to RDM mapping: Generalization Third alternative Extend by and, respectively (x,y,s) (x,y,t) Required: Subtypes must be exhaustive, i.e. complete specialization Think about the pros and cons of each solution! E-R R to RDM mapping Recursive relationships staff (0,*) boss (1,1) is_manager-of (eid,., managed_by_eid, ) Transformation step depending on cardinalities just like non-recursive relationships 04-DS-ER-RDM DS-ER-RDM-30 5

3. Schema Design: Logical Design using the Relational Data Model

3. Schema Design: Logical Design using the Relational Data Model 3. Schema Design: Logical Design using the Relational Data Model 3.1 Logical Schema Design 3.1.1 The Relational Data Model in a nutshell 3.1.2 Keys, candidate keys and more 3.2 From Conceptual to Logical

More information

3. Schema Design: Logical Design using the Relational Data Model

3. Schema Design: Logical Design using the Relational Data Model 3. Schema Design: Logical Design using the Relational Data Model 3.1 Logical Schema Design 3.1.1 The Relational Data Model Basics 3.1.2 Keys, candidate keys and more 3.2 From Conceptual to Logical Schema:

More information

Logical Schema Design Logical Schema Design: The Relational Data Model

Logical Schema Design Logical Schema Design: The Relational Data Model Logical Schema Design Logical Schema Design: The Relational Data Model Basics of the Relational Model From Conceptual to Logical Schema Select data model - Hierarchical data model: hierarchies of record

More information

Cardinality constraints,n:m notation

Cardinality constraints,n:m notation 2 Conceptual Database Design 2.3 Integrity Constraints 2.3. Constraint types 2.3.2 Cardinality constraints 2.4 Extended ER Modeling 2.4. Inheritance / Generalization 2.4.2 Modeling historical data 2.4.3

More information

ER to Relational Mapping

ER to Relational Mapping ER to Relational Mapping 1 / 19 ER to Relational Mapping Step 1: Strong Entities Step 2: Weak Entities Step 3: Binary 1:1 Relationships Step 4: Binary 1:N Relationships Step 5: Binary M:N Relationships

More information

01/01/2017. Chapter 5: The Relational Data Model and Relational Database Constraints: Outline. Chapter 5: Relational Database Constraints

01/01/2017. Chapter 5: The Relational Data Model and Relational Database Constraints: Outline. Chapter 5: Relational Database Constraints Chapter 5: The Relational Data Model and Relational Database Constraints: Outline Ramez Elmasri, Shamkant B. Navathe(2017) Fundamentals of Database Systems (7th Edition),pearson, isbn 10: 0-13-397077-9;isbn-13:978-0-13-397077-7.

More information

2 Conceptual Database Design

2 Conceptual Database Design 2 Conceptual Database Design 2.1.1 Overview 2.1.2 Requirement Analysis 2.2.1 Basic Modeling Primitives 2.2.2 Modeling Languages: UML and Entity-Relationship Model (ERM) 2.2.3 Conceptual DB design: basics

More information

Relational Database Systems Part 01. Karine Reis Ferreira

Relational Database Systems Part 01. Karine Reis Ferreira Relational Database Systems Part 01 Karine Reis Ferreira karine@dpi.inpe.br Aula da disciplina Computação Aplicada I (CAP 241) 2016 Database System Database: is a collection of related data. represents

More information

The Relational Data Model and Relational Database Constraints

The Relational Data Model and Relational Database Constraints CHAPTER 5 The Relational Data Model and Relational Database Constraints Copyright 2017 Ramez Elmasri and Shamkant B. Navathe Slide 1-2 Chapter Outline Relational Model Concepts Relational Model Constraints

More information

The DBMS accepts requests for data from the application program and instructs the operating system to transfer the appropriate data.

The DBMS accepts requests for data from the application program and instructs the operating system to transfer the appropriate data. Managing Data Data storage tool must provide the following features: Data definition (data structuring) Data entry (to add new data) Data editing (to change existing data) Querying (a means of extracting

More information

The Basic (Flat) Relational Model. Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Basic (Flat) Relational Model. Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley The Basic (Flat) Relational Model Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 3 Outline The Relational Data Model and Relational Database Constraints Relational

More information

Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition. Chapter 8 Data Modeling Advanced Concepts

Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition. Chapter 8 Data Modeling Advanced Concepts Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition Chapter 8 Data Modeling Advanced Concepts Objectives In this chapter, students will learn: About the extended entity

More information

Chapter 9: Relational DB Design byer/eer to Relational Mapping Relational Database Design Using ER-to- Relational Mapping Mapping EER Model

Chapter 9: Relational DB Design byer/eer to Relational Mapping Relational Database Design Using ER-to- Relational Mapping Mapping EER Model Chapter 9: Relational DB Design byer/eer to Relational Mapping Relational Database Design Using ER-to- Relational Mapping Mapping EER Model Constructs to Relations Relational Database Design by ER- and

More information

Database Management

Database Management 204320 - Database Management Chapter 9 Relational Database Design by ER and EERto-Relational Mapping Adapted for 204320 by Areerat Trongratsameethong Copyright 2011 Pearson Education, Inc. Publishing as

More information

File Processing Approaches

File Processing Approaches Relational Database Basics Review Overview Database approach Database system Relational model File Processing Approaches Based on file systems Data are recorded in various types of files organized in folders

More information

Let s briefly review important EER inheritance concepts

Let s briefly review important EER inheritance concepts Let s briefly review important EER inheritance concepts 1 is-a relationship Copyright (c) 2011 Pearson Education 2 Basic Constraints Partial / Disjoint: Single line / d in circle Each entity can be an

More information

Relational Model. IT 5101 Introduction to Database Systems. J.G. Zheng Fall 2011

Relational Model. IT 5101 Introduction to Database Systems. J.G. Zheng Fall 2011 Relational Model IT 5101 Introduction to Database Systems J.G. Zheng Fall 2011 Overview What is the relational model? What are the most important practical elements of the relational model? 2 Introduction

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Relational Databases: Tuples, Tables, Schemas, Relational Algebra Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Overview

More information

Fundamentals, Design, and Implementation, 9/e Copyright 2004 Database Processing: Fundamentals, Design, and Implementation, 9/e by David M.

Fundamentals, Design, and Implementation, 9/e Copyright 2004 Database Processing: Fundamentals, Design, and Implementation, 9/e by David M. Chapter 5 Database Design Elements of Database Design Fundamentals, Design, and Implementation, 9/e Chapter 5/2 The Database Design Process Create tables and columns from entities and attributes Select

More information

ITCS 3160 DATA BASE DESIGN AND IMPLEMENTATION

ITCS 3160 DATA BASE DESIGN AND IMPLEMENTATION ITCS 3160 DATA BASE DESIGN AND IMPLEMENTATION JING YANG 2010 FALL Class 3: The Relational Data Model and Relational Database Constraints Outline 2 The Relational Data Model and Relational Database Constraints

More information

Database Management System (15ECSC208) UNIT I: Chapter 2: Relational Data Model and Relational Algebra

Database Management System (15ECSC208) UNIT I: Chapter 2: Relational Data Model and Relational Algebra Database Management System (15ECSC208) UNIT I: Chapter 2: Relational Data Model and Relational Algebra Relational Data Model and Relational Constraints Part 1 A simplified diagram to illustrate the main

More information

Chapter 4. The Relational Model

Chapter 4. The Relational Model Chapter 4 The Relational Model Chapter 4 - Objectives Terminology of relational model. How tables are used to represent data. Connection between mathematical relations and relations in the relational model.

More information

Relational Model: History

Relational Model: History Relational Model: History Objectives of Relational Model: 1. Promote high degree of data independence 2. Eliminate redundancy, consistency, etc. problems 3. Enable proliferation of non-procedural DML s

More information

Ch 9: Mapping EER to Relational. Follow a seven-step algorithm to convert the basic ER model constructs into relations steps 1-7

Ch 9: Mapping EER to Relational. Follow a seven-step algorithm to convert the basic ER model constructs into relations steps 1-7 Ch 9: Mapping EER to Relational Follow a seven-step algorithm to convert the basic ER model constructs into relations steps 1-7 Additional steps for EER model for specialization/generalization steps 8a

More information

Chapter 6. Advanced Data Modeling. Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel

Chapter 6. Advanced Data Modeling. Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel Chapter 6 Advanced Data Modeling Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel 1 In this chapter, you will learn: About the extended entity relationship (EER)

More information

Basant Group of Institution

Basant Group of Institution Basant Group of Institution Visual Basic 6.0 Objective Question Q.1 In the relational modes, cardinality is termed as: (A) Number of tuples. (B) Number of attributes. (C) Number of tables. (D) Number of

More information

Mahathma Gandhi University

Mahathma Gandhi University Mahathma Gandhi University BSc Computer science III Semester BCS 303 OBJECTIVE TYPE QUESTIONS Choose the correct or best alternative in the following: Q.1 In the relational modes, cardinality is termed

More information

4 Schema Definition with SQL / DDL (II)

4 Schema Definition with SQL / DDL (II) 4 Schema Definition with SQL / DDL (II) 4.3 SQL/DDL Constraints 4.3.1 Attribute and simple table constraints 4.3.2 Enforcing cardinality constraints and foreign keys 4.3.3 Deferred constraints 4.3.4 Assertions

More information

Relational Model. CS 377: Database Systems

Relational Model. CS 377: Database Systems Relational Model CS 377: Database Systems ER Model: Recap Recap: Conceptual Models A high-level description of the database Sufficiently precise that technical people can understand it But, not so precise

More information

Objectives Definition iti of terms List five properties of relations State two properties of candidate keys Define first, second, and third normal for

Objectives Definition iti of terms List five properties of relations State two properties of candidate keys Define first, second, and third normal for Chapter 5: Logical Database Design and the Relational Model Modern Database Management 9 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Heikki Topi 2009 Pearson Education, Inc. Publishing as Prentice

More information

Relational Model History. COSC 416 NoSQL Databases. Relational Model (Review) Relation Example. Relational Model Definitions. Relational Integrity

Relational Model History. COSC 416 NoSQL Databases. Relational Model (Review) Relation Example. Relational Model Definitions. Relational Integrity COSC 416 NoSQL Databases Relational Model (Review) Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Relational Model History The relational model was proposed by E. F. Codd

More information

DBMS. Relational Model. Module Title?

DBMS. Relational Model. Module Title? Relational Model Why Study the Relational Model? Most widely used model currently. DB2,, MySQL, Oracle, PostgreSQL, SQLServer, Note: some Legacy systems use older models e.g., IBM s IMS Object-oriented

More information

Information Systems (Informationssysteme)

Information Systems (Informationssysteme) Information Systems (Informationssysteme) Jens Teubner, TU Dortmund jensteubner@cstu-dortmundde Summer 2018 c Jens Teubner Information Systems Summer 2018 1 Part IV Database Design c Jens Teubner Information

More information

3.2.4 Enforcing constraints

3.2.4 Enforcing constraints 3.2.4 Enforcing constraints Constraints SQL definition of the schema Up to now: primary Key, foreign key, NOT NULL Different kinds of integrity constraints value constraints on attributes cardinalities

More information

LAB 3 Notes. Codd proposed the relational model in 70 Main advantage of Relational Model : Simple representation (relationstables(row,

LAB 3 Notes. Codd proposed the relational model in 70 Main advantage of Relational Model : Simple representation (relationstables(row, LAB 3 Notes The Relational Model Chapter 3 In the previous lab we discussed the Conceptual Database Design Phase and the ER Diagram. Today we will mainly discuss how to convert an ER model into the Relational

More information

Relational Data Model

Relational Data Model Relational Data Model 1. Relational data model Information models try to put the real-world information complexity in a framework that can be easily understood. Data models must capture data structure

More information

e e Conceptual design begins with the collection of requirements and results needed from the database (ER Diag.)

e e Conceptual design begins with the collection of requirements and results needed from the database (ER Diag.) Instructor: Jinze Liu Fall 2008 Phases of Database Design Data Requirements e e Conceptual design begins with the collection of requirements and results needed from the database (ER Diag.) Conceptual Design

More information

THE RELATIONAL DATABASE MODEL

THE RELATIONAL DATABASE MODEL THE RELATIONAL DATABASE MODEL Introduction to relational DB Basic Objects of relational model Properties of relation Representation of ER model to relation Keys Relational Integrity Rules Functional Dependencies

More information

Logical Database Design. ICT285 Databases: Topic 06

Logical Database Design. ICT285 Databases: Topic 06 Logical Database Design ICT285 Databases: Topic 06 1. What is Logical Database Design? Why bother? Bad logical database design results in bad physical database design, and generally results in poor database

More information

Data Modelling and Databases. Exercise Session 7: Integrity Constraints

Data Modelling and Databases. Exercise Session 7: Integrity Constraints Data Modelling and Databases Exercise Session 7: Integrity Constraints 1 Database Design Textual Description Complete Design ER Diagram Relational Schema Conceptual Modeling Logical Modeling Physical Modeling

More information

DC62 Database management system JUNE 2013

DC62 Database management system JUNE 2013 Q2 (a) Explain the differences between conceptual & external schema. Ans2 a. Page Number 24 of textbook. Q2 (b) Describe the four components of a database system. A database system is composed of four

More information

Translation of ER-diagram into Relational Schema. Dr. Sunnie S. Chung CIS430/530

Translation of ER-diagram into Relational Schema. Dr. Sunnie S. Chung CIS430/530 Translation of ER-diagram into Relational Schema Dr. Sunnie S. Chung CIS430/530 Learning Objectives Define each of the following database terms Relation Primary key Foreign key Referential integrity Field

More information

The Relational Model. Why Study the Relational Model? Relational Database: Definitions

The Relational Model. Why Study the Relational Model? Relational Database: Definitions The Relational Model Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Microsoft, Oracle, Sybase, etc. Legacy systems in

More information

CS275 Intro to Databases

CS275 Intro to Databases CS275 Intro to Databases The Relational Data Model Chap. 3 How Is Data Retrieved and Manipulated? Queries Data manipulation language (DML) Retrieval Add Delete Update An Example UNIVERSITY database Information

More information

DOWNLOAD PDF INSIDE RELATIONAL DATABASES

DOWNLOAD PDF INSIDE RELATIONAL DATABASES Chapter 1 : Inside Microsoft's Cosmos DB ZDNet Inside Relational Databases is an excellent introduction to the topic and a very good resource. I read the book cover to cover and found the authors' insights

More information

Relational Model and Relational Algebra. Rose-Hulman Institute of Technology Curt Clifton

Relational Model and Relational Algebra. Rose-Hulman Institute of Technology Curt Clifton Relational Model and Relational Algebra Rose-Hulman Institute of Technology Curt Clifton Administrative Notes Grading Weights Schedule Updated Review ER Design Techniques Avoid redundancy and don t duplicate

More information

Information Technology Audit & Cyber Security

Information Technology Audit & Cyber Security Information Technology Audit & Cyber Security Structured Data Requirements Systems & Infrastructure Lifecycle Management with E-R LEARNING OBJECTIVES Explain the role of conceptual data modeling in the

More information

Conceptual Data Modeling

Conceptual Data Modeling Conceptual Data odeling A data model is a way to describe the structure of the data. In models that are implemented it includes a set of operations that manipulate the data. A Data odel is a combination

More information

Requirement Analysis & Conceptual Database Design

Requirement Analysis & Conceptual Database Design Requirement Analysis & Conceptual Database Design Problem analysis Entity Relationship notation Integrity constraints Generalization Introduction: Lifecycle Requirement analysis Conceptual Design Logical

More information

Relational Model. Course A7B36DBS: Database Systems. Lecture 02: Martin Svoboda Irena Holubová Tomáš Skopal

Relational Model. Course A7B36DBS: Database Systems. Lecture 02: Martin Svoboda Irena Holubová Tomáš Skopal Course A7B36DBS: Database Systems Lecture 02: Relational Model Martin Svoboda Irena Holubová Tomáš Skopal Faculty of Electrical Engineering, Czech Technical University in Prague Outline Logical database

More information

Using High-Level Conceptual Data Models for Database Design A Sample Database Application Entity Types, Entity Sets, Attributes, and Keys

Using High-Level Conceptual Data Models for Database Design A Sample Database Application Entity Types, Entity Sets, Attributes, and Keys Chapter 7: Data Modeling Using the Entity- Relationship (ER) Model Using High-Level Conceptual Data Models for Database Design A Sample Database Application Entity Types, Entity Sets, Attributes, and Keys

More information

PES Institute of Technology Bangalore South Campus (1 K.M before Electronic City,Bangalore ) Department of MCA. Solution Set - Test-II

PES Institute of Technology Bangalore South Campus (1 K.M before Electronic City,Bangalore ) Department of MCA. Solution Set - Test-II PES Institute of Technology Bangalore South Campus (1 K.M before Electronic City,Bangalore 560100 ) Solution Set - Test-II Sub: Database Management Systems 16MCA23 Date: 04/04/2017 Sem & Section:II Duration:

More information

Review -Chapter 4. Review -Chapter 5

Review -Chapter 4. Review -Chapter 5 Review -Chapter 4 Entity relationship (ER) model Steps for building a formal ERD Uses ER diagrams to represent conceptual database as viewed by the end user Three main components Entities Relationships

More information

Database Systems: Design, Implementation, and Management Tenth Edition. Chapter 4 Entity Relationship (ER) Modeling

Database Systems: Design, Implementation, and Management Tenth Edition. Chapter 4 Entity Relationship (ER) Modeling Database Systems: Design, Implementation, and Management Tenth Edition Chapter 4 Entity Relationship (ER) Modeling Objectives In this chapter, students will learn: The main characteristics of entity relationship

More information

Data Modeling Using the Entity-Relationship (ER) Model

Data Modeling Using the Entity-Relationship (ER) Model CHAPTER 3 Data Modeling Using the Entity-Relationship (ER) Model Copyright 2017 Ramez Elmasri and Shamkant B. Navathe Slide 1-1 Chapter Outline Overview of Database Design Process Example Database Application

More information

Conceptual Design. The Entity-Relationship (ER) Model

Conceptual Design. The Entity-Relationship (ER) Model Conceptual Design. The Entity-Relationship (ER) Model CS430/630 Lecture 12 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke Database Design Overview Conceptual design The Entity-Relationship

More information

Data about data is database Select correct option: True False Partially True None of the Above

Data about data is database Select correct option: True False Partially True None of the Above Within a table, each primary key value. is a minimal super key is always the first field in each table must be numeric must be unique Foreign Key is A field in a table that matches a key field in another

More information

DATABASE MANAGEMENT SYSTEMS

DATABASE MANAGEMENT SYSTEMS www..com Code No: N0321/R07 Set No. 1 1. a) What is a Superkey? With an example, describe the difference between a candidate key and the primary key for a given relation? b) With an example, briefly describe

More information

Relational DB Design by ER- and EER-to-Relational Mapping Design & Analysis of Database Systems

Relational DB Design by ER- and EER-to-Relational Mapping Design & Analysis of Database Systems Relational DB Design by ER- and EER-to-Relational Mapping 406.426 Design & Analysis of Database Systems Jonghun Park jonghun@snu.ac.kr Dept. of Industrial Engineering Seoul National University outline

More information

Why Study the Relational Model? The Relational Model. Relational Database: Definitions. The SQL Query Language. Relational Query Languages

Why Study the Relational Model? The Relational Model. Relational Database: Definitions. The SQL Query Language. Relational Query Languages Why Study the Relational Model? The Relational Model Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc. Legacy systems in older models E.G., IBM s IMS Recent competitor: object-oriented

More information

Relational Database Components

Relational Database Components Relational Database Components Chapter 2 Class 01: Relational Database Components 1 Class 01: Relational Database Components 2 Conceptual Database Design Components Class 01: Relational Database Components

More information

CS403- Database Management Systems Solved Objective Midterm Papers For Preparation of Midterm Exam

CS403- Database Management Systems Solved Objective Midterm Papers For Preparation of Midterm Exam CS403- Database Management Systems Solved Objective Midterm Papers For Preparation of Midterm Exam Question No: 1 ( Marks: 1 ) - Please choose one Which of the following is NOT a feature of Context DFD?

More information

Where Are We? Next Few Lectures. Integrity Constraints Motivation. Constraints in E/R Diagrams. Keys in E/R Diagrams

Where Are We? Next Few Lectures. Integrity Constraints Motivation. Constraints in E/R Diagrams. Keys in E/R Diagrams Where Are We? Introduction to Data Management CSE 344 Lecture 15: Constraints We know quite a bit about using a DBMS Start with real-world problem, design ER diagram From ER diagram to relations -> conceptual

More information

Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA

Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA Chapter 6: Relational Data Model and Relational Algebra 1 Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA RELATIONAL MODEL CONCEPTS The relational model represents the database as a collection

More information

Topic 5: Mapping of EER Diagrams to Relations

Topic 5: Mapping of EER Diagrams to Relations Topic 5: Mapping of EER Diagrams to Relations Olaf Hartig olaf.hartig@liu.se Recall: DB Design Process 2 Running Example 3 Algorithm for Mapping from the ER Model to the Relational Model Step 1: Map Regular

More information

CS403- Database Management Systems Solved MCQS From Midterm Papers. CS403- Database Management Systems MIDTERM EXAMINATION - Spring 2010

CS403- Database Management Systems Solved MCQS From Midterm Papers. CS403- Database Management Systems MIDTERM EXAMINATION - Spring 2010 CS403- Database Management Systems Solved MCQS From Midterm Papers April 29,2012 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 CS403- Database Management Systems MIDTERM EXAMINATION - Spring

More information

Data Modeling. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Data Modeling. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Data Modeling Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Outline v Conceptual Design: ER Model v Relational Model v Logical Design: from ER to Relational 2 Conceptual

More information

Relational Model. Courses B0B36DBS, A4B33DS, A7B36DBS: Database Systems. Lecture 02: Martin Svoboda

Relational Model. Courses B0B36DBS, A4B33DS, A7B36DBS: Database Systems. Lecture 02: Martin Svoboda Courses B0B36DBS, A4B33DS, A7B36DBS: Database Systems Lecture 02: Relational Model Martin Svoboda 28. 2. 2017 Faculty of Electrical Engineering, Czech Technical University in Prague Lecture Outline Logical

More information

Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition. Chapter 7 Data Modeling with Entity Relationship Diagrams

Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition. Chapter 7 Data Modeling with Entity Relationship Diagrams Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition Chapter 7 Data Modeling with Entity Relationship Diagrams Objectives In this chapter, students will learn: The

More information

Introduction to Relational Databases. Introduction to Relational Databases cont: Introduction to Relational Databases cont: Relational Data structure

Introduction to Relational Databases. Introduction to Relational Databases cont: Introduction to Relational Databases cont: Relational Data structure Databases databases Terminology of relational model Properties of database relations. Relational Keys. Meaning of entity integrity and referential integrity. Purpose and advantages of views. The relational

More information

1 Introduction. File system versus DBS. Why Database systems? Reading and Writing Random Access Files in Java (taken from Java API)

1 Introduction. File system versus DBS. Why Database systems? Reading and Writing Random Access Files in Java (taken from Java API) 1 Introduction 1.1 Databases vs. files 1.2 Basic concepts and terminology 1.3 Brief history of databases 1.4 Architectures & systems 1.5 Technical Challenges 1.6 DB lifecycle References: Kemper / Eickler

More information

Chapter 9 Outline. Relational Database Design by ER and EERto-Relational. Mapping Fundamentals of Database Systems

Chapter 9 Outline. Relational Database Design by ER and EERto-Relational. Mapping Fundamentals of Database Systems 204222 - Fundamentals of Database Systems Chapter 9 Relational Database Design by ER and EERto-Relational Mapping Chapter 9 Outline Relational Database Design Using ER-to- Relational Mapping Relational

More information

0. Database Systems 1.1 Introduction to DBMS Information is one of the most valuable resources in this information age! How do we effectively and efficiently manage this information? - How does Wal-Mart

More information

Database Design Process

Database Design Process Database Design Process Real World Functional Requirements Requirements Analysis Database Requirements Functional Analysis Access Specifications Application Pgm Design E-R Modeling Choice of a DBMS Data

More information

CSE 880:Database Systems. ER Model and Relation Schemas

CSE 880:Database Systems. ER Model and Relation Schemas CSE 880:Database Systems ER Model and Relation Schemas 1 Major Steps for Database Design and Implementation 1. Requirements Collection and Analysis: Produces database requirements such as types of data,

More information

Introduction to Database Systems. The Relational Data Model

Introduction to Database Systems. The Relational Data Model Introduction to Database Systems The Relational Data Model Werner Nutt 1 4. The Relational Data Model 4.1 Schemas 1. Schemas 2. Instances 3. Integrity Constraints 2 Different Schemas are Based on Different

More information

Objectives of logical design... Transforming the ERD diagram into relations. Relational database components. Mapping a composite attribute

Objectives of logical design... Transforming the ERD diagram into relations. Relational database components. Mapping a composite attribute Logical database design and the relational model Objectives of logical design... Translate the conceptual design into a logical database design that can be implemented on a chosen DBMS Input: conceptual

More information

Introduction to Database Systems. The Relational Data Model. Werner Nutt

Introduction to Database Systems. The Relational Data Model. Werner Nutt Introduction to Database Systems The Relational Data Model Werner Nutt 1 4. The Relational Data Model 4.1 Schemas 1. Schemas 2. Instances 3. Integrity Constraints 2 Different Schemas are Based on Different

More information

COSC 304 Introduction to Database Systems. Entity-Relationship Modeling

COSC 304 Introduction to Database Systems. Entity-Relationship Modeling COSC 304 Introduction to Database Systems Entity-Relationship Modeling Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Conceptual Database Design Conceptual database design

More information

LAB 2 Notes. Conceptual Design ER. Logical DB Design (relational) Schema Refinement. Physical DD

LAB 2 Notes. Conceptual Design ER. Logical DB Design (relational) Schema Refinement. Physical DD LAB 2 Notes For students that were not present in the first lab TA Web page updated : http://www.cs.ucr.edu/~cs166/ Mailing list Signup: http://www.cs.ucr.edu/mailman/listinfo/cs166 The general idea of

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to

More information

What s a database system? Review of Basic Database Concepts. Entity-relationship (E/R) diagram. Two important questions. Physical data independence

What s a database system? Review of Basic Database Concepts. Entity-relationship (E/R) diagram. Two important questions. Physical data independence What s a database system? Review of Basic Database Concepts CPS 296.1 Topics in Database Systems According to Oxford Dictionary Database: an organized body of related information Database system, DataBase

More information

CS143: Relational Model

CS143: Relational Model CS143: Relational Model Book Chapters (4th) Chapters 1.3-5, 3.1, 4.11 (5th) Chapters 1.3-7, 2.1, 3.1-2, 4.1 (6th) Chapters 1.3-6, 2.105, 3.1-2, 4.5 Things to Learn Data model Relational model Database

More information

The Relational Model. Chapter 3. Comp 521 Files and Databases Fall

The Relational Model. Chapter 3. Comp 521 Files and Databases Fall The Relational Model Chapter 3 Comp 521 Files and Databases Fall 2014 1 Why the Relational Model? Most widely used model by industry. IBM, Informix, Microsoft, Oracle, Sybase, MySQL, Postgres, Sqlite,

More information

The Entity Relationship Model

The Entity Relationship Model The Entity Relationship Model CPS352: Database Systems Simon Miner Gordon College Last Revised: 2/4/15 Agenda Check-in Introduction to Course Database Environment (db2) SQL Group Exercises The Entity Relationship

More information

ACS-3902 Fall Ron McFadyen 3D21 Slides are based on chapter 5 (7 th edition) (chapter 3 in 6 th edition)

ACS-3902 Fall Ron McFadyen 3D21 Slides are based on chapter 5 (7 th edition) (chapter 3 in 6 th edition) ACS-3902 Fall 2016 Ron McFadyen 3D21 ron.mcfadyen@acs.uwinnipeg.ca Slides are based on chapter 5 (7 th edition) (chapter 3 in 6 th edition) 1 The Relational Data Model and Relational Database Constraints

More information

CMP-3440 Database Systems

CMP-3440 Database Systems CMP-3440 Database Systems Database Architecture Lecture 02 zain 1 Database Design Process Application 1 Conceptual requirements Application 1 External Model Application 2 Application 3 Application 4 External

More information

CSE 132A Database Systems Principles

CSE 132A Database Systems Principles CSE 132A Database Systems Principles Prof. Alin Deutsch RELATIONAL DATA MODEL Some slides are based or modified from originals by Elmasri and Navathe, Fundamentals of Database Systems, 4th Edition 2004

More information

Overview of Database Design Process. Data Modeling Using the Entity- Relationship (ER) Model. Two main activities:

Overview of Database Design Process. Data Modeling Using the Entity- Relationship (ER) Model. Two main activities: 1 / 14 Overview of Database Design Process Example Database Application (COMPANY) ER Model Concepts Entities and Attributes Entity Types, Value Sets, and Key Attributes Relationships and Relationship Types

More information

Comp 5311 Database Management Systems. 2. Relational Model and Algebra

Comp 5311 Database Management Systems. 2. Relational Model and Algebra Comp 5311 Database Management Systems 2. Relational Model and Algebra 1 Basic Concepts of the Relational Model Entities and relationships of the E-R model are stored in tables also called relations (not

More information

Database Systems: Design, Implementation, and Management Tenth Edition. Chapter 4 Entity Relationship (ER) Modeling

Database Systems: Design, Implementation, and Management Tenth Edition. Chapter 4 Entity Relationship (ER) Modeling Database Systems: Design, Implementation, and Management Tenth Edition Chapter 4 Entity Relationship (ER) Modeling 4.1 The Entity Relationship Model (ERM) ER model forms the basis of an ER diagram ERD

More information

CS 2451 Database Systems: Relational Data Model

CS 2451 Database Systems: Relational Data Model CS 2451 Database Systems: Relational Data Model http://www.seas.gwu.edu/~bhagiweb/cs2541 Spring 2018 Instructor: Dr. Bhagi Narahari Lead TA: Roxana Leontie TA/Grader: Malik Undergrad TA: Victoria Zheng

More information

Chapter 3. The Relational Model. Database Systems p. 61/569

Chapter 3. The Relational Model. Database Systems p. 61/569 Chapter 3 The Relational Model Database Systems p. 61/569 Introduction The relational model was developed by E.F. Codd in the 1970s (he received the Turing award for it) One of the most widely-used data

More information

The Relational Model. Outline. Why Study the Relational Model? Faloutsos SCS object-relational model

The Relational Model. Outline. Why Study the Relational Model? Faloutsos SCS object-relational model The Relational Model CMU SCS 15-415 C. Faloutsos Lecture #3 R & G, Chap. 3 Outline Introduction Integrity constraints (IC) Enforcing IC Querying Relational Data ER to tables Intro to Views Destroying/altering

More information

Copyright 2016 Ramez Elmasr and Shamkant B. Navathei

Copyright 2016 Ramez Elmasr and Shamkant B. Navathei CHAPTER 3 Data Modeling Using the Entity-Relationship (ER) Model Slide 1-2 Chapter Outline Overview of Database Design Process Example Database Application (COMPANY) ER Model Concepts Entities and Attributes

More information

The Relational Model. Roadmap. Relational Database: Definitions. Why Study the Relational Model? Relational database: a set of relations

The Relational Model. Roadmap. Relational Database: Definitions. Why Study the Relational Model? Relational database: a set of relations The Relational Model CMU SCS 15-415/615 C. Faloutsos A. Pavlo Lecture #3 R & G, Chap. 3 Roadmap Introduction Integrity constraints (IC) Enforcing IC Querying Relational Data ER to tables Intro to Views

More information

Introduction to Data Management. Lecture #4 (E-R à Relational Design)

Introduction to Data Management. Lecture #4 (E-R à Relational Design) Introduction to Data Management Lecture #4 (E-R à Relational Design) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v Reminders:

More information

Introduction to Databases

Introduction to Databases Introduction to Databases Abou Bakar Kaleem 1 Overview - Database - Relational Databases - Introduction to SQL Introduction to Databases 2 1 Database (1) Database : - is a collection of related data -

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) The Relational Model Lecture 3, January 18, 2015 Mohammad Hammoud Today Last Session: The entity relationship (ER) model Today s Session: ER model (Cont d): conceptual design

More information

Conceptual Database Design. COSC 304 Introduction to Database Systems. Entity-Relationship Modeling. Entity-Relationship Modeling

Conceptual Database Design. COSC 304 Introduction to Database Systems. Entity-Relationship Modeling. Entity-Relationship Modeling COSC 304 Introduction to Database Systems Entity-Relationship Modeling Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Conceptual Database Design Conceptual database design

More information