Instruction Selection on SSA Graphs

Size: px
Start display at page:

Download "Instruction Selection on SSA Graphs"

Transcription

1 Instruction Selection on SSA Graphs Sebastian Hack, Sebastian Buchwald, Andreas Zwinkau Compiler ruction Course Winter Term 2009/2010 saarland university computer science

2 2 Instruction Selection Load ia32

3 3 Instruction Selection on SSA Optimal instruction selection on trees is polynomial SSA programs are directed graphs = Data dependence graphs Translating back from SSA graphs to trees is not satisfactory Optimal instruction selection is NP-complete on DAGs The problem is common subexpressions Doing it on graphs provides more opportunities for complex instructions: Patterns with multiple results DAG-like patterns

4 4 Instruction Selection on SSA Graph Rewriting For every machine instruction specify: A set of graphs (patterns) of IR nodes Every pattern has associated costs 1 Find all matchings of the patterns in the IR graph 2 Pick a correct and optimal matching 3 Replace each pattern by corresponding machine instruction = Result is an SSA graph with machine nodes

5 5 Graphs Let G = (V, E) be a directed acyclic graph (DAG) Let Op be a set of operators Every node has a degree deg v : V N 0 Every node v V has an operator: op : V Op Every operator o Op has an arity # : Op N 0 Let Op be an operator with # = 0 Nodes with operator denote glue points in the patterns (later) Every node s degree must match the operator s arity: Definition (Program Graph) # op v = deg v A graph G is a program graph if it is acyclic and v V : op v

6 6 Patterns A graph P = (V, E) is rooted if there exists a node v V P such that there is a path from v to every node v in P If P is a DAG, then there is a unique root called rt P Definition (Pattern Graph, Pattern) A graph P is a pattern if it is acyclic and rooted op rt P Note that we explicitly allow nodes with operator in patterns

7 7 Equivalence of Nodes in Patterns Complex patterns often have common sub-patterns Store Load Shall be treated as equivalent Selecting the common sub-pattern at the node shall enable selecting the complex instruction at Store and Load

8 8 Equivalence of Nodes in Patterns Definition (Equivalence of nodes) Consider two patterns P and Q and two nodes v P, w Q: v w : v = w (span v = span w rt P v rt Q w) Either the two nodes are identical v, w are no pattern roots and their spanned subgraphs are isomorphic span v: induced subgraph that contains all nodes reachable from v

9 9 Matching of a Node Let P = {P 1, P 2,... } be a set of patterns Let G be some program graph Definition (Matching) A matching M v of a node v V G with a set of patterns P is a family of pairs M v = ( (P i, ı i ) ) I {1,..., P } i I of patterns and injective graph morphisms ı i : P i G satisfying v ran ı i and op w = op w = op ı i (w) w P i

10 10 Matchings Example Pattern P A Program Graph Pattern P B Shl Shl Shl Load Load

11 11 Selection We have computed a covering of the graph i.e. instruction selection possibilities Now, find a subset of the covering that leads to good and correct code Cast the problem as a mathematical optimization problem: Partitioned Boolean Quadratic Programming (PBQP)

12 12 PBQP Let R = R + { } and c i R k i be cost vectors C ij R k i R k j be cost matrices Definition (PBQP) Minimize x i C ij x j + x i c i 1 i<j n 1 i n with respect to x i {0, 1} k i x i 1 = 1, 1 i n x i C ij x j <, 1 i < j n

13 13 PBQP x i are selection vectors Exact one component is 1 This selects the component Cost matrices relate selection of made in different selection vectors Can be modelled as a graph: cost vectors are nodes matrices are edges only draw non-null matrix edges

14 14 PBQP as a Graph c j ( ) 2 4 c i C ij Colors indicate selection vectors x i = (0 1 0) and x j = (1 0) This selection contribute the cost of 6 to the global costs Edge direction solely to indicate order of ij in the matrix subscript

15 15 Mapping Instruction Selection to PBQP + - ( ) 50 0 v + ( ) 0 0 ( ) u

16 16 Mapping Instruction Selection to PBQP Cost vectors are defined by node coverings: Let C v be a node covering of v The alternatives of the node are given by partitioning the coverings by equivalence: C v / Common sub-patterns have to result in the same choice Costs come from an external specification

17 17 Mapping Instruction Selection to PBQP Id est: Matrices have to maintain selection correctness Consider two alternatives at two nodes u, v A u = (P u, ı u ) A v = (P v, ı v ) The matrix entry for those alternatives is c(a u, A v ) = 0 else op ı 1 u op ı 1 u (v) = and ı 1 v (v) rt P v (v) and ı 1 (v) ı 1 (v) If A u selects a leaf at v, A v has to select a root If A u does not select a leaf, both subpatters have to be equivalent u v

18 18 Example Program Graph Phi Load Load

19 19 Example Patterns Load LAC (Load++) Load LA (Load+) AC (+) Phi Load C () P (Phi) L (Load) A ()

20 20 Example Matchings P Phi C, AC, LAC 1, LAC 2 A, AC, LA 1, LAC 1, LA 2, LAC 2 L 1, LA 1, LAC 1 Load Load L 2, LA 2, LAC 2

21 Example PBQP Instance ( P ) A AC LA 1, LA 2 LAC 1, LAC L 1 LA 1 LAC ( L 2 LA 2 LAC 2 C AC, LAC 1, LAC ) 21

22 22 Reducing the Problem Optimality-preserving reductions of the problem: Independent edges (e.g. matrix of zeroes): Nodes of degree 1: Nodes of degree 2:

23 23 Reducing the Problem Heuristic Reduction: Chose the local minimum at a node Leads to a linear algorithm Each reduction eliminates at least one edge If all edges are reduced, minimizing nodes separately is easy

24 24 Summary Map instruction selection to an optimization problem SSA graphs are sparse = reductions often applied In practice: heuristic reduction rarely happens Efficiently solvable Convenient mechanism: Implementor specifies patterns and costs maps each pattern to an machine node Rest is automatic Criteria for pattern sets that allow for correct selections in every program not discussed here!

25 25 Literature Sebastian Buchwald and Andreas Zwinkau. Befehlsauswahl auf expliziten Abhängigkeitsgraphen. Master s thesis, Universität Karlsruhe (TH), Dec Erik Eckstein, Oliver König, and Bernhard Scholz. Code Instruction Selection Based on SSA-Graphs. In SCOPES, pages 49 65, Hannes Jakschitsch. Befehlsauswahl auf SSA-Graphen. Master s thesis, Universität Karlsruhe, November 2004.

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Introduction to Graphs. CS2110, Spring 2011 Cornell University

Introduction to Graphs. CS2110, Spring 2011 Cornell University Introduction to Graphs CS2110, Spring 2011 Cornell University A graph is a data structure for representing relationships. Each graph is a set of nodes connected by edges. Synonym Graph Hostile Slick Icy

More information

SSA-based Register Allocation with PBQP

SSA-based Register Allocation with PBQP SSA-based Register Allocation with PBQP Sebastian Buchwald, Andreas Zwinkau, and Thomas Bersch Karlsruhe Institute of Technology (KIT) {buchwald,zwinkau}@kit.edu thomas.bersch@student.kit.edu Abstract.

More information

Data Structures and Algorithms in Compiler Optimization. Comp314 Lecture Dave Peixotto

Data Structures and Algorithms in Compiler Optimization. Comp314 Lecture Dave Peixotto Data Structures and Algorithms in Compiler Optimization Comp314 Lecture Dave Peixotto 1 What is a compiler Compilers translate between program representations Interpreters evaluate their input to produce

More information

SSA-Based Register Allocation with PBQP

SSA-Based Register Allocation with PBQP SSA-Based Register Allocation with PBQP Sebastian Buchwald, Andreas Zwinkau, and Thomas Bersch Karlsruhe Institute of Technology (KIT) {buchwald,zwinkau}@kit.edu, thomas.bersch@student.kit.edu Abstract.

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Simple and Efficient Construction of Static Single Assignment Form

Simple and Efficient Construction of Static Single Assignment Form Simple and Efficient Construction of Static Single Assignment Form saarland university Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon and Andreas Zwinkau computer science

More information

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207.

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207. MAT 7003 : Mathematical Foundations (for Software Engineering) J Paul Gibson, A207 paul.gibson@it-sudparis.eu http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/ Graphs and Trees http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/l2-graphsandtrees.pdf

More information

An Edge-Swap Heuristic for Finding Dense Spanning Trees

An Edge-Swap Heuristic for Finding Dense Spanning Trees Theory and Applications of Graphs Volume 3 Issue 1 Article 1 2016 An Edge-Swap Heuristic for Finding Dense Spanning Trees Mustafa Ozen Bogazici University, mustafa.ozen@boun.edu.tr Hua Wang Georgia Southern

More information

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example Lecture 2: Combinatorial search and optimisation problems Different types of computational problems Examples of computational problems Relationships between problems Computational properties of different

More information

Binary Decision Diagrams (BDD)

Binary Decision Diagrams (BDD) Binary Decision Diagrams (BDD) Contents Motivation for Decision diagrams Binary Decision Diagrams ROBDD Effect of Variable Ordering on BDD size BDD operations Encoding state machines Reachability Analysis

More information

Graphs. Edges may be directed (from u to v) or undirected. Undirected edge eqvt to pair of directed edges

Graphs. Edges may be directed (from u to v) or undirected. Undirected edge eqvt to pair of directed edges (p 186) Graphs G = (V,E) Graphs set V of vertices, each with a unique name Note: book calls vertices as nodes set E of edges between vertices, each encoded as tuple of 2 vertices as in (u,v) Edges may

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University Graphs: Introduction Ali Shokoufandeh, Department of Computer Science, Drexel University Overview of this talk Introduction: Notations and Definitions Graphs and Modeling Algorithmic Graph Theory and Combinatorial

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Instruction Scheduling Beyond Basic Blocks Extended Basic Blocks, Superblock Cloning, & Traces, with a quick introduction to Dominators.

Instruction Scheduling Beyond Basic Blocks Extended Basic Blocks, Superblock Cloning, & Traces, with a quick introduction to Dominators. Instruction Scheduling Beyond Basic Blocks Extended Basic Blocks, Superblock Cloning, & Traces, with a quick introduction to Dominators Comp 412 COMP 412 FALL 2016 source code IR Front End Optimizer Back

More information

Transient Analysis Of Stochastic Petri Nets With Interval Decision Diagrams

Transient Analysis Of Stochastic Petri Nets With Interval Decision Diagrams Transient Analysis Of Stochastic Petri Nets With Interval Decision Diagrams Martin Schwarick ms@informatik.tu-cottbus.de Brandenburg University of Technology Cottbus, Germany Abstract. This paper presents

More information

Algorithms for Graph Visualization Layered Layout

Algorithms for Graph Visualization Layered Layout Algorithms for Graph Visualization Layered Layout INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze 13.12.2017 1 Dr. Tamara Mchedlidze Algorithmen zur Visualisierung von Graphen

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Lecture 7: Counting classes

Lecture 7: Counting classes princeton university cos 522: computational complexity Lecture 7: Counting classes Lecturer: Sanjeev Arora Scribe:Manoj First we define a few interesting problems: Given a boolean function φ, #SAT is the

More information

Steiner Trees and Forests

Steiner Trees and Forests Massachusetts Institute of Technology Lecturer: Adriana Lopez 18.434: Seminar in Theoretical Computer Science March 7, 2006 Steiner Trees and Forests 1 Steiner Tree Problem Given an undirected graph G

More information

CODE GENERATION Monday, May 31, 2010

CODE GENERATION Monday, May 31, 2010 CODE GENERATION memory management returned value actual parameters commonly placed in registers (when possible) optional control link optional access link saved machine status local data temporaries A.R.

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Planarity Algorithms via PQ-Trees (Extended Abstract)

Planarity Algorithms via PQ-Trees (Extended Abstract) Electronic Notes in Discrete Mathematics 31 (2008) 143 149 www.elsevier.com/locate/endm Planarity Algorithms via PQ-Trees (Extended Abstract) Bernhard Haeupler 1 Department of Computer Science, Princeton

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

7.3 Spanning trees Spanning trees [ ] 61

7.3 Spanning trees Spanning trees [ ] 61 7.3. Spanning trees [161211-1348 ] 61 7.3 Spanning trees We know that trees are connected graphs with the minimal number of edges. Hence trees become very useful in applications where our goal is to connect

More information

CMSC th Lecture: Graph Theory: Trees.

CMSC th Lecture: Graph Theory: Trees. CMSC 27100 26th Lecture: Graph Theory: Trees. Lecturer: Janos Simon December 2, 2018 1 Trees Definition 1. A tree is an acyclic connected graph. Trees have many nice properties. Theorem 2. The following

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

Compiler Theory. (Intermediate Code Generation Abstract S yntax + 3 Address Code)

Compiler Theory. (Intermediate Code Generation Abstract S yntax + 3 Address Code) Compiler Theory (Intermediate Code Generation Abstract S yntax + 3 Address Code) 006 Why intermediate code? Details of the source language are confined to the frontend (analysis phase) of a compiler, while

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Reference Sheet for CO142.2 Discrete Mathematics II

Reference Sheet for CO142.2 Discrete Mathematics II Reference Sheet for CO14. Discrete Mathematics II Spring 017 1 Graphs Defintions 1. Graph: set of N nodes and A arcs such that each a A is associated with an unordered pair of nodes.. Simple graph: no

More information

Column and row space of a matrix

Column and row space of a matrix Column and row space of a matrix Recall that we can consider matrices as concatenation of rows or columns. c c 2 c 3 A = r r 2 r 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 The space spanned by columns of

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation In the analysis-synthesis model of a compiler, the front end analyzes a source program and creates an intermediate representation, from which the back end generates target

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Evolution of Tandemly Repeated Sequences

Evolution of Tandemly Repeated Sequences University of Canterbury Department of Mathematics and Statistics Evolution of Tandemly Repeated Sequences A thesis submitted in partial fulfilment of the requirements of the Degree for Master of Science

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 160 (2012) 505 512 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam 1-planarity of complete multipartite

More information

Compiler Optimization Techniques

Compiler Optimization Techniques Compiler Optimization Techniques Department of Computer Science, Faculty of ICT February 5, 2014 Introduction Code optimisations usually involve the replacement (transformation) of code from one sequence

More information

Lecture 4: 3SAT and Latin Squares. 1 Partial Latin Squares Completable in Polynomial Time

Lecture 4: 3SAT and Latin Squares. 1 Partial Latin Squares Completable in Polynomial Time NP and Latin Squares Instructor: Padraic Bartlett Lecture 4: 3SAT and Latin Squares Week 4 Mathcamp 2014 This talk s focus is on the computational complexity of completing partial Latin squares. Our first

More information

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Join Tree Importance of s Solving Topological structure defines key features for a wide class of problems CSP: Inference in acyclic network is extremely efficient (polynomial) Idea: remove cycles

More information

Solutions to Exercises 9

Solutions to Exercises 9 Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 9 (1) There are 5 cities. The cost of building a road directly between i and j is the entry a i,j in the matrix below. An indefinite entry indicates

More information

SSA-Form Register Allocation

SSA-Form Register Allocation SSA-Form Register Allocation Foundations Sebastian Hack Compiler Construction Course Winter Term 2009/2010 saarland university computer science 2 Overview 1 Graph Theory Perfect Graphs Chordal Graphs 2

More information

Computational Discrete Mathematics

Computational Discrete Mathematics Computational Discrete Mathematics Combinatorics and Graph Theory with Mathematica SRIRAM PEMMARAJU The University of Iowa STEVEN SKIENA SUNY at Stony Brook CAMBRIDGE UNIVERSITY PRESS Table of Contents

More information

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS. March 3, 2016

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS. March 3, 2016 GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS ZOÉ HAMEL March 3, 2016 1. Introduction Let G = (V (G), E(G)) be a graph G (loops and multiple edges not allowed) on the set of vertices V (G) and the set

More information

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM NAME: This exam is open: - books - notes and closed: - neighbors - calculators ALGORITHMS QUALIFYING EXAM The upper bound on exam time is 3 hours. Please put all your work on the exam paper. (Partial credit

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

Graph Grammars. Marc Provost McGill University February 18, 2004

Graph Grammars. Marc Provost McGill University February 18, 2004 Graph Grammars Marc Provost McGill University marc.provost@mail.mcgill.ca February 18, 2004 Abstract This presentation introduces graph transformations. Typeset by FoilTEX Structure of the talk Graph Theory

More information

On Universal Cycles of Labeled Graphs

On Universal Cycles of Labeled Graphs On Universal Cycles of Labeled Graphs Greg Brockman Harvard University Cambridge, MA 02138 United States brockman@hcs.harvard.edu Bill Kay University of South Carolina Columbia, SC 29208 United States

More information

List Partitions of Chordal Graphs

List Partitions of Chordal Graphs List Partitions of Chordal Graphs Tomás Feder 268 Waverley St., Palo Alto, CA 94301, USA tomas@theory.stanford.edu, Pavol Hell School of Computing Science Simon Fraser University Burnaby, B.C., Canada

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapters 9 By Dr. Dalia M. Gil, Ph.D. Graphs Graphs are discrete structures consisting of vertices and edges that connect these vertices. Graphs A graph is a pair (V,

More information

Lecture 5: Graphs & their Representation

Lecture 5: Graphs & their Representation Lecture 5: Graphs & their Representation Why Do We Need Graphs Graph Algorithms: Many problems can be formulated as problems on graphs and can be solved with graph algorithms. To learn those graph algorithms,

More information

Orthogonal representations, minimum rank, and graph complements

Orthogonal representations, minimum rank, and graph complements Orthogonal representations, minimum rank, and graph complements Leslie Hogben March 30, 2007 Abstract Orthogonal representations are used to show that complements of certain sparse graphs have (positive

More information

A Relational View of Subgraph Isomorphism

A Relational View of Subgraph Isomorphism A Relational View of Subgraph Isomorphism J. Cortadella and G. Valiente Department of Software, Technical University of Catalonia, Barcelona, Spain Abstract. This paper presents a novel approach to the

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Rupesh Nasre. CS3300 Compiler Design IIT Madras Aug 2015 Character stream Lexical Analyzer Machine-Independent Code Optimizer F r o n t e n d Token stream Syntax Analyzer Syntax

More information

Semantics of an Intermediate Language for Program Transformation

Semantics of an Intermediate Language for Program Transformation Semantics of an Intermediate Language for Program Transformation Sigurd Schneider Advisors: Sebastian Hack, Gert Smolka Student Session at POPL 2013 Saarland University Graduate School of Computer Science

More information

Generalized Instruction Selection using SSA-Graphs

Generalized Instruction Selection using SSA-Graphs Generalized Instruction Selection using SSA-Graphs Dietmar Ebner Florian Brandner Bernhard Scholz Andreas Krall Peter Wiedermann Albrecht Kadlec Vienna University of Technology {ebner brandner andi pew

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

Strategies for Replica Placement in Tree Networks

Strategies for Replica Placement in Tree Networks Strategies for Replica Placement in Tree Networks http://graal.ens-lyon.fr/~lmarchal/scheduling/ 2 avril 2009 Introduction and motivation Replica placement in tree networks Set of clients (tree leaves):

More information

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY General definitions; Representations; Graph Traversals; Topological sort; Graphs definitions & representations Graph theory is a fundamental tool in sparse

More information

SSA Construction. Daniel Grund & Sebastian Hack. CC Winter Term 09/10. Saarland University

SSA Construction. Daniel Grund & Sebastian Hack. CC Winter Term 09/10. Saarland University SSA Construction Daniel Grund & Sebastian Hack Saarland University CC Winter Term 09/10 Outline Overview Intermediate Representations Why? How? IR Concepts Static Single Assignment Form Introduction Theory

More information

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Graphs Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Warmup Discuss with your neighbors: Come up with as many kinds of relational data as you can (data that can be represented with a graph).

More information

P423/P523 Compilers Register Allocation

P423/P523 Compilers Register Allocation P423/P523 Compilers Register Allocation Deyaaeldeen Almahallawi 1 1 dalmahal@indiana.edu Indiana University March, 2015 Deyaaeldeen Almahallawi P423/P523 1/ 21 A bit of history During optimization, assume

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh Presenting: Hen Sender 1 Introduction 2 Abstract. It is well known that in a bipartite (and more generally in a Konig)

More information

Lecture Notes on Register Allocation

Lecture Notes on Register Allocation Lecture Notes on Register Allocation 15-411: Compiler Design Frank Pfenning Lecture 3 September 1, 2009 1 Introduction In this lecture we discuss register allocation, which is one of the last steps in

More information

Summary. Acyclic Networks Join Tree Clustering. Tree Decomposition Methods. Acyclic Network. Tree Based Clustering. Tree Decomposition.

Summary. Acyclic Networks Join Tree Clustering. Tree Decomposition Methods. Acyclic Network. Tree Based Clustering. Tree Decomposition. Summary s Join Tree Importance of s Solving Topological structure denes key features for a wide class of problems CSP: Inference in acyclic network is extremely ecient (polynomial) Idea: remove cycles

More information

Algorithms for Graph Visualization Layered Layout

Algorithms for Graph Visualization Layered Layout Algorithms for Graph Visualization INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze 5.12.2016 1 Example Which are the properties? Which aesthetic ctireria are usefull? 2 Given:

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Constraint Optimization Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg July 17, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint

More information

Computing optimal total vertex covers for trees

Computing optimal total vertex covers for trees Computing optimal total vertex covers for trees Pak Ching Li Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2 Abstract. Let G = (V, E) be a simple, undirected, connected

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

Goals of Program Optimization (1 of 2)

Goals of Program Optimization (1 of 2) Goals of Program Optimization (1 of 2) Goal: Improve program performance within some constraints Ask Three Key Questions for Every Optimization 1. Is it legal? 2. Is it profitable? 3. Is it compile-time

More information

Binary Decision Diagrams

Binary Decision Diagrams Logic and roof Hilary 2016 James Worrell Binary Decision Diagrams A propositional formula is determined up to logical equivalence by its truth table. If the formula has n variables then its truth table

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Review for Midterm Exam

Review for Midterm Exam Review for Midterm Exam 1 Policies and Overview midterm exam policies overview of problems, algorithms, data structures overview of discrete mathematics 2 Sample Questions on the cost functions of algorithms

More information

Star coloring planar graphs from small lists

Star coloring planar graphs from small lists Star coloring planar graphs from small lists André Kündgen Craig Timmons June 4, 2008 Abstract A star coloring of a graph is a proper vertex-coloring such that no path on four vertices is 2-colored. We

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Rupesh Nasre. CS3300 Compiler Design IIT Madras July 2018 Character stream Lexical Analyzer Machine-Independent Code Code Optimizer F r o n t e n d Token stream Syntax Analyzer

More information

1 Unweighted Set Cover

1 Unweighted Set Cover Comp 60: Advanced Algorithms Tufts University, Spring 018 Prof. Lenore Cowen Scribe: Yuelin Liu Lecture 7: Approximation Algorithms: Set Cover and Max Cut 1 Unweighted Set Cover 1.1 Formulations There

More information

MOST attention in the literature of network codes has

MOST attention in the literature of network codes has 3862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010 Efficient Network Code Design for Cyclic Networks Elona Erez, Member, IEEE, and Meir Feder, Fellow, IEEE Abstract This paper introduces

More information

Improved Algebraic Cryptanalysis of QUAD, Bivium and Trivium via Graph Partitioning on Equation Systems

Improved Algebraic Cryptanalysis of QUAD, Bivium and Trivium via Graph Partitioning on Equation Systems Improved Algebraic of QUAD, Bivium and Trivium via on Equation Systems Kenneth Koon-Ho Wong 1, Gregory V. Bard 2 1 Information Security Institute Queensland University of Technology, Brisbane, Australia

More information

MapReduce Algorithms. Barna Saha. March 28, 2016

MapReduce Algorithms. Barna Saha. March 28, 2016 MapReduce Algorithms Barna Saha March 28, 2016 Complexity Model for MapReduce Minimum Spanning Tree in MapReduce Computing Dense Subgraph in MapReduce Complexity Model for MapReduce:MRC i Input: finite

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

Orthogonal representations, minimum rank, and graph complements

Orthogonal representations, minimum rank, and graph complements Orthogonal representations, minimum rank, and graph complements Leslie Hogben November 24, 2007 Abstract Orthogonal representations are used to show that complements of certain sparse graphs have (positive

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Cluster Tree Elimination Importance of s Solving Topological structure dene key features for a wide class of problems CSP: Inference in acyclic network is extremely ecient (polynomial) Idea:

More information

Graph Theory: Applications and Algorithms

Graph Theory: Applications and Algorithms Graph Theory: Applications and Algorithms CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 21 st February 2012 Outline 1 n-cube 2 Gray Codes 3 Shortest-Path

More information

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Graph Theory Frist, KandMa, IT 010 10 1 Problem sheet 4 Exam questions Solve a subset of, say, four questions to the problem session on friday.

More information

Exam in Algorithms & Data Structures 3 (1DL481)

Exam in Algorithms & Data Structures 3 (1DL481) Exam in Algorithms & Data Structures 3 (1DL481) Prepared by Pierre Flener Tuesday 15 March 2016 from 08:00 to 13:00, in Polacksbacken Materials: This is a closed-book exam, drawing from the book Introduction

More information

Definition of Graphs and Trees. Representation of Trees.

Definition of Graphs and Trees. Representation of Trees. Definition of Graphs and Trees. Representation of Trees. Chapter 6 Definition of graphs (I) A directed graph or digraph is a pair G = (V,E) s.t.: V is a finite set called the set of vertices of G. E V

More information

CMSC 380. Graph Terminology and Representation

CMSC 380. Graph Terminology and Representation CMSC 380 Graph Terminology and Representation GRAPH BASICS 2 Basic Graph Definitions n A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. n Each edge is a pair (v,w)

More information