Graph Grammars. Marc Provost McGill University February 18, 2004

Size: px
Start display at page:

Download "Graph Grammars. Marc Provost McGill University February 18, 2004"

Transcription

1 Graph Grammars Marc Provost McGill University February 18, 2004 Abstract This presentation introduces graph transformations. Typeset by FoilTEX

2 Structure of the talk Graph Theory Subgraph isomorphism problem and algorithms Graph Rewriting: General Framework & Difficulties Double & Single pushout approaches Typeset by FoilTEX 1

3 Graph Theory Graph Theory A (labelled, directed) graph G = (V, E, source, target, label) consists of a finite nonempty set V (vertices) and a finite set E V V (edges), along with two mappings source and target assigning a source and a target node to each edge, and a mapping label assigning a labelling symbol from a given alphabet to each node and each edge. order: V, size: E An arc e = (v, w) is said to be incident with vertices v (source) and w (target). G.inc(v), G.outc(v), are two mapping assigning a given vertice v to its in and out connections,respectively. Subgraph, induced subgraph. Given two graphs, G = (V, E), G = Typeset by FoilTEX 2

4 Graph Theory (V, E ), G is said to be a subgraph of G if E E. The subgraph of G induced by G is the graph (V, E V V ). subgraph induced subgraph Figure 1: Sugraph / Induced subgraph (labels omitted) Homomorphism (mapping). Given two graphs G = (V, E), G = (V, E ), a vertex mapping H : V V is said to be an homomorphism from G to G if it is edge preserving: Given two vertices u, v V, H(u) is adjacent to H(v) whenever u is adjacent to v. Graph Isomorphism. A bijective (one-to-one, surjective) homomorphism. Typeset by FoilTEX 3

5 Graph Theory (Partial) Subgraph Isomorphism. An injective (one-to-one) homomorphism. Also called monomorphism in the literature. Induced (Complete) Subgraph Isomorphism. A injective homomorphism reflecting in G the structure of the induced subgraph of G. G G V1 U1 V2 U2 V3 V4 U3 Figure 2: Homomorphism Typeset by FoilTEX 4

6 G V1 V2 G Graph Theory V3 V4 Subgraph Isomorphism G V1 V2 G V3 V4 Induced Subgraph Isomorphism Figure 3: Complete,Partial subgraph isomorphisms Typeset by FoilTEX 5

7 Subgraph Isomorphism Problem & Algorithms Subgraph Isomorphism Problem & Algorithms The first step to rewrite a host graph is to match the left-hand side of a rule. Subgraph Isomorphism is NP-Complete for general graphs. In general, the algorithms are based on the idea of backtracking: Extend a partial solution, one variable at a time, until a complete solution is reached or the partial solution cannot be extended anymore; this can be viewed by a backtracking tree. Most algorithms try to limit the time-space explosion by pruning the backtracking tree. Typeset by FoilTEX 6

8 G L G1 G2 L1 Subgraph Isomorphism Problem & Algorithms L2 L3 G3 G4 G5 Backtracking tree matching L in G L1 G1 G2 G3 G4 G5 L2 G3 G1 G3 G3 L3 G2 Typeset by FoilTEX 7 Figure 4: Execution of a typical subgraph isomorphism algorithm

9 Subgraph Isomorphism Problem & Algorithms Pruning involves testing that the current partial solution cannot evolve toward a complete solution. Given a graph L to be matched into a graph G, suppose we have the following partial solution M=((l 1, g 1 ), (l 2, g 2 ),..., (l i, g i )). Now, we are extending M with (l i+1, g i+1 ), and we want to test if this path can possibly lead to a complete solution. Possible pruning: If L.outc(l i+1 ) > G.outc(g i+1 ): prune the tree! If L.inc(l i+1 ) > G.inc(g i+1 ): prune the tree! Ullmann s algorithm [4]: Check that, for all vertices l v adjacent to l i+1, there is at least one vertex g v adjacent to g i+1 such that M {(l i+1, g i+1 ), (l v, g v )} is a valid partial solution. If not, prune the tree! Other approaches to subgraph isomorphism: Is it possible to solve the problem in polynomial time if some Typeset by FoilTEX 8

10 Subgraph Isomorphism Problem & Algorithms preprocessing is used? A very interesting paper [3] shows how to solve the problem by means of decision trees: A decision tree is constructed from a database of model graphs. (By generating the set of all permutations of the adjacency matrix of all graphs, and organizing it into a decision tree) At run-time, easily determine if there is a subgraph isomorphism between an unknown input graph and some of the model graphs. Run in time O(n 2 ) if preprocessing is neglected But, the size of the decision tree contains an exponential number of nodes... Useful if the model graphs are small, and real time behavior is needed. Typeset by FoilTEX 9

11 Graph Rewriting: General Idea Graph Rewriting: General Idea [2] Basic Idea: Iteratively apply rules to transform a host graph G. General framework: a (graph transformation) rule r=(l,r,k,glue,emb,appl) consists of: Two graphs: a left-hand side L and a right-hand side R A subgraph K of L; the interface graph. A homomorphism glue, relating K to the right-hand side R An embedding relation emb, relating nodes of L to nodes of R. A set appl specifying the applications conditions for the rule Typeset by FoilTEX 10

12 Graph Rewriting: General Idea L emb R K glue G Figure 5: Example of a graph transformation rule Typeset by FoilTEX 11

13 Step 1: Match L in the host graph G: Graph Rewriting: General Idea L emb R K glue G Step 2: Check the applications conditions (Assume none in this example). Typeset by FoilTEX 12

14 Graph Rewriting: General Idea Step 3: Remove from G the part of the isomorphic match that correspond to L (i.e. keep the interface subgraph K), along with all dangling edges. This yields the context graph D. In short, D = G (L K): L emb R K glue G D Typeset by FoilTEX 13

15 Graph Rewriting: General Idea Step 4: Glue the context graph D and the right-hand side R, according to the glue homomorphism. This yields the gluing graph E: L emb R K glue G D E Typeset by FoilTEX 14

16 Graph Rewriting: General Idea Step 5: Embed the right-hand side R into D, according to the relation emb. This yields the derived graph H: L emb R K glue G D E H Typeset by FoilTEX 15

17 Several Difficulties occur with graph grammars: Graph Rewriting: General Idea Do we require an isomorphism between the LHS and the host graph? Do we delete dangling edges when replacing the LHS by the RHS? Or we do not allow such rule to execute? How do we organize the rules? Typeset by FoilTEX 16

18 Double pushout approach Double pushout approach (DPO) [1] The first algebraic approach Algebraic: Basic algebraic constructions (from category theory) were used to define the transformation. In DPO: Two pushouts (glues) are performed in the transformation. The first pushout correspond to the deletion of the LHS in the host graph. The second pushout correspond to the insertion of the RHS. No embedding function. The homomorphisms between K and L; K and R must be injective. Typeset by FoilTEX 17

19 Double pushout approach Does not require an isomorphism between L and the host graph G. Instead, a less restrictive approach is used. Two conditions are added for the application of a rule. (also known as the gluing conditions): Dangling condition: If a vertex is deleted, then the production must specify the deletion of the edges incident to that node.g L K R K G Typeset by FoilTEX 18

20 Double pushout approach Identification condition: Every element that should be deleted in G has only one pre-image in L L K R K G Typeset by FoilTEX 19

21 Double pushout approach L emb R K glue G Figure 6: General graph transformation rule Typeset by FoilTEX 20

22 Double pushout approach L l K r R m d m* G D H l* r* Figure 7: DPO graph transformation rule Typeset by FoilTEX 21

23 Single pushout approach Single pushout approach (SPO) [1] The SPO approach was introduced to add expressiveness to the derivations. No gluing conditions. No embedding function. Deletion has priority over preservation The interface graph is expressed as a partial homomorphism between L and R. Typeset by FoilTEX 22

24 Single pushout approach L 1 2 p R m m* G H p* Typeset by FoilTEX 23 Figure 8: SPO graph transformation rule

25 References Single pushout approach [1] A. Corradini, H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, and A. Wagner. Algebraic approaches to graph transformation - part I: Basic concepts and double pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformation. Vol. I: Foundations, chapter 4, pages World Scientific, [2] A. H. B. H. H.-J. K. S. K. D. P. A. S. G. T. M.Andries, Gregor Engels. Graph Transformation for specification and programming. PhD thesis, [3] B. T. Messmer and H. Bunke. Subgraph isomorphism in polynomial time. Technical Report IAM , Typeset by FoilTEX 24

26 Single pushout approach [4] J. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23:31 42, Typeset by FoilTEX 25

A Matching Algorithm and AGG Overview

A Matching Algorithm and AGG Overview A Matching Algorithm and AGG Overview Marc Provost McGill University marc.provost@mail.mcgill.ca March 29, 2004 Abstract This presentation go over the basic features of agg for graph rewriting. Typeset

More information

AGG: A Graph Transformation Environment for Modeling and Validation of Software

AGG: A Graph Transformation Environment for Modeling and Validation of Software AGG: A Graph Transformation Environment for Modeling and Validation of Software Gabriele Taentzer Technische Universität Berlin, Germany gabi@cs.tu-berlin.de Abstract. AGG is a general development environment

More information

theory of graph transformations

theory of graph transformations theory of graph transformations University of Bremen 2005-11-25 speaker : Helge Wiemann email : hwiemann@tzi.de theory of graph transformations 1 theory of graph transformations Die großartige Schönheit

More information

Theory of Graph Transformations

Theory of Graph Transformations Theory of Graph Transformations Helge Wiemann University of Bremen studies of computer science hwiemann@tzi.de Abstract This paper shall give an introduction into the theory of rule-based graph transformation

More information

A Relational View of Subgraph Isomorphism

A Relational View of Subgraph Isomorphism A Relational View of Subgraph Isomorphism J. Cortadella and G. Valiente Department of Software, Technical University of Catalonia, Barcelona, Spain Abstract. This paper presents a novel approach to the

More information

Pattern Recognition Using Graph Theory

Pattern Recognition Using Graph Theory ISSN: 2278 0211 (Online) Pattern Recognition Using Graph Theory Aditya Doshi Department of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India Manmohan Jangid Department of

More information

Parallel Graph Transformation for Model Simulation applied to Timed Transition Petri Nets

Parallel Graph Transformation for Model Simulation applied to Timed Transition Petri Nets Electronic Notes in Theoretical Computer Science 109 (2004) 17 29 www.elsevier.com/locate/entcs Parallel Graph Transformation for Model Simulation applied to Timed Transition Petri Nets J. de Lara a,1,

More information

Parallelization of Graph Isomorphism using OpenMP

Parallelization of Graph Isomorphism using OpenMP Parallelization of Graph Isomorphism using OpenMP Vijaya Balpande Research Scholar GHRCE, Nagpur Priyadarshini J L College of Engineering, Nagpur ABSTRACT Advancement in computer architecture leads to

More information

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its Application in Task Scheduling

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its Application in Task Scheduling A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its Simone André da Costa Cavalheiro 1 Luciana Foss 1 Cícero Augusto de S Camargo 1 Gerson Geraldo H Cavalheiro 1 Abstract: The

More information

On Universal Cycles of Labeled Graphs

On Universal Cycles of Labeled Graphs On Universal Cycles of Labeled Graphs Greg Brockman Harvard University Cambridge, MA 02138 United States brockman@hcs.harvard.edu Bill Kay University of South Carolina Columbia, SC 29208 United States

More information

Termination Analysis of the Transformation UML to CSP

Termination Analysis of the Transformation UML to CSP Magyar Kutatók 8. Nemzetközi Szimpóziuma 8 th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics Termination Analysis of the Transformation UML to CSP Márk Asztalos,

More information

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function.

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function. Graph Definitions Definition 1. (V,E) where An undirected graph G is a pair V is the set of vertices, E V 2 is the set of edges (unordered pairs) E = {(u, v) u, v V }. In a directed graph the edges have

More information

Embedded Subgraph Isomorphism and Related Problems

Embedded Subgraph Isomorphism and Related Problems Embedded Subgraph Isomorphism and Related Problems Graph isomorphism, subgraph isomorphism, and maximum common subgraph can be solved in polynomial time when constrained by geometrical information, in

More information

Performance of general graph isomorphism algorithms Sara Voss Coe College, Cedar Rapids, IA

Performance of general graph isomorphism algorithms Sara Voss Coe College, Cedar Rapids, IA Performance of general graph isomorphism algorithms Sara Voss Coe College, Cedar Rapids, IA I. Problem and Motivation Graphs are commonly used to provide structural and/or relational descriptions. A node

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

GP 2: Efficient Implementation of a Graph Programming Language

GP 2: Efficient Implementation of a Graph Programming Language GP : Efficient Implementation of a Graph Programming Language Christopher Bak Doctor of Philosophy University of York Computer Science September 05 Abstract The graph programming language GP (Graph Programs)

More information

A NEW ALGORITHM FOR INDUCED SUBGRAPH ISOMORPHISM

A NEW ALGORITHM FOR INDUCED SUBGRAPH ISOMORPHISM U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 1, 2016 ISSN 1223-7027 A NEW ALGORITHM FOR INDUCED SUBGRAPH ISOMORPHISM Nadia M. G. AL-SAIDI 1, Nuha A. RAJAB 2, and Hayder N. ABDUL- RAHMAN 3 Many algorithms

More information

An Improved Algorithm for Matching Large Graphs

An Improved Algorithm for Matching Large Graphs An Improved Algorithm for Matching Large Graphs L. P. Cordella, P. Foggia, C. Sansone, M. Vento Dipartimento di Informatica e Sistemistica Università degli Studi di Napoli Federico II Via Claudio, 2 8025

More information

A Performance Comparison of Five Algorithms for Graph Isomorphism

A Performance Comparison of Five Algorithms for Graph Isomorphism A Performance Comparison of Five Algorithms for Graph Isomorphism P. Foggia, C.Sansone, M. Vento Dipartimento di Informatica e Sistemistica Via Claudio, 21 - I 80125 - Napoli, Italy {foggiapa, carlosan,

More information

A Formal Resolution Strategy for Operation-Based Conflicts in Model Versioning Using Graph Modifications

A Formal Resolution Strategy for Operation-Based Conflicts in Model Versioning Using Graph Modifications A Formal Resolution Strategy for Operation-Based Conflicts in Model Versioning Using Graph Modifications Hartmut Ehrig 1, Claudia Ermel 1 and Gabriele Taentzer 2 1 Technische Universität Berlin, Germany

More information

A Formalism for Automated Verification of Model Transformations

A Formalism for Automated Verification of Model Transformations Magyar Kutatók 10. Nemzetközi Szimpóziuma 10 th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics A Formalism for Automated Verification of Model Transformations

More information

A Parallel Algorithm for Finding Sub-graph Isomorphism

A Parallel Algorithm for Finding Sub-graph Isomorphism CS420: Parallel Programming, Fall 2008 Final Project A Parallel Algorithm for Finding Sub-graph Isomorphism Ashish Sharma, Santosh Bahir, Sushant Narsale, Unmil Tambe Department of Computer Science, Johns

More information

5 Graph Theory Basics

5 Graph Theory Basics November 14, 2017 5 Graph Theory Basics William T. Trotter trotter@math.gatech.edu Basic Definitions Definition A graph G is a pair (V, E) where V is a finite set and E is a set of 2-element subsets of

More information

Towards a Notion of Transaction in Graph Rewriting 1

Towards a Notion of Transaction in Graph Rewriting 1 GT-VMT Towards a Notion of Transaction in Graph Rewriting P. Baldan a, A. Corradini b, F.L. Dotti c, L. Foss b,d, F. Gadducci b, L. Ribeiro d a Università Ca Foscari di Venezia, Italy b Università di Pisa,

More information

Polynomial-time Algorithm for Determining the Graph Isomorphism

Polynomial-time Algorithm for Determining the Graph Isomorphism American Journal of Information Science and Computer Engineering Vol. 3, No. 6, 2017, pp. 71-76 http://www.aiscience.org/journal/ajisce ISSN: 2381-7488 (Print); ISSN: 2381-7496 (Online) Polynomial-time

More information

Approaches for Quantifying

Approaches for Quantifying Approaches for Quantifying Multicast AW 2 15. 5. 2014 1 duction and Basics 2 3 4 Robustness with 5 duction Motivation High complexity leads to low predictability varies in different algorithms Long-Term

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Endomorphisms and synchronization, 2: Graphs and transformation monoids. Peter J. Cameron

Endomorphisms and synchronization, 2: Graphs and transformation monoids. Peter J. Cameron Endomorphisms and synchronization, 2: Graphs and transformation monoids Peter J. Cameron BIRS, November 2014 Relations and algebras From algebras to relations Given a relational structure R, there are

More information

Isomorphism of Graphs Which are k-separable*

Isomorphism of Graphs Which are k-separable* Reprinted from INFORMATION AND CONTROL All Rights Reserved by Academic Press, New York and Vol. 56. Nos. 1-2, 1983 Printed in Belgium Isomorphism of Graphs Which are k-separable* GARY L. MILLER Department

More information

Endomorphisms and synchronization, 2: Graphs and transformation monoids

Endomorphisms and synchronization, 2: Graphs and transformation monoids Endomorphisms and synchronization, 2: Graphs and transformation monoids Peter J. Cameron BIRS, November 2014 Relations and algebras Given a relational structure R, there are several similar ways to produce

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Extending the DPO Approach for Topological Validation of Metamodel-Level Graph Rewriting Rules

Extending the DPO Approach for Topological Validation of Metamodel-Level Graph Rewriting Rules xtending the DPO Approach for Topological alidation of Metamodel-Level raph Rewriting Rules TIAMÉR LNDOSZKY, LÁSZLÓ LNYL, ASSAN CARAF Department of Automation and Applied Informatics Budapest University

More information

Preimages of Small Geometric Cycles

Preimages of Small Geometric Cycles Preimages of Small Geometric Cycles Sally Cockburn Department of Mathematics Hamilton College, Clinton, NY scockbur@hamilton.edu Abstract A graph G is a homomorphic preimage of another graph H, or equivalently

More information

arxiv:cs/ v1 [cs.ds] 20 Feb 2003

arxiv:cs/ v1 [cs.ds] 20 Feb 2003 The Traveling Salesman Problem for Cubic Graphs David Eppstein School of Information & Computer Science University of California, Irvine Irvine, CA 92697-3425, USA eppstein@ics.uci.edu arxiv:cs/0302030v1

More information

Introduction to Combinatorial Algorithms

Introduction to Combinatorial Algorithms Fall 2009 Intro Introduction to the course What are : Combinatorial Structures? Combinatorial Algorithms? Combinatorial Problems? Combinatorial Structures Combinatorial Structures Combinatorial structures

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Topological Invariance under Line Graph Transformations

Topological Invariance under Line Graph Transformations Symmetry 2012, 4, 329-335; doi:103390/sym4020329 Article OPEN ACCESS symmetry ISSN 2073-8994 wwwmdpicom/journal/symmetry Topological Invariance under Line Graph Transformations Allen D Parks Electromagnetic

More information

Product constructions for transitive decompositions of graphs

Product constructions for transitive decompositions of graphs 116 Product constructions for transitive decompositions of graphs Geoffrey Pearce Abstract A decomposition of a graph is a partition of the edge set, giving a set of subgraphs. A transitive decomposition

More information

Towards Formal Verification of UML Diagrams Based on Graph Transformation

Towards Formal Verification of UML Diagrams Based on Graph Transformation Towards Formal Verification of UML Diagrams Based on Graph Transformation Yu Zhao *, Yushun Fan, Xinxin Bai, Yuan Wang, Hong Cai, Wei Ding CIM Research Center, Department of Automation, Tsinghua University,

More information

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m GARY MACGILLIVRAY BEN TREMBLAY Abstract. We consider homomorphisms and vertex colourings of m-edge-coloured graphs that have a switching operation

More information

! B be a covering, where B is a connected graph. Then E is also a

! B be a covering, where B is a connected graph. Then E is also a 26. Mon, Mar. 24 The next application is the computation of the fundamental group of any graph. We start by specifying what we mean by a graph. Recall that S 0 R is usually defined to be the set S 0 =

More information

Sunoj B S *, Mathew Varkey T K Department of Mathematics, Government Polytechnic College, Attingal, Kerala, India

Sunoj B S *, Mathew Varkey T K Department of Mathematics, Government Polytechnic College, Attingal, Kerala, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 1 ISSN : 256-3307 Mean Sum Square Prime Labeling of Some Snake Graphs

More information

A Polynomial Algorithm for Submap Isomorphism: Application to Searching Patterns in Images

A Polynomial Algorithm for Submap Isomorphism: Application to Searching Patterns in Images A Polynomial Algorithm for Submap Isomorphism: Application to Searching Patterns in Images Guillaume Damiand, Colin de la Higuera, Jean-Christophe Janodet, Emilie Samuel, Christine Solnon GbR 009 Motivations

More information

A Survey of Control Structures for Reconfigurable Petri Nets

A Survey of Control Structures for Reconfigurable Petri Nets Journal of Computer and Communications, 2015, 3, 20-28 Published Online February 2015 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2015.32002 A Survey of Control Structures

More information

LOGIC AND DISCRETE MATHEMATICS

LOGIC AND DISCRETE MATHEMATICS LOGIC AND DISCRETE MATHEMATICS A Computer Science Perspective WINFRIED KARL GRASSMANN Department of Computer Science University of Saskatchewan JEAN-PAUL TREMBLAY Department of Computer Science University

More information

V :non-empty vertex ornode set E V V :edge set G (V, E) :directed graph on V, or digraph on V

V :non-empty vertex ornode set E V V :edge set G (V, E) :directed graph on V, or digraph on V -93-11. Graph Theory Example: V :non-empty vertex ornode set E V V :edge set G (V, E) :directed graph on V, or digraph on V b e f V={a, b, c, d, e, f, g} a c d f E={(a,b), (b,c), (c,a),... } Note: (a,

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Paths Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Formal Definition of a Path (Undirected) Let n be a nonnegative integer

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapters 9 By Dr. Dalia M. Gil, Ph.D. Graphs Graphs are discrete structures consisting of vertices and edges that connect these vertices. Graphs A graph is a pair (V,

More information

FRUCHT S THEOREM FOR THE DIGRAPH FACTORIAL

FRUCHT S THEOREM FOR THE DIGRAPH FACTORIAL Discussiones Mathematicae Graph Theory 33 (2013) 329 336 doi:10.7151/dmgt.1661 FRUCHT S THEOREM FOR THE DIGRAPH FACTORIAL Richard H. Hammack Department of Mathematics and Applied Mathematics Virginia Commonwealth

More information

Generating Test Cases for Code Generators by Unfolding Graph Transformation Systems

Generating Test Cases for Code Generators by Unfolding Graph Transformation Systems Generating Test Cases for Code Generators by Unfolding Graph Transformation Systems Paolo Baldan, Barbara König 2, and ngo Stürmer 3 Dipartimento di nformatica, Università Ca Foscari di Venezia, taly 2

More information

Structures with lots of symmetry

Structures with lots of symmetry Structures with lots of symmetry (one of the things Bob likes to do when not doing semigroup theory) Robert Gray Centro de Álgebra da Universidade de Lisboa NBSAN Manchester, Summer 2011 Why? An advertisement

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

Graph Matching: Fast Candidate Elimination Using Machine Learning Techniques

Graph Matching: Fast Candidate Elimination Using Machine Learning Techniques Graph Matching: Fast Candidate Elimination Using Machine Learning Techniques M. Lazarescu 1,2, H. Bunke 1, and S. Venkatesh 2 1 Computer Science Department, University of Bern, Switzerland 2 School of

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

Discovering 5-Valent Semi-Symmetric Graphs

Discovering 5-Valent Semi-Symmetric Graphs Discovering 5-Valent Semi-Symmetric Graphs Berkeley Churchill NSF REU in Mathematics Northern Arizona University Flagstaff, AZ 86011 July 27, 2011 Groups and Graphs Graphs are taken to be simple (no loops,

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

1.1 Topological Representatives for Automorphisms

1.1 Topological Representatives for Automorphisms Chapter 1 Out(F n ) and Aut(F n ) 1.1 Topological Representatives for Automorphisms Definition 1.1.1. Let X be a topological space with base point P. A self-homotopy equivalence is a base point preserving

More information

2. There are 7 people to be seated at a round table. How many seating arrangements are possible? How many times must they change places so that

2. There are 7 people to be seated at a round table. How many seating arrangements are possible? How many times must they change places so that Example 1.1 1. Two students witness burglar Bill making off from a crime scene in his getaway car. The first student tells the police that the number plate began with and R or a P and that the first numerical

More information

1 Some Solution of Homework

1 Some Solution of Homework Math 3116 Dr. Franz Rothe May 30, 2012 08SUM\3116_2012h1.tex Name: Use the back pages for extra space 1 Some Solution of Homework Proposition 1 (Counting labeled trees). There are n n 2 different labeled

More information

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Ramin Zabih Computer Science Department Stanford University Stanford, California 94305 Abstract Bandwidth is a fundamental concept

More information

CP Models for Maximum Common Subgraph Problems

CP Models for Maximum Common Subgraph Problems CP Models for Maximum Common Subgraph Problems Samba Ndojh Ndiaye and Christine Solnon Université de Lyon, CNRS Université Lyon 1, LIRIS, UMR5205, F-69622, France Abstract. The distance between two graphs

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

Reference Sheet for CO142.2 Discrete Mathematics II

Reference Sheet for CO142.2 Discrete Mathematics II Reference Sheet for CO14. Discrete Mathematics II Spring 017 1 Graphs Defintions 1. Graph: set of N nodes and A arcs such that each a A is associated with an unordered pair of nodes.. Simple graph: no

More information

Efficient homomorphism-free enumeration of conjunctive queries

Efficient homomorphism-free enumeration of conjunctive queries Efficient homomorphism-free enumeration of conjunctive queries Jan Ramon 1, Samrat Roy 1, and Jonny Daenen 2 1 K.U.Leuven, Belgium, Jan.Ramon@cs.kuleuven.be, Samrat.Roy@cs.kuleuven.be 2 University of Hasselt,

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

Module 1. Preliminaries. Contents

Module 1. Preliminaries. Contents Module 1 Preliminaries Contents 1.1 Introduction: Discovery of graphs............. 2 1.2 Graphs.............................. 3 Definitions........................... 4 Pictorial representation of a graph..............

More information

Towards Object-Oriented Graphs and Grammars

Towards Object-Oriented Graphs and Grammars Towards Object-Oriented Graphs and Grammars Ana Paula Lüdtke Ferreira 1 and Leila Ribeiro 2 1 Centro de Ciências Exatas e Tecnológicas, Universidade do Vale do Rio dos Sinos anapaula@exatas.unisinos.br

More information

Connection and separation in hypergraphs

Connection and separation in hypergraphs Theory and Applications of Graphs Volume 2 Issue 2 Article 5 2015 Connection and separation in hypergraphs Mohammad A. Bahmanian Illinois State University, mbahman@ilstu.edu Mateja Sajna University of

More information

A Performance Analysis on Maximal Common Subgraph Algorithms

A Performance Analysis on Maximal Common Subgraph Algorithms A Performance Analysis on Maximal Common Subgraph Algorithms Ruud Welling University of Twente P.O. Box 217, 7500AE Enschede The Netherlands r.h.a.welling@student.utwente.nl ABSTRACT Graphs can be used

More information

COLOURINGS OF m-edge-coloured GRAPHS AND SWITCHING

COLOURINGS OF m-edge-coloured GRAPHS AND SWITCHING COLOURINGS OF m-edge-coloured GRAPHS AND SWITCHING GARY MACGILLIVRAY AND J. MARIA WARREN Abstract. Graphs with m disjoint edge sets are considered, both in the presence of a switching operation and without

More information

motifs In the context of networks, the term motif may refer to di erent notions. Subgraph motifs Coloured motifs { }

motifs In the context of networks, the term motif may refer to di erent notions. Subgraph motifs Coloured motifs { } motifs In the context of networks, the term motif may refer to di erent notions. Subgraph motifs Coloured motifs G M { } 2 subgraph motifs 3 motifs Find interesting patterns in a network. 4 motifs Find

More information

Analysing Graph Transformation Rules Through OCL

Analysing Graph Transformation Rules Through OCL Analysing Graph Transformation Rules Through OCL Jordi Cabot 1, Robert Clarisó 1, Esther Guerra 2, and Juan de Lara 3 1 Universitat Oberta de Catalunya (Spain), {jcabot,rclariso}@uoc.edu 2 Universidad

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

Graph similarity. Laura Zager and George Verghese EECS, MIT. March 2005

Graph similarity. Laura Zager and George Verghese EECS, MIT. March 2005 Graph similarity Laura Zager and George Verghese EECS, MIT March 2005 Words you won t hear today impedance matching thyristor oxide layer VARs Some quick definitions GV (, E) a graph G V the set of vertices

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Analysis and Abstraction of Graph Transformation Systems via Type Graphs

Analysis and Abstraction of Graph Transformation Systems via Type Graphs Analysis and Abstraction of Graph Transformation Systems via Type Graphs Dennis Nolte Abteilung für Informatik und Angewandte Kognitionswissenschaft, Universität Duisburg-Essen, Germany dennis.nolte@uni-due.de

More information

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5.

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5. Notation Index (there exists) (for all) Fn-4 Fn-4 (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5 ( n ) k (binomial coefficient) CL-15 ( n m 1,m 2,...) (multinomial coefficient)

More information

A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES

A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES JULIA E. BERGNER Abstract. In this paper we put a cofibrantly generated model category structure on the category of small simplicial

More information

The Oberwolfach Problem in Graph Theory

The Oberwolfach Problem in Graph Theory The Oberwolfach Problem in Graph Theory Andrea Zentz Andrea Zentz graduated Magna Cum Laude from Ball State in May with a major in Mathematics Education. She plans to work as a teacher while eventually

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Reductions of Graph Isomorphism Problems. Margareta Ackerman. Technical Report 08

Reductions of Graph Isomorphism Problems. Margareta Ackerman. Technical Report 08 CS-2008-08 Reductions of Graph Isomorphism Problems Margareta Ackerman Technical Report 08 David R. Cheriton School of Computer Science, University of Waterloo. 1 REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS

More information

Use of Eigenvector Centrality to Detect Graph Isomorphism

Use of Eigenvector Centrality to Detect Graph Isomorphism Use of Eigenvector Centrality to Detect Graph Isomorphism Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson MS 39217, USA E-mail: natarajan.meghanathan@jsums.edu

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs R u t c o r Research R e p o r t Vertex 3-coloraility of claw-free graphs M. Kamiński a V. Lozin RRR 8 2007, Feruary 2007 RUTCOR Rutgers Center for Operations Research Rutgers University 640 Bartholomew

More information

Forschungsberichte der Fakultät IV Elektrotechnik und Informatik

Forschungsberichte der Fakultät IV Elektrotechnik und Informatik Forschungsberichte der Fakultät IV Elektrotechnik und Informatik A Formal Resolution Strategy for Operation-Based Conicts in Model Versioning Using Graph Modications Hartmut Ehrig 1 Claudia Ermel 1 Gabriele

More information

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees Administrivia Lecture 3: Recap Assignment 1 due 23:59 tomorrow. Quiz 4 up tonight, due 15:00 Thursday 31 August. Equivalence relations: (S), (R), (T) Total orders: (AS), (R), (T), (L) Partial orders: (AS),

More information

Geometric Graph Homomorphisms

Geometric Graph Homomorphisms Geometric Graph Homomorphisms Debra L. Boutin and Sally Cockburn DEPARTMENT OF MATHEMATICS HAMILTON COLLEGE, CLINTON, NEW YORK 13323 E-mail: dboutin@hamilton.edu; scockbur@hamilton.edu Received August

More information

Incremental Unidirectional Model Transformation via Graph Transformation with emoflon::ibex

Incremental Unidirectional Model Transformation via Graph Transformation with emoflon::ibex Faculty for Computer Science, Electrical Engineering and Mathematics Department of Computer Science Database and Information Systems Fürstenallee 11, 33102 Paderborn Incremental Unidirectional Model Transformation

More information

Some new results on circle graphs. Guillermo Durán 1

Some new results on circle graphs. Guillermo Durán 1 Some new results on circle graphs Guillermo Durán 1 Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile gduran@dii.uchile.cl Departamento

More information

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees Applied Mathematics Letters 24 (2011) 719 723 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Graph triangulations and the compatibility

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Assignments are handed in on Tuesdays in even weeks. Deadlines are: Tutorials at 2 3, 3 4 and 4 5 in M413b, on Tuesdays, in odd weeks. i.e. on the following dates. Tuesday the 28th January, 11th February, 25th February, 11th March, 25th March, 6th May. Assignments are

More information

Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California

Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California Abstract We define a graph adjacency matrix automaton (GAMA)

More information