CSCI E 119 Section Notes Section 11 Solutions

Size: px
Start display at page:

Download "CSCI E 119 Section Notes Section 11 Solutions"

Transcription

1 CSCI E 119 Section Notes Section 11 Solutions 1. Double Hashing Suppose we have a 7 element hash table, and we wish to insert following words: apple, cat, anvil, boy, bag, dog, cup, down We use hash functions: h1(key) = index related to first letter of the word ( a = 0, b = 1, ) h2(key) = length of the word (ex. h2( apple ) = 5) Let s go through inserting elements using double hashing and count the total length of the probes: First we insert apple. h1( apple ) = 0 is not occupied. Total probe length = 1: 1 _ 2 _ 5 _ Next we insert cat. h1( cat ) = 2 is not occupied. Total probe length = = 2: 1 _ 5 _ Next we insert anvil. h1( anvil ) = 0 which is occupied. h2( anvil ) = is not occupied. Total probe length = = 4: 1 _ Next we insert boy. h1( boy ) = 1 which is not occupied. Total probe length = = 5:

2 Next we insert bag. h1( bag ) = 1 which is occupied. h2( bag ) = = 4 is unoccupied. Total probe length = = 7: 4 bag Next we insert dog. h1( dog ) = 3 which is not occupied. Total probe length = = 8: 3 dog 4 bag Next we insert cup. h1( cup ) = 2 which is occupied. h2( cup ) = = 5 is occupied *3 = 8 = 1 is occupied *3 = 11 = 4 is occupied *3 = 14 = 0 is occupied *3 = 17 = 3 is occupied *3 = 20 = 6 is not occupied. Total probe length = = 15: 3 dog 4 bag 6 cup Again, we cannot insert down because the table is full. Total probe length = = The probe() method in our HashTable class (REVISITED) The return value of the probe() method is an integer. In some cases, it represents the index of the key that we re searching for. In other cases, it represents the index of the first empty or removed cell encountered during the search for the specified key. 0 aardvark 1 2 cat 3 bear 4 5 dog 6 The hashtable above has been partially filled using linear probing and the hash function h1 from problem 1. A gray cell indicates that an item has been removed.

3 One of the items in the table has been inserted incorrectly. Which one, and how do you know? dog is misplaced. Its hash code is 3, because it begins with d. Position 3 may have been filled when it was inserted, which explains why it wasn t put there. However, because position 4 is empty, it should have been inserted there, and it wasn t. Note that position 4 could not have been previously occupied, because it isn t gray. For each of the keys below, determine: i. the probe length ii. the return value of the probe() method Assume that none of these keys are actually inserted in the table. a. bear h1( bear ) = 1. Position 1 is a removed cell, so the probe() method takes note of that and continues probing. Position 2 is filled with a different key, so it moves on to position 3, which contains the key we are searching for. Thus, the method returns 3. Probe length = 3 (position 1, 2, and 3). b. cow h1( cow ) = 2. Position 2 is filled with a different key, so the probe() method moves on to position 3, which is also filled with a different key. Position 4 is empty, so the probe() method breaks out of the while loop and returns 4. Probe length = 3. c. buffalo h1( buffalo ) = 1. Position 1 is a removed cell, so the probe() method takes note of that and continues probing. Position 2 is filled with a different key, so it moves on to position 3, which is also filled with a different key. Position 4 is empty, so the probe() method breaks out of the while loop. Because it encountered a removed cell (position 1), it returns its position, so that a newly inserted value could be put there. Return value = 1. Probe length = 4. d. giraffe h1( giraffe ) = 6. Position 6 is a removed cell, so the probe() method takes note of that and moves on to position (6 + 1) % 7 = 0, which is filled with a different key, so it moves on to position 1. Position 1 is also a removed cell, but it is not the first one encountered, so the probe() method does not record its position, but moves on to position 2. Position 2 is filled with a different key, so it moves on to position 3, which is also filled with a different key. Position 4 is empty, so the probe() method breaks out of the while loop. It returns the position of the first encountered removed cell. Return value = 6. Probe length = 6. What is the largest probe length that we could have for this table, regardless of its contents? 7 the length of the table. After 7 positions, the probe sequence repeats, so the probe() method will give up after trying 7 positions.

4 3. Comparing data structures A local retailer wants to implement a simple in memory database that can be used to access information about products. Although a snapshot of this database will be periodically copied to disk, the entire contents fit in memory, and your component of the application will operate only on data stored in memory. Here are the requirements specified by the retailer: She wants to be able to retrieve product records by specifying the name of the product. She wants to be able to specify the first n characters of a product name and to retrieve all records that begin with those characters. She wants the record retrieval to be as efficient as possible on the order of 20 operations per retrieval, given a database of approximately one million records. She wants to be able to increase the size of the database adding large sets of new records without taking the system offline. Given this list of requirements, which data structure would be the better choice for this application, a binary search tree or a hash table or would these two data structures work equally well? Let s consider each of the criteria in turn: 1) Retrieving product records by specifying name of the product Search Tree: Assuming we used a balanced search tree, this takes O(log n). If the tree is unbalanced this could take O(n). Hash Table: This should take constant time as long as there are not too many collisions, but it could in theory be O(n) if the hash function doesn t work well or the table becomes too full. 2) Specifing the first n characters of a product name and retrieving all records that begin with these characters: Search Tree: While in the worst case, we have to go through the entire tree, if the tree is balanced, we should be able to prune much of the search space. Worst case O(n). Best case is much better than O(n). Hash Table: This is difficult since we probably have to go through the entire table (depending on the hash function used). Most likely O(n). 3) Required time to retrieve: Search Tree: one million ~= 2^20, so O(log n) = 20, which is within the specifications. Hash Table: O(1), but could approach or exceed 20 if the hash function doesn t work well or the table becomes too full that is there are many collisions. 4) Increasing the size of the database: Search Tree: O(m log n) in the best case, where m is the number of records they want to add. O(mn) in the worst case. Can be done without taking the system offline. Hash Table: potentially O(m + n), because you may need to resize the hash table, and then copy the existing records and add the new ones which takes O(m+n) steps. Additionally this may require taking the system offline while the existing records are copied over to the new table. Therefore, it seems that given the criteria, a search tree would work best due to the ability to retrieve the first n characters of a product name without going through the entire search tree, and the ability to add an arbitrary number of records without resizing or going offline. While the hash

5 table has the potential for constant insertion and lookup time, this is not much better than O(log n), especially when n is one million. 4. Graph Terminology and Representation Consider the highway graph from lecture: 84 Portland 39 Concord Albany Worcester Portsmouth 54 Boston New York 185 Providence What are Worcester s neighbors in the graph? Albany, Boston, Concord, Portsmouth, and Providence, because it is connected to each of them by a single edge. Is the graph connected? Why or why not? Yes, because there is a path between every pair of vertices. Is it complete? Why or why not? No, because there isn t an edge between every pair of vertices. For example, there is no edge between Albany and Boston. Is it acyclic? If not, what is one example of a cycle in the graph? No. One example of a cycle is the path Worcester Boston Providence Worcester. If we used an adjacency matrix to represent this graph, what would it look like? Assume that the vertices are numbered alphabetically: 0 = Albany, 1 = Boston, 2 = Concord, 3 = New York, 4 = Portland, 5 = Portsmouth, 6 = Providence, 7 = Worcester All of the empty cells would hold a special value indicating the absence of an edge.

6 5. Graph Traversals Let s try some additional traversals on the highway graph from lecture. a. What order would the cities be visited in if we performed a depth first traversal from Boston, and what is the resulting spanning tree? (Draw the spanning tree below)? Order visited: Boston, Worcester, Providence, New York, Concord, Portland, Portsmouth, Albany. Steps: 1) dftrav(boston, null): visit Boston, set its parent reference to null, and make a recursive call on the unvisited neighbor that is the smallest distance away (Worcester). 2) dftrav(worcester, Boston): visit Worcester, set its parent reference to Boston, and make a recursive call on the unvisited neighbor that is the smallest distance away (Providence). 3) dftrav(providence, Worcester): visit Providence, set its parent reference to Worcester, and make a recursive call on the unvisited neighbor that is the smallest distance away (New York). 4) dftrav(new York, Providence): visit New York, set its parent reference to Providence. It has no unvisited neighbors, so we return. 5) Providence has no other unvisited neighbors, so we return. 6) Worcester still has unvisited neighbors. Make a recursive call on the unvisited neighbor that is the smallest distance away (Concord). 7) dftrav(concord, Worcester): visit Concord, set its parent reference to Worcester, and make a recursive call on the unvisited neighbor that is the smallest distance away (Portland). 8) dftrav(portland, Concord): visit Portland, set its parent reference to Concord, and make a recursive call on the unvisited neighbor that is the smallest distance away (Portsmouth). 9) dftrav(portsmouth, Portland): visit Portsmouth, set its parent reference to Portland. It has no unvisited neighbors, so we return. 10) Portland has no other unvisited neighbors, so we return. 11) Concord has no other unvisited neighbors, so we return. 12) Worcester still has one unvisited neighbor Albany. Make a recursive call on it. 13) dftrav(albany, Worcester): visit Albany, set its parent reference to Worcester. It has no unvisited neighbors, so we return. 14) Worcester has no other unvisited neighbors, so we return. 15) Boston has no other unvisited neighbors, so we return from the original invocation.

7 b. What order would the cities be visited in if we performed a breadth first traversal from Boston, and what is the resulting spanning tree? (Draw the spanning tree below.) Step 2: Remove 8, Place 4 at the root and sift: Order visited: Boston, Worcester, Providence, Portsmouth, Concord, Albany, New York, Portland. 7 6 Evolution of the queue: remove insert contents Bos Bos Bos Worc, Prov, Portsmouth, Conc Worc, Prov, Portsmouth, Conc Worc Alb Prov, Portsmouth, Conc, Alb Prov NY Portsmouth, Conc, Alb, NY Portsmouth Portland Conc, Alb, NY, Portland Conc none (no unencountered neighbors) Alb, NY, Portland Alb none NY, Portland NY none Portland Portland none empty Cities are marked as encountered before they are inserted in the queue, and their parent reference is set to the city that was just removed from the queue. Cities are visited upon removal from the queue.

Graphs. Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. What is a Graph? b d f h j

Graphs. Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. What is a Graph? b d f h j Graphs Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. What is a Graph? vertex / node edge / arc e b d f h j a c i g A graph consists of: a set of vertices (also known

More information

Graphs. Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. What is a Graph? b d f h j

Graphs. Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. What is a Graph? b d f h j Graphs Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. What is a Graph? vertex / node edge / arc e b d f h j a c i g A graph consists of: a set of vertices (also known as nodes)

More information

Graphs. What is a Graph? Computer Science S-111 Harvard University David G. Sullivan, Ph.D.

Graphs. What is a Graph? Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Unit 10 Graphs Computer Science S-111 Harvard University David G. Sullivan, Ph.D. What is a Graph? vertex / node edge / arc e b d f h j a c i g A graph consists of: a set of vertices (also known as nodes)

More information

Direct Addressing Hash table: Collision resolution how handle collisions Hash Functions:

Direct Addressing Hash table: Collision resolution how handle collisions Hash Functions: Direct Addressing - key is index into array => O(1) lookup Hash table: -hash function maps key to index in table -if universe of keys > # table entries then hash functions collision are guaranteed => need

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018

CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018 CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018 Q1: Prove or disprove: You are given a connected undirected graph G = (V, E) with a weight function w defined over its

More information

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Spring 2010 Review Topics Big O Notation Heaps Sorting Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Hashtables Tree Balancing: AVL trees and DSW algorithm Graphs: Basic terminology and

More information

Computer Science E-22 Practice Final Exam

Computer Science E-22 Practice Final Exam name Computer Science E-22 This exam consists of three parts. Part I has 10 multiple-choice questions that you must complete. Part II consists of 4 multi-part problems, of which you must complete 3, and

More information

Trees. Eric McCreath

Trees. Eric McCreath Trees Eric McCreath 2 Overview In this lecture we will explore: general trees, binary trees, binary search trees, and AVL and B-Trees. 3 Trees Trees are recursive data structures. They are useful for:

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

1 5,9,2,7,6,10,4,3,8,1 The first number (5) is automatically the first number of the sorted list

1 5,9,2,7,6,10,4,3,8,1 The first number (5) is automatically the first number of the sorted list Algorithms One of the more challenging aspects of Computer Science are algorithms. An algorithm is a plan that solves a problem. When assembling a bicycle based on the included instructions, in this case,

More information

Recitation 9. Prelim Review

Recitation 9. Prelim Review Recitation 9 Prelim Review 1 Heaps 2 Review: Binary heap min heap 1 2 99 4 3 PriorityQueue Maintains max or min of collection (no duplicates) Follows heap order invariant at every level Always balanced!

More information

Hash Tables. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Data Dictionary Revisited

Hash Tables. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Data Dictionary Revisited Unit 9, Part 4 Hash Tables Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Data Dictionary Revisited We've considered several data structures that allow us to store and search for data

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

LECTURE 17 GRAPH TRAVERSALS

LECTURE 17 GRAPH TRAVERSALS DATA STRUCTURES AND ALGORITHMS LECTURE 17 GRAPH TRAVERSALS IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD STRATEGIES Traversals of graphs are also called searches We can use either breadth-first

More information

Understand how to deal with collisions

Understand how to deal with collisions Understand the basic structure of a hash table and its associated hash function Understand what makes a good (and a bad) hash function Understand how to deal with collisions Open addressing Separate chaining

More information

Binary heaps (chapters ) Leftist heaps

Binary heaps (chapters ) Leftist heaps Binary heaps (chapters 20.3 20.5) Leftist heaps Binary heaps are arrays! A binary heap is really implemented using an array! 8 18 29 20 28 39 66 Possible because of completeness property 37 26 76 32 74

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch DATA STRUCTURES ACS002 B. Tech

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS LECTURE 11 Babeş - Bolyai University Computer Science and Mathematics Faculty 2017-2018 In Lecture 10... Hash tables Separate chaining Coalesced chaining Open Addressing Today 1 Open addressing - review

More information

CISC-235* Test #3 March 19, 2018

CISC-235* Test #3 March 19, 2018 CISC-235* Test #3 March 19, 2018 Student Number (Required) Name (Optional) This is a closed book test. You may not refer to any resources. This is a 50 minute test. Please write your answers in ink. Pencil

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity CS 350 Algorithms and Complexity Winter 2019 Lecture 12: Space & Time Tradeoffs. Part 2: Hashing & B-Trees Andrew P. Black Department of Computer Science Portland State University Space-for-time tradeoffs

More information

Lecture 6: Hashing Steven Skiena

Lecture 6: Hashing Steven Skiena Lecture 6: Hashing Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.stonybrook.edu/ skiena Dictionary / Dynamic Set Operations Perhaps

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

CS 251, LE 2 Fall MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY

CS 251, LE 2 Fall MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY CS 251, LE 2 Fall 2016 MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY W1.) (i) Show one possible valid 2-3 tree containing the nine elements: 1 3 4 5 6 8 9 10 12. (ii) Draw the final binary search

More information

CS350: Data Structures B-Trees

CS350: Data Structures B-Trees B-Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Introduction All of the data structures that we ve looked at thus far have been memory-based

More information

Randomized Algorithms, Hash Functions

Randomized Algorithms, Hash Functions Randomized Algorithms, Hash Functions Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

More information

Final Examination CSE 100 UCSD (Practice)

Final Examination CSE 100 UCSD (Practice) Final Examination UCSD (Practice) RULES: 1. Don t start the exam until the instructor says to. 2. This is a closed-book, closed-notes, no-calculator exam. Don t refer to any materials other than the exam

More information

CS 112 Final May 8, 2008 (Lightly edited for 2012 Practice) Name: BU ID: Instructions

CS 112 Final May 8, 2008 (Lightly edited for 2012 Practice) Name: BU ID: Instructions CS 112 Final May 8, 2008 (Lightly edited for 2012 Practice) Name: BU ID: This exam is CLOSED book and notes. Instructions The exam consists of six questions on 11 pages. Please answer all questions on

More information

CSE 373 Final Exam 3/14/06 Sample Solution

CSE 373 Final Exam 3/14/06 Sample Solution Question 1. (6 points) A priority queue is a data structure that supports storing a set of values, each of which has an associated key. Each key-value pair is an entry in the priority queue. The basic

More information

Data Structures Brett Bernstein

Data Structures Brett Bernstein Data Structures Brett Bernstein Final Review 1. Consider a binary tree of height k. (a) What is the maximum number of nodes? (b) What is the maximum number of leaves? (c) What is the minimum number of

More information

CS 112 Final May 8, 2008 (Lightly edited for 2011 Practice) Name: BU ID: Instructions GOOD LUCK!

CS 112 Final May 8, 2008 (Lightly edited for 2011 Practice) Name: BU ID: Instructions GOOD LUCK! CS 112 Final May 8, 2008 (Lightly edited for 2011 Practice) Name: BU ID: This exam is CLOSED book and notes. Instructions The exam consists of six questions on 11 pages. Please answer all questions on

More information

Prelim 2 Solution. CS 2110, April 26, 2016, 5:30 PM

Prelim 2 Solution. CS 2110, April 26, 2016, 5:30 PM Prelim Solution CS 110, April 6, 016, 5:0 PM 1 5 Total Question True/False Complexity Heaps Trees Graphs Max 10 0 0 0 0 100 Score Grader The exam is closed book and closed notes. Do not begin until instructed.

More information

GRAPHS Lecture 17 CS2110 Spring 2014

GRAPHS Lecture 17 CS2110 Spring 2014 GRAPHS Lecture 17 CS2110 Spring 2014 These are not Graphs 2...not the kind we mean, anyway These are Graphs 3 K 5 K 3,3 = Applications of Graphs 4 Communication networks The internet is a huge graph Routing

More information

Total Score /15 /20 /30 /10 /5 /20 Grader

Total Score /15 /20 /30 /10 /5 /20 Grader NAME: NETID: CS2110 Fall 2009 Prelim 2 November 17, 2009 Write your name and Cornell netid. There are 6 questions on 8 numbered pages. Check now that you have all the pages. Write your answers in the boxes

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Final Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Final Examination University of Illinois at Urbana-Champaign Department of Computer Science Final Examination CS 225 Data Structures and Software Principles Spring 2010 7-10p, Wednesday, May 12 Name: NetID: Lab Section

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer Prelim 2 CS 2110, November 20, 2014, 7:30 PM 1 2 3 4 5 Extra Total Question True/False Short Answer Complexity Induction Trees Graphs Extra Credit Max 20 10 15 25 30 5 100 Score Grader The exam is closed

More information

Course Review for Finals. Cpt S 223 Fall 2008

Course Review for Finals. Cpt S 223 Fall 2008 Course Review for Finals Cpt S 223 Fall 2008 1 Course Overview Introduction to advanced data structures Algorithmic asymptotic analysis Programming data structures Program design based on performance i.e.,

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

You must include this cover sheet. Either type up the assignment using theory5.tex, or print out this PDF.

You must include this cover sheet. Either type up the assignment using theory5.tex, or print out this PDF. 15-122 Assignment 5 Page 1 of 11 15-122 : Principles of Imperative Computation Fall 2012 Assignment 5 (Theory Part) Due: Tuesday, October 30, 2012 at the beginning of lecture Name: Andrew ID: Recitation:

More information

York University AK/ITEC INTRODUCTION TO DATA STRUCTURES. Final Sample II. Examiner: S. Chen Duration: Three hours

York University AK/ITEC INTRODUCTION TO DATA STRUCTURES. Final Sample II. Examiner: S. Chen Duration: Three hours York University AK/ITEC 262 3. INTRODUCTION TO DATA STRUCTURES Final Sample II Examiner: S. Chen Duration: Three hours This exam is closed textbook(s) and closed notes. Use of any electronic device (e.g.

More information

Graph Search Methods. Graph Search Methods

Graph Search Methods. Graph Search Methods Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u. 0 Graph Search Methods A search method starts at a given vertex v and visits/labels/marks every vertex that is

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Graph Search Methods. Graph Search Methods

Graph Search Methods. Graph Search Methods Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u. 0 Graph Search Methods A search method starts at a given vertex v and visits/labels/marks every vertex that is

More information

CSCI-1200 Data Structures Fall 2018 Lecture 23 Priority Queues II

CSCI-1200 Data Structures Fall 2018 Lecture 23 Priority Queues II Review from Lecture 22 CSCI-1200 Data Structures Fall 2018 Lecture 23 Priority Queues II Using STL s for_each, Function Objects, a.k.a., Functors STL s unordered_set (and unordered_map) Hash functions

More information

Lecture 26: Graphs: Traversal (Part 1)

Lecture 26: Graphs: Traversal (Part 1) CS8 Integrated Introduction to Computer Science Fisler, Nelson Lecture 6: Graphs: Traversal (Part ) 0:00 AM, Apr, 08 Contents Introduction. Definitions........................................... Representations.......................................

More information

CS 350 : Data Structures B-Trees

CS 350 : Data Structures B-Trees CS 350 : Data Structures B-Trees David Babcock (courtesy of James Moscola) Department of Physical Sciences York College of Pennsylvania James Moscola Introduction All of the data structures that we ve

More information

Computer Science 136 Spring 2004 Professor Bruce. Final Examination May 19, 2004

Computer Science 136 Spring 2004 Professor Bruce. Final Examination May 19, 2004 Computer Science 136 Spring 2004 Professor Bruce Final Examination May 19, 2004 Question Points Score 1 10 2 8 3 15 4 12 5 12 6 8 7 10 TOTAL 65 Your name (Please print) I have neither given nor received

More information

Questions. 6. Suppose we were to define a hash code on strings s by:

Questions. 6. Suppose we were to define a hash code on strings s by: Questions 1. Suppose you are given a list of n elements. A brute force method to find duplicates could use two (nested) loops. The outer loop iterates over position i the list, and the inner loop iterates

More information

Priority queues. Priority queues. Priority queue operations

Priority queues. Priority queues. Priority queue operations Priority queues March 30, 018 1 Priority queues The ADT priority queue stores arbitrary objects with priorities. An object with the highest priority gets served first. Objects with priorities are defined

More information

Hashing Techniques. Material based on slides by George Bebis

Hashing Techniques. Material based on slides by George Bebis Hashing Techniques Material based on slides by George Bebis https://www.cse.unr.edu/~bebis/cs477/lect/hashing.ppt The Search Problem Find items with keys matching a given search key Given an array A, containing

More information

Prelim 2 Solutions. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer

Prelim 2 Solutions. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer Prelim 2 Solutions CS 2110, November 20, 2014, 7:30 PM 1 2 3 4 5 Extra Total Question True/False Short Answer Complexity Induction Trees Graphs Extra Credit Max 20 10 15 25 30 5 100 Score Grader The exam

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Fall 2011 9a-11a, Wednesday, November 2 Name: NetID: Lab Section

More information

CS210 (161) with Dr. Basit Qureshi Final Exam Weight 40%

CS210 (161) with Dr. Basit Qureshi Final Exam Weight 40% CS210 (161) with Dr. Basit Qureshi Final Exam Weight 40% Name ID Directions: There are 9 questions in this exam. To earn a possible full score, you must solve all questions. Time allowed: 180 minutes Closed

More information

CSI 604 Elementary Graph Algorithms

CSI 604 Elementary Graph Algorithms CSI 604 Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. (Second edition) 1 / 25 Graphs: Basic Definitions Undirected Graph G(V, E): V is set of nodes (or vertices) and E is the

More information

Design and Analysis of Algorithms - - Assessment

Design and Analysis of Algorithms - - Assessment X Courses» Design and Analysis of Algorithms Week 1 Quiz 1) In the code fragment below, start and end are integer values and prime(x) is a function that returns true if x is a prime number and false otherwise.

More information

Draw the resulting binary search tree. Be sure to show intermediate steps for partial credit (in case your final tree is incorrect).

Draw the resulting binary search tree. Be sure to show intermediate steps for partial credit (in case your final tree is incorrect). Problem 1. Binary Search Trees (36 points) a) (12 points) Assume that the following numbers are inserted into an (initially empty) binary search tree in the order shown below (from left to right): 42 36

More information

UNIT 6A Organizing Data: Lists. Last Two Weeks

UNIT 6A Organizing Data: Lists. Last Two Weeks UNIT 6A Organizing Data: Lists 1 Last Two Weeks Algorithms: Searching and sorting Problem solving technique: Recursion Asymptotic worst case analysis using the big O notation 2 1 This Week Observe: The

More information

1. Meshes. D7013E Lecture 14

1. Meshes. D7013E Lecture 14 D7013E Lecture 14 Quadtrees Mesh Generation 1. Meshes Input: Components in the form of disjoint polygonal objects Integer coordinates, 0, 45, 90, or 135 angles Output: A triangular mesh Conforming: A triangle

More information

Thus, it is reasonable to compare binary search trees and binary heaps as is shown in Table 1.

Thus, it is reasonable to compare binary search trees and binary heaps as is shown in Table 1. 7.2 Binary Min-Heaps A heap is a tree-based structure, but it doesn t use the binary-search differentiation between the left and right sub-trees to create a linear ordering. Instead, a binary heap only

More information

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph:

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Graph G(V, E): V set of nodes (vertices); E set of edges. Notation: n = V and m = E. (Vertices are numbered

More information

( D. Θ n. ( ) f n ( ) D. Ο%

( D. Θ n. ( ) f n ( ) D. Ο% CSE 0 Name Test Spring 0 Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to run the code below is in: for i=n; i>=; i--) for j=; j

More information

COMP 103 RECAP-TODAY. Priority Queues and Heaps. Queues and Priority Queues 3 Queues: Oldest out first

COMP 103 RECAP-TODAY. Priority Queues and Heaps. Queues and Priority Queues 3 Queues: Oldest out first COMP 0 Priority Queues and Heaps RECAP RECAP-TODAY Tree Structures (in particular Binary Search Trees (BST)) BSTs idea nice way to implement a Set, Bag, or Map TODAY Priority Queue = variation on Queue

More information

CPS222 Lecture: Sets. 1. Projectable of random maze creation example 2. Handout of union/find code from program that does this

CPS222 Lecture: Sets. 1. Projectable of random maze creation example 2. Handout of union/find code from program that does this CPS222 Lecture: Sets Objectives: last revised April 16, 2015 1. To introduce representations for sets that can be used for various problems a. Array or list of members b. Map-based representation c. Bit

More information

1. AVL Trees (10 Points)

1. AVL Trees (10 Points) CSE 373 Spring 2012 Final Exam Solution 1. AVL Trees (10 Points) Given the following AVL Tree: (a) Draw the resulting BST after 5 is removed, but before any rebalancing takes place. Label each node in

More information

) $ f ( n) " %( g( n)

) $ f ( n)  %( g( n) CSE 0 Name Test Spring 008 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to compute the sum of the n elements of an integer array is: # A.

More information

AP Programming - Chapter 20 Lecture page 1 of 17

AP Programming - Chapter 20 Lecture page 1 of 17 page 1 of 17 Advanced Data Structures Introduction: The main disadvantage with binary search is that it requires that the array remain sorted. Keeping an array sorted requires an insertion every time an

More information

Hash Tables. Hashing Probing Separate Chaining Hash Function

Hash Tables. Hashing Probing Separate Chaining Hash Function Hash Tables Hashing Probing Separate Chaining Hash Function Introduction In Chapter 4 we saw: linear search O( n ) binary search O( log n ) Can we improve the search operation to achieve better than O(

More information

Lecture 10 Graph algorithms: testing graph properties

Lecture 10 Graph algorithms: testing graph properties Lecture 10 Graph algorithms: testing graph properties COMP 523: Advanced Algorithmic Techniques Lecturer: Dariusz Kowalski Lecture 10: Testing Graph Properties 1 Overview Previous lectures: Representation

More information

UNIT IV -NON-LINEAR DATA STRUCTURES 4.1 Trees TREE: A tree is a finite set of one or more nodes such that there is a specially designated node called the Root, and zero or more non empty sub trees T1,

More information

SELF-BALANCING SEARCH TREES. Chapter 11

SELF-BALANCING SEARCH TREES. Chapter 11 SELF-BALANCING SEARCH TREES Chapter 11 Tree Balance and Rotation Section 11.1 Algorithm for Rotation BTNode root = left right = data = 10 BTNode = left right = data = 20 BTNode NULL = left right = NULL

More information

Info 2950, Lecture 16

Info 2950, Lecture 16 Info 2950, Lecture 16 28 Mar 2017 Prob Set 5: due Fri night 31 Mar Breadth first search (BFS) and Depth First Search (DFS) Must have an ordering on the vertices of the graph. In most examples here, the

More information

CS171 Final Practice Exam

CS171 Final Practice Exam CS171 Final Practice Exam Name: You are to honor the Emory Honor Code. This is a closed-book and closed-notes exam. You have 150 minutes to complete this exam. Read each problem carefully, and review your

More information

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F))

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F)) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES UNIT IV NONLINEAR DATA STRUCTURES Part A 1. Define Tree [N/D 08]

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

CSE 373 MAY 10 TH SPANNING TREES AND UNION FIND

CSE 373 MAY 10 TH SPANNING TREES AND UNION FIND CSE 373 MAY 0 TH SPANNING TREES AND UNION FIND COURSE LOGISTICS HW4 due tonight, if you want feedback by the weekend COURSE LOGISTICS HW4 due tonight, if you want feedback by the weekend HW5 out tomorrow

More information

Course Review. Cpt S 223 Fall 2009

Course Review. Cpt S 223 Fall 2009 Course Review Cpt S 223 Fall 2009 1 Final Exam When: Tuesday (12/15) 8-10am Where: in class Closed book, closed notes Comprehensive Material for preparation: Lecture slides & class notes Homeworks & program

More information

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1 CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each t. What is the value of k? k=0 A. k B. t C. t+ D. t+ +. Suppose that you have

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 5:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

( ) + n. ( ) = n "1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1

( ) + n. ( ) = n 1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1 CSE 0 Name Test Summer 00 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose you are sorting millions of keys that consist of three decimal

More information

COS 226 Algorithms and Data Structures Fall Midterm

COS 226 Algorithms and Data Structures Fall Midterm COS 226 Algorithms and Data Structures Fall 2017 Midterm This exam has 10 questions (including question 0) worth a total of 55 points. You have 0 minutes. This exam is preprocessed by a computer, so please

More information

CSE 373 Autumn 2012: Midterm #2 (closed book, closed notes, NO calculators allowed)

CSE 373 Autumn 2012: Midterm #2 (closed book, closed notes, NO calculators allowed) Name: Sample Solution Email address: CSE 373 Autumn 0: Midterm # (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

Algorithm Design (8) Graph Algorithms 1/2

Algorithm Design (8) Graph Algorithms 1/2 Graph Algorithm Design (8) Graph Algorithms / Graph:, : A finite set of vertices (or nodes) : A finite set of edges (or arcs or branches) each of which connect two vertices Takashi Chikayama School of

More information

Module 2: Classical Algorithm Design Techniques

Module 2: Classical Algorithm Design Techniques Module 2: Classical Algorithm Design Techniques Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Module

More information

Introduction to Graphs. CS2110, Spring 2011 Cornell University

Introduction to Graphs. CS2110, Spring 2011 Cornell University Introduction to Graphs CS2110, Spring 2011 Cornell University A graph is a data structure for representing relationships. Each graph is a set of nodes connected by edges. Synonym Graph Hostile Slick Icy

More information

HASH TABLES cs2420 Introduction to Algorithms and Data Structures Spring 2015

HASH TABLES cs2420 Introduction to Algorithms and Data Structures Spring 2015 HASH TABLES cs2420 Introduction to Algorithms and Data Structures Spring 2015 1 administrivia 2 -assignment 9 is due on Monday -assignment 10 will go out on Thursday -midterm on Thursday 3 last time 4

More information

CS 307 Final Spring 2009

CS 307 Final Spring 2009 Points off 1 2 3 4 5 Total off Net Score CS 307 Final Spring 2009 Name UTEID login name Instructions: 1. Please turn off your cell phones. 2. There are 5 questions on this test. 3. You have 3 hours to

More information

COMP 182: Algorithmic Thinking Prim and Dijkstra: Efficiency and Correctness

COMP 182: Algorithmic Thinking Prim and Dijkstra: Efficiency and Correctness Prim and Dijkstra: Efficiency and Correctness Luay Nakhleh 1 Prim s Algorithm In class we saw Prim s algorithm for computing a minimum spanning tree (MST) of a weighted, undirected graph g. The pseudo-code

More information

Data Structures and Algorithms 2018

Data Structures and Algorithms 2018 Question 1 (12 marks) Data Structures and Algorithms 2018 Assignment 4 25% of Continuous Assessment Mark Deadline : 5pm Monday 12 th March, via Canvas Sort the array [5, 3, 4, 6, 8, 4, 1, 9, 7, 1, 2] using

More information

UNIT III BALANCED SEARCH TREES AND INDEXING

UNIT III BALANCED SEARCH TREES AND INDEXING UNIT III BALANCED SEARCH TREES AND INDEXING OBJECTIVE The implementation of hash tables is frequently called hashing. Hashing is a technique used for performing insertions, deletions and finds in constant

More information

Motivation for B-Trees

Motivation for B-Trees 1 Motivation for Assume that we use an AVL tree to store about 20 million records We end up with a very deep binary tree with lots of different disk accesses; log2 20,000,000 is about 24, so this takes

More information

- 1 - Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions. CS106B Spring 2013

- 1 - Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions. CS106B Spring 2013 CS106B Spring 2013 Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions Based on handouts by Eric Roberts and Jerry Cain Problem One: Reversing a Queue One way to reverse the queue is to keep

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

This is a set of practice questions for the final for CS16. The actual exam will consist of problems that are quite similar to those you have

This is a set of practice questions for the final for CS16. The actual exam will consist of problems that are quite similar to those you have This is a set of practice questions for the final for CS16. The actual exam will consist of problems that are quite similar to those you have encountered on homeworks, the midterm, and on this practice

More information

Chapter 5. Decrease-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 5. Decrease-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 5 Decrease-and-Conquer Copyright 2007 Pearson Addison-Wesley. All rights reserved. Decrease-and-Conquer 1. Reduce problem instance to smaller instance of the same problem 2. Solve smaller instance

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Broadcast: Befo re 1

Broadcast: Befo re 1 Broadcast: Before 1 After 2 Spanning Tree ffl assume fixed spanning tree ffl asynchronous model 3 Processor State parent terminated children 4 Broadcast: Step One parent terminated children 5 Broadcast:Step

More information