Presented by: Dimitri Galmanovich. Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Gengxin Miao, Chung Wu

Size: px
Start display at page:

Download "Presented by: Dimitri Galmanovich. Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Gengxin Miao, Chung Wu"

Transcription

1 Presented by: Dimitri Galmanovich Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Gengxin Miao, Chung Wu 1

2 When looking for Unstructured data 2

3 Millions of such queries every day searching for structured data! 3

4 The problem definition The offered solution Terminology The solution in general Deep into details Experiments and results Conclusions 4

5 The web contains over 100M tables What problems do we have with tables? The schema of the table is not always known Even when the schema is known its difficult to know what is the meaning of the table Most of the tables are just HTML code and search engines have difficulties to differ them from regular text. 5

6 Trees and their scientific names (but that s nowhere in the table) 6

7 Meaningless attribute names hard to interpret More than one schema in a single table 7

8 8

9 We will describe a method to recover the semantics of the tables by enriching them with annotations Two databases are extracted automatically from the web containing column labels and the relations between them 9

10 Entity set types for columns Binary relationships between columns Conference AI Conference Location City Starting Date Located In 10

11 Column Labels: The annotations given to a column in a table Relationship labels: Represents a binary relationship between two columns in a table Subject column: The column that represents the subject of the table and that other columns have a binary relationships with it 11

12 The isa Database: The first extracted database is the isa database contains pairs of a isa b (e.g. San-Diego isa city) The Relations Database: The second database is Relations database. Contains triples of type (a,r,b) which means a is in relation R with b (e.g. Paris, Located in,france ) 12

13 A label is given to column (or pair of columns) only if we seen enough evidence to support it. We describe formal model to infer when we have seen enough evidence 13

14 An examination of the queries in the web showed up that most of the queries can fall into two categories: Property of set of instances. E.g. Wheat production of African countries Property of individual. E.g. Birth date of Albert Einstein 14

15 The current work focuses on the first group (Property of set of instances) The reason for focusing on the first group is that the queries from the second group can be answered most of the time by regular text search The assumption was that the queries have the form (C,P). C stands for Class and P stands for property. 15

16 The generation of such databases is a well studied task in natural language processing In general, we need to perform mining of pages from the web which match pre defined and sophisticated patterns/regular expressions 16

17 Such pattern can be... C such as including I and,. where I is the potential instance and C is the potential class label For example: many Europe cities such as Berlin, Paris and London. After optimization such as counting only unique sentences and transfer all the results to lowercase about 100M documents were extracted 17

18 Each pair (I,C) gets a score by the following function: 2 SCORE( I, C) SizepatternI, C Freq I, C The SizepatternI, C 2 stands for the number of patterns in which the pair (I,C) appears in Freq I, C The stands for the number of times the pair (I,C) appears in the documents 18

19 Designated to help estimate the relations between the columns in the table Mainly, two types of relations exists in tables: Symbolic relations (e.g. The Capitol of ) Numeric relations (e.g. size of population) We will concentrate only on the symbolic relations (numeric relations will be studied in future works) 19

20 The extraction of the data for this database is done with the help of the organization Open Information Extraction Specialized in extracting data from the web and contains a lot of open source applications 20

21 <dogwood, known by name, Cornus florida> 21

22 How much evidence is needed to give a label to a column? (or alternatively, how to rank the candidate labels?) In a perfect world where all the databases are complete and accurate we would like to give a label to a column only after all the instances have the same class But 22

23 Popular entities tend to have more evidence (Paris, isa, city) >> (Lilongwe, isa, city) Extraction is not complete Patterns may not cover everything said on the Web Extraction error We have visited many cities such as Paris and Annie has been our guide all the time. 23

24 The model that used to solve this problem is called Maximum-Likelihood As inferred from its name, the model tries to fit the label that best(most likely) represents the entities in the column We will introduce the model only for labeling columns but the process is the same for labeling the relations between the columns 24

25 The method of maximum likelihood is a statistical model Selects values of the model parameters that produce a distribution that gives the observed data the greatest probability (i.e. parameters that maximize the likelihood function) 25

26 Let V v1, v2... v n be the set of values in a column A Let l1, l2... l m be all the possible class labels The likelihood function then will be: arg max Pr,..., l A v v l l 1 n i i We assume every line in the table is independent with the other lines and we get: Pr v1,..., vn li Pr v j l i j 26

27 From Bayes law we get Pr vj l 1 i Pr v,..., v l n Pr li v j Pr v j Pr i j l The new likelihood function is now l A arg max l i j i Pr li v j Pr v j Pr li v j Pr Pr Pr li v Pr l i l j i j l i 27

28 We Define a Scoring function for each class that is proportional to the probability we defined earlier: U l, V i K s j Pr li v Pr l i The function above will use as the new likelihood function K s is normalization constant such that U l V i i, 1 j 28

29 The probability Pr li can be estimated from the scores in the isa database (With the help of the original equation) Estimating the conditional probability Pr li v j is more challenging We pay attention to two problems: We multiplying all the conditional probabilities, thus any of them must not be zero The data extracted from the web in our isa database is incomplete and there are likely to be values that their set of labels in the database is incomplete U l, V i K s j Pr li v Pr l i j 29

30 To account for the incompleteness, we smooth the estimates for conditional probabilities: Pr li v K p j Scorev, l K Pr l Score v, l p i j i K p k j k is smoothing constant The formula insures that when a value is absent in the isa database, the probability distribution of labels tends to be the same as the prior Moreover, values with no known labels are not taken as negative evidence and do not contribute to changing the ordering among best hypotheses 30

31 Finally, we need to account for the fact that certain expressions are more popular on the Web and can skew the scores in the isa database. For example: (Paris, isa, city) >> (Lilongwe, isa, city) thus we get Score(Paris,city) >> Score(Lilongwe,city) We refine our estimator further to instead use the logarithm of the scores 31

32 The final formula is now: Pr li v U l, V i j K Scorev l Given the formula above and the values in a column, we compute the likelihood function for every possible label, sorting the results and taking into account only the labels that have a likelihood score greater than a threshold T. K Pr l ln Score v, l 1 s p i j i K j ln, 1 p k j k Pr li v Pr l i j 32

33 v 1 v 2 v 3 v 4 {< tree, 0.4 >,< person, 0.2 >...} {< tree, 0.5 >,< company, 0.1>...} {...} {...} 33

34 We reviewed an automatic method for recovering semantics of tables from the web We would like to test the effectiveness of the added annotations by doing Table Search The goal of the experiments is to show that the reviewed algorithm performs better that most state of the art algorithms (in terms of Precision and Recall) 34

35 12.3 Million tables were extracted from the web using crawlers 3 methods were chosen for the experiments Majority Model (Current method) Hybrid 35

36 168 tables were specially filtered and checked The tables were given to a human annotators that marked each label in the table with {Vital,OK,Incorrect} Each model annotated the tables and the labels were compared to the golden set Scores were given to each label: Precision: 1 for Vital, 0.5 for OK and 0 otherwise Recall: 1 for Vital or Ok and 0 otherwise 36

37 37

38 Web-extracted YAGO Freebase Labeled subject columns 1,496, , ,811 Instances in ontology 155,831,855 1,940,797 Table 1: Comparing our isa database and YAGO 16,252,633 Compared the labeling of columns between the 3 isa datasets YAGO considered the state of the art database and based on Wikipedia. FreeBase is another free isa database 38

39 1.5M columns were labeled out of 12.3M 1.6M vertical tables 4M tables were useless they were not made to answer on (Class,Property) queries such as (school, tuition) 45% of the tables are not relevant! Category Sub-category # tables (M) % of corpus Subject column Labeled All columns Vertical Scientific Publications Extractable Acronyms Not useful Table 2: Class label assignment to various categories of tables 39

40 Method All Ratings Ratings by Queries Query Precision Query Recall Total ( a ) ( b ) ( c ) Some Result ( a ) ( b ) ( c ) ( a ) ( b ) ( c ) ( a ) ( b ) ( c ) Table Document GooG GooGR Table 3: Results of user study: The columns under All Ratings present the number of results (totaled over 3 users) that were rated to be (a) right on, (b) right on or relevant, and ( c) right on or relevant and in table. The Ratings by Queries columns aggregate ratings by queries: the sub-columns indicate the number of queries for which at least 2 users rated a result similarly (with (a), (b) and (c )). The Precision and Recall are as usual. 3 users were asked to rate the results of table search of each of the models TABLE model gives very good results both in precision and recall 40

41 We showed a ML algorithm for recovering the semantics of tables in the web The algorithm is automatic and scalable Gives much better results (in terms of table search) than most of the engines today Improvements can be done in terms of data extraction from the web: Improve extraction of the isa and relations database Improve tables extraction by searching in lists and files Build numeric relations (not only binary) 41

42 42

Recovering Semantics of Tables on the Web

Recovering Semantics of Tables on the Web Recovering Semantics of Tables on the Web Petros Venetis Alon Halevy Jayant Madhavan Marius Paşca Stanford University Google Inc. Google Inc. Google Inc. venetis@cs.stanford.edu halevy@google.com jayant@google.com

More information

Visualizing semantic table annotations with TableMiner+

Visualizing semantic table annotations with TableMiner+ Visualizing semantic table annotations with TableMiner+ MAZUMDAR, Suvodeep and ZHANG, Ziqi Available from Sheffield Hallam University Research Archive (SHURA) at:

More information

Question Answering Systems

Question Answering Systems Question Answering Systems An Introduction Potsdam, Germany, 14 July 2011 Saeedeh Momtazi Information Systems Group Outline 2 1 Introduction Outline 2 1 Introduction 2 History Outline 2 1 Introduction

More information

Jianyong Wang Department of Computer Science and Technology Tsinghua University

Jianyong Wang Department of Computer Science and Technology Tsinghua University Jianyong Wang Department of Computer Science and Technology Tsinghua University jianyong@tsinghua.edu.cn Joint work with Wei Shen (Tsinghua), Ping Luo (HP), and Min Wang (HP) Outline Introduction to entity

More information

Towards Efficient and Effective Semantic Table Interpretation Ziqi Zhang

Towards Efficient and Effective Semantic Table Interpretation Ziqi Zhang Towards Efficient and Effective Semantic Table Interpretation Ziqi Zhang Department of Computer Science, University of Sheffield Outline Define semantic table interpretation State-of-the-art and motivation

More information

Ghent University-IBCN Participation in TAC-KBP 2015 Cold Start Slot Filling task

Ghent University-IBCN Participation in TAC-KBP 2015 Cold Start Slot Filling task Ghent University-IBCN Participation in TAC-KBP 2015 Cold Start Slot Filling task Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder Ghent University - iminds Gaston Crommenlaan 8 Ghent, Belgium

More information

Chapter 27 Introduction to Information Retrieval and Web Search

Chapter 27 Introduction to Information Retrieval and Web Search Chapter 27 Introduction to Information Retrieval and Web Search Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 27 Outline Information Retrieval (IR) Concepts Retrieval

More information

Digital Libraries: Language Technologies

Digital Libraries: Language Technologies Digital Libraries: Language Technologies RAFFAELLA BERNARDI UNIVERSITÀ DEGLI STUDI DI TRENTO P.ZZA VENEZIA, ROOM: 2.05, E-MAIL: BERNARDI@DISI.UNITN.IT Contents 1 Recall: Inverted Index..........................................

More information

CSC 5930/9010: Text Mining GATE Developer Overview

CSC 5930/9010: Text Mining GATE Developer Overview 1 CSC 5930/9010: Text Mining GATE Developer Overview Dr. Paula Matuszek Paula.Matuszek@villanova.edu Paula.Matuszek@gmail.com (610) 647-9789 GATE Components 2 We will deal primarily with GATE Developer:

More information

How Co-Occurrence can Complement Semantics?

How Co-Occurrence can Complement Semantics? How Co-Occurrence can Complement Semantics? Atanas Kiryakov & Borislav Popov ISWC 2006, Athens, GA Semantic Annotations: 2002 #2 Semantic Annotation: How and Why? Information extraction (text-mining) for

More information

OKKAM-based instance level integration

OKKAM-based instance level integration OKKAM-based instance level integration Paolo Bouquet W3C RDF2RDB This work is co-funded by the European Commission in the context of the Large-scale Integrated project OKKAM (GA 215032) RoadMap Using the

More information

Cost-Effective Conceptual Design. over Taxonomies. Yodsawalai Chodpathumwan. University of Illinois at Urbana-Champaign.

Cost-Effective Conceptual Design. over Taxonomies. Yodsawalai Chodpathumwan. University of Illinois at Urbana-Champaign. Cost-Effective Conceptual Design over Taxonomies Yodsawalai Chodpathumwan University of Illinois at Urbana-Champaign Ali Vakilian Massachusetts Institute of Technology Arash Termehchy, Amir Nayyeri Oregon

More information

Towards Summarizing the Web of Entities

Towards Summarizing the Web of Entities Towards Summarizing the Web of Entities contributors: August 15, 2012 Thomas Hofmann Director of Engineering Search Ads Quality Zurich, Google Switzerland thofmann@google.com Enrique Alfonseca Yasemin

More information

Natural Language Interfaces to Ontologies. Danica Damljanović

Natural Language Interfaces to Ontologies. Danica Damljanović Natural Language Interfaces to Ontologies Danica Damljanović danica@dcs.shef.ac.uk Sponsored by Transitioning Applications to Ontologies: www.tao-project.eu GATE case study in TAO project collect software

More information

A Keyword-based Structured Query Language

A Keyword-based Structured Query Language Expressive and Flexible Access to Web-Extracted Data : A Keyword-based Structured Query Language Department of Computer Science and Engineering Indian Institute of Technology Delhi 22th September 2011

More information

Big Data Integration for Data Enthusiasts. Jayant Madhavan Structured Data Research Google Inc.

Big Data Integration for Data Enthusiasts. Jayant Madhavan Structured Data Research Google Inc. for Data Enthusiasts Jayant Madhavan Structured Data Research Google Inc. Big Data Challenge Running computations over ginormous datasets Petabytes, Exabytes, maybe more! Only one aspect of the challenge!

More information

Ontology Augmentation Through Matching with Web Tables

Ontology Augmentation Through Matching with Web Tables Ontology Augmentation Through Matching with Web Tables Oliver Lehmberg 1 and Oktie Hassanzadeh 2 1 University of Mannheim, B6 26, 68159 Mannheim, Germany 2 IBM Research, Yorktown Heights, New York, U.S.A.

More information

Models for Document & Query Representation. Ziawasch Abedjan

Models for Document & Query Representation. Ziawasch Abedjan Models for Document & Query Representation Ziawasch Abedjan Overview Introduction & Definition Boolean retrieval Vector Space Model Probabilistic Information Retrieval Language Model Approach Summary Overview

More information

Oleksandr Kuzomin, Bohdan Tkachenko

Oleksandr Kuzomin, Bohdan Tkachenko International Journal "Information Technologies Knowledge" Volume 9, Number 2, 2015 131 INTELLECTUAL SEARCH ENGINE OF ADEQUATE INFORMATION IN INTERNET FOR CREATING DATABASES AND KNOWLEDGE BASES Oleksandr

More information

Query Likelihood with Negative Query Generation

Query Likelihood with Negative Query Generation Query Likelihood with Negative Query Generation Yuanhua Lv Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801 ylv2@uiuc.edu ChengXiang Zhai Department of Computer

More information

Detection and Extraction of Events from s

Detection and Extraction of Events from  s Detection and Extraction of Events from Emails Shashank Senapaty Department of Computer Science Stanford University, Stanford CA senapaty@cs.stanford.edu December 12, 2008 Abstract I build a system to

More information

Leveraging Linked Data to Infer Semantic Relations within Structured Sources

Leveraging Linked Data to Infer Semantic Relations within Structured Sources Leveraging Linked Data to Infer Semantic Relations within Structured Sources Mohsen Taheriyan 1, Craig A. Knoblock 1, Pedro Szekely 1, José Luis Ambite 1, and Yinyi Chen 2 1 University of Southern California

More information

Precise Medication Extraction using Agile Text Mining

Precise Medication Extraction using Agile Text Mining Precise Medication Extraction using Agile Text Mining Chaitanya Shivade *, James Cormack, David Milward * The Ohio State University, Columbus, Ohio, USA Linguamatics Ltd, Cambridge, UK shivade@cse.ohio-state.edu,

More information

Part 11: Collaborative Filtering. Francesco Ricci

Part 11: Collaborative Filtering. Francesco Ricci Part : Collaborative Filtering Francesco Ricci Content An example of a Collaborative Filtering system: MovieLens The collaborative filtering method n Similarity of users n Methods for building the rating

More information

Multi-agent and Semantic Web Systems: RDF Data Structures

Multi-agent and Semantic Web Systems: RDF Data Structures Multi-agent and Semantic Web Systems: RDF Data Structures Fiona McNeill School of Informatics 31st January 2013 Fiona McNeill Multi-agent Semantic Web Systems: RDF Data Structures 31st January 2013 0/25

More information

Wikipedia and the Web of Confusable Entities: Experience from Entity Linking Query Creation for TAC 2009 Knowledge Base Population

Wikipedia and the Web of Confusable Entities: Experience from Entity Linking Query Creation for TAC 2009 Knowledge Base Population Wikipedia and the Web of Confusable Entities: Experience from Entity Linking Query Creation for TAC 2009 Knowledge Base Population Heather Simpson 1, Stephanie Strassel 1, Robert Parker 1, Paul McNamee

More information

Semantic Annotation of Web Resources Using IdentityRank and Wikipedia

Semantic Annotation of Web Resources Using IdentityRank and Wikipedia Semantic Annotation of Web Resources Using IdentityRank and Wikipedia Norberto Fernández, José M.Blázquez, Luis Sánchez, and Vicente Luque Telematic Engineering Department. Carlos III University of Madrid

More information

Semantic Annotation, Search and Analysis

Semantic Annotation, Search and Analysis Semantic Annotation, Search and Analysis Borislav Popov, Ontotext Ontology A machine readable conceptual model a common vocabulary for sharing information machine-interpretable definitions of concepts in

More information

Data Mining Algorithms: Basic Methods

Data Mining Algorithms: Basic Methods Algorithms: The basic methods Inferring rudimentary rules Data Mining Algorithms: Basic Methods Chapter 4 of Data Mining Statistical modeling Constructing decision trees Constructing rules Association

More information

A Deep Relevance Matching Model for Ad-hoc Retrieval

A Deep Relevance Matching Model for Ad-hoc Retrieval A Deep Relevance Matching Model for Ad-hoc Retrieval Jiafeng Guo 1, Yixing Fan 1, Qingyao Ai 2, W. Bruce Croft 2 1 CAS Key Lab of Web Data Science and Technology, Institute of Computing Technology, Chinese

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK REVIEW PAPER ON IMPLEMENTATION OF DOCUMENT ANNOTATION USING CONTENT AND QUERYING

More information

Information Retrieval CSCI

Information Retrieval CSCI Information Retrieval CSCI 4141-6403 My name is Anwar Alhenshiri My email is: anwar@cs.dal.ca I prefer: aalhenshiri@gmail.com The course website is: http://web.cs.dal.ca/~anwar/ir/main.html 5/6/2012 1

More information

Shrey Patel B.E. Computer Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India

Shrey Patel B.E. Computer Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 3 ISSN : 2456-3307 Some Issues in Application of NLP to Intelligent

More information

Information Retrieval

Information Retrieval Information Retrieval CSC 375, Fall 2016 An information retrieval system will tend not to be used whenever it is more painful and troublesome for a customer to have information than for him not to have

More information

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Probabilistic Classification Fall 2017 Admin Assignment 0 is due tonight: you should be almost done. 1 late day to hand it in Monday, 2 late days for Wednesday.

More information

Natural Language Processing. SoSe Question Answering

Natural Language Processing. SoSe Question Answering Natural Language Processing SoSe 2017 Question Answering Dr. Mariana Neves July 5th, 2017 Motivation Find small segments of text which answer users questions (http://start.csail.mit.edu/) 2 3 Motivation

More information

University of Sheffield, NLP. Chunking Practical Exercise

University of Sheffield, NLP. Chunking Practical Exercise Chunking Practical Exercise Chunking for NER Chunking, as we saw at the beginning, means finding parts of text This task is often called Named Entity Recognition (NER), in the context of finding person

More information

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi)

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi) Natural Language Processing SoSe 2015 Question Answering Dr. Mariana Neves July 6th, 2015 (based on the slides of Dr. Saeedeh Momtazi) Outline 2 Introduction History QA Architecture Outline 3 Introduction

More information

Hybrid Acquisition of Temporal Scopes for RDF Data

Hybrid Acquisition of Temporal Scopes for RDF Data Hybrid Acquisition of Temporal Scopes for RDF Data Anisa Rula 1, Matteo Palmonari 1, Axel-Cyrille Ngonga Ngomo 2, Daniel Gerber 2, Jens Lehmann 2, and Lorenz Bühmann 2 1. University of Milano-Bicocca,

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Language Models Language models are distributions over sentences N gram models are built from local conditional probabilities Language Modeling II Dan Klein UC Berkeley, The

More information

NERD workshop. Luca ALMAnaCH - Inria Paris. Berlin, 18/09/2017

NERD workshop. Luca ALMAnaCH - Inria Paris. Berlin, 18/09/2017 NERD workshop Luca Foppiano @ ALMAnaCH - Inria Paris Berlin, 18/09/2017 Agenda Introducing the (N)ERD service NERD REST API Usages and use cases Entities Rigid textual expressions corresponding to certain

More information

Towards Semantic Data Mining

Towards Semantic Data Mining Towards Semantic Data Mining Haishan Liu Department of Computer and Information Science, University of Oregon, Eugene, OR, 97401, USA ahoyleo@cs.uoregon.edu Abstract. Incorporating domain knowledge is

More information

RiMOM Results for OAEI 2009

RiMOM Results for OAEI 2009 RiMOM Results for OAEI 2009 Xiao Zhang, Qian Zhong, Feng Shi, Juanzi Li and Jie Tang Department of Computer Science and Technology, Tsinghua University, Beijing, China zhangxiao,zhongqian,shifeng,ljz,tangjie@keg.cs.tsinghua.edu.cn

More information

Using a Medical Thesaurus to Predict Query Difficulty

Using a Medical Thesaurus to Predict Query Difficulty Using a Medical Thesaurus to Predict Query Difficulty Florian Boudin, Jian-Yun Nie, Martin Dawes To cite this version: Florian Boudin, Jian-Yun Nie, Martin Dawes. Using a Medical Thesaurus to Predict Query

More information

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al.

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al. Presented by Brandon Smith Computer Vision Fall 2007 Objective Given a query image of an object,

More information

Module Contact: Dr Dan Smith, CMP Copyright of the University of East Anglia Version 1

Module Contact: Dr Dan Smith, CMP Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series UG Examination 2015/16 INFORMATION RETRIEVAL CMP-5036A/CMP-6008A Time allowed: 2 hours Answer any TWO questions. Notes are not permitted

More information

Semantically Driven Snippet Selection for Supporting Focused Web Searches

Semantically Driven Snippet Selection for Supporting Focused Web Searches Semantically Driven Snippet Selection for Supporting Focused Web Searches IRAKLIS VARLAMIS Harokopio University of Athens Department of Informatics and Telematics, 89, Harokopou Street, 176 71, Athens,

More information

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi) )

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi) ) Natural Language Processing SoSe 2014 Question Answering Dr. Mariana Neves June 25th, 2014 (based on the slides of Dr. Saeedeh Momtazi) ) Outline 2 Introduction History QA Architecture Natural Language

More information

PROJECT PERIODIC REPORT

PROJECT PERIODIC REPORT PROJECT PERIODIC REPORT Grant Agreement number: 257403 Project acronym: CUBIST Project title: Combining and Uniting Business Intelligence and Semantic Technologies Funding Scheme: STREP Date of latest

More information

Random Walk Inference and Learning. Carnegie Mellon University 7/28/2011 EMNLP 2011, Edinburgh, Scotland, UK

Random Walk Inference and Learning. Carnegie Mellon University 7/28/2011 EMNLP 2011, Edinburgh, Scotland, UK Random Walk Inference and Learning in A Large Scale Knowledge Base Ni Lao, Tom Mitchell, William W. Cohen Carnegie Mellon University 2011.7.28 1 Outline Motivation Inference in Knowledge Bases The NELL

More information

Entity Linking in Web Tables with Multiple Linked Knowledge Bases

Entity Linking in Web Tables with Multiple Linked Knowledge Bases Entity Linking in Web Tables with Multiple Linked Knowledge Bases Tianxing Wu, Shengjia Yan, Zhixin Piao, Liang Xu, Ruiming Wang, Guilin Qi School of Computer Science and Engineering, Southeast University,

More information

A Hybrid Machine-Crowdsourcing System for Matching Web Tables

A Hybrid Machine-Crowdsourcing System for Matching Web Tables A Hybrid Machine-Crowdsourcing System for Matching Web Tables Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, Meihui Zhang National University of Singapore {fanj, lumeiyu, ooibc, mhzhang}@comp.nus.edu.sg

More information

Semantic Web Search Model for Information Retrieval of the Semantic Data *

Semantic Web Search Model for Information Retrieval of the Semantic Data * Semantic Web Search Model for Information Retrieval of the Semantic Data * Okkyung Choi 1, SeokHyun Yoon 1, Myeongeun Oh 1, and Sangyong Han 2 Department of Computer Science & Engineering Chungang University

More information

Table2Vec: Neural Word and Entity Embeddings for Table Population and Retrieval

Table2Vec: Neural Word and Entity Embeddings for Table Population and Retrieval Faculty of Science and Technology Department of Electrical Engineering and Computer Science Table2Vec: Neural Word and Entity Embeddings for Table Population and Retrieval Master s Thesis in Computer Science

More information

CHAPTER 6 PROPOSED HYBRID MEDICAL IMAGE RETRIEVAL SYSTEM USING SEMANTIC AND VISUAL FEATURES

CHAPTER 6 PROPOSED HYBRID MEDICAL IMAGE RETRIEVAL SYSTEM USING SEMANTIC AND VISUAL FEATURES 188 CHAPTER 6 PROPOSED HYBRID MEDICAL IMAGE RETRIEVAL SYSTEM USING SEMANTIC AND VISUAL FEATURES 6.1 INTRODUCTION Image representation schemes designed for image retrieval systems are categorized into two

More information

Lecture 10 May 14, Prabhakar Raghavan

Lecture 10 May 14, Prabhakar Raghavan Lecture 10 May 14, 2001 Prabhakar Raghavan Centroid/nearest-neighbor classification Bayesian Classification Link-based classification Document summarization Given training docs for a topic, compute their

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

Recent Advances in Structured Data and the Web

Recent Advances in Structured Data and the Web Recent Advances in Structured Data and the Web Alon Halevy Google April 10, 2013 Joint work with: Jayant Madhavan, Cong Yu, Fei Wu, Hongrae Lee, Nitin Gupta, Warren Shen Anish Das Sarma, Boulos Harb, Zack

More information

Background. Problem Statement. Toward Large Scale Integration: Building a MetaQuerier over Databases on the Web. Deep (hidden) Web

Background. Problem Statement. Toward Large Scale Integration: Building a MetaQuerier over Databases on the Web. Deep (hidden) Web Toward Large Scale Integration: Building a MetaQuerier over Databases on the Web K. C.-C. Chang, B. He, and Z. Zhang Presented by: M. Hossein Sheikh Attar 1 Background Deep (hidden) Web Searchable online

More information

Towards Rule Learning Approaches to Instance-based Ontology Matching

Towards Rule Learning Approaches to Instance-based Ontology Matching Towards Rule Learning Approaches to Instance-based Ontology Matching Frederik Janssen 1, Faraz Fallahi 2 Jan Noessner 3, and Heiko Paulheim 1 1 Knowledge Engineering Group, TU Darmstadt, Hochschulstrasse

More information

Searching the Deep Web

Searching the Deep Web Searching the Deep Web 1 What is Deep Web? Information accessed only through HTML form pages database queries results embedded in HTML pages Also can included other information on Web can t directly index

More information

CMSC 476/676 Information Retrieval Midterm Exam Spring 2014

CMSC 476/676 Information Retrieval Midterm Exam Spring 2014 CMSC 476/676 Information Retrieval Midterm Exam Spring 2014 Name: You may consult your notes and/or your textbook. This is a 75 minute, in class exam. If there is information missing in any of the question

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

Structured Data on the Web

Structured Data on the Web Structured Data on the Web Alon Halevy Google Australasian Computer Science Week January, 2010 Structured Data & The Web Andree Hudson, 4 th of July Hard to find structured data via search engines

More information

SAPIENT Automation project

SAPIENT Automation project Dr Maria Liakata Leverhulme Trust Early Career fellow Department of Computer Science, Aberystwyth University Visitor at EBI, Cambridge mal@aber.ac.uk 25 May 2010, London Motivation SAPIENT Automation Project

More information

WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS

WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS 1 WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS BRUCE CROFT NSF Center for Intelligent Information Retrieval, Computer Science Department, University of Massachusetts,

More information

Modelling Structures in Data Mining Techniques

Modelling Structures in Data Mining Techniques Modelling Structures in Data Mining Techniques Ananth Y N 1, Narahari.N.S 2 Associate Professor, Dept of Computer Science, School of Graduate Studies- JainUniversity- J.C.Road, Bangalore, INDIA 1 Professor

More information

Recommendation System for Location-based Social Network CS224W Project Report

Recommendation System for Location-based Social Network CS224W Project Report Recommendation System for Location-based Social Network CS224W Project Report Group 42, Yiying Cheng, Yangru Fang, Yongqing Yuan 1 Introduction With the rapid development of mobile devices and wireless

More information

Ranking Algorithms For Digital Forensic String Search Hits

Ranking Algorithms For Digital Forensic String Search Hits DIGITAL FORENSIC RESEARCH CONFERENCE Ranking Algorithms For Digital Forensic String Search Hits By Nicole Beebe and Lishu Liu Presented At The Digital Forensic Research Conference DFRWS 2014 USA Denver,

More information

Tulip: Lightweight Entity Recognition and Disambiguation Using Wikipedia-Based Topic Centroids. Marek Lipczak Arash Koushkestani Evangelos Milios

Tulip: Lightweight Entity Recognition and Disambiguation Using Wikipedia-Based Topic Centroids. Marek Lipczak Arash Koushkestani Evangelos Milios Tulip: Lightweight Entity Recognition and Disambiguation Using Wikipedia-Based Topic Centroids Marek Lipczak Arash Koushkestani Evangelos Milios Problem definition The goal of Entity Recognition and Disambiguation

More information

WEB PAGE RE-RANKING TECHNIQUE IN SEARCH ENGINE

WEB PAGE RE-RANKING TECHNIQUE IN SEARCH ENGINE WEB PAGE RE-RANKING TECHNIQUE IN SEARCH ENGINE Ms.S.Muthukakshmi 1, R. Surya 2, M. Umira Taj 3 Assistant Professor, Department of Information Technology, Sri Krishna College of Technology, Kovaipudur,

More information

AROMA results for OAEI 2009

AROMA results for OAEI 2009 AROMA results for OAEI 2009 Jérôme David 1 Université Pierre-Mendès-France, Grenoble Laboratoire d Informatique de Grenoble INRIA Rhône-Alpes, Montbonnot Saint-Martin, France Jerome.David-at-inrialpes.fr

More information

VisoLink: A User-Centric Social Relationship Mining

VisoLink: A User-Centric Social Relationship Mining VisoLink: A User-Centric Social Relationship Mining Lisa Fan and Botang Li Department of Computer Science, University of Regina Regina, Saskatchewan S4S 0A2 Canada {fan, li269}@cs.uregina.ca Abstract.

More information

Retrieval Evaluation. Hongning Wang

Retrieval Evaluation. Hongning Wang Retrieval Evaluation Hongning Wang CS@UVa What we have learned so far Indexed corpus Crawler Ranking procedure Research attention Doc Analyzer Doc Rep (Index) Query Rep Feedback (Query) Evaluation User

More information

An Introduction to Search Engines and Web Navigation

An Introduction to Search Engines and Web Navigation An Introduction to Search Engines and Web Navigation MARK LEVENE ADDISON-WESLEY Ал imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Tokyo Singapore Hong

More information

Understanding a Large Corpus of Web Tables Through Matching with Knowledge Bases An Empirical Study

Understanding a Large Corpus of Web Tables Through Matching with Knowledge Bases An Empirical Study Understanding a Large Corpus of Web Tables Through Matching with Knowledge Bases An Empirical Study Oktie Hassanzadeh, Michael J. Ward, Mariano Rodriguez-Muro, and Kavitha Srinivas IBM T.J. Watson Research

More information

Anatomy of a Semantic Virus

Anatomy of a Semantic Virus Anatomy of a Semantic Virus Peyman Nasirifard Digital Enterprise Research Institute National University of Ireland, Galway IDA Business Park, Lower Dangan, Galway, Ireland peyman.nasirifard@deri.org Abstract.

More information

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University http://disa.fi.muni.cz The Cranfield Paradigm Retrieval Performance Evaluation Evaluation Using

More information

DBPedia (dbpedia.org)

DBPedia (dbpedia.org) Matt Harbers Databases and the Web April 22 nd, 2011 DBPedia (dbpedia.org) What is it? DBpedia is a community whose goal is to provide a web based open source data set of RDF triples based on Wikipedia

More information

Ontology Based Prediction of Difficult Keyword Queries

Ontology Based Prediction of Difficult Keyword Queries Ontology Based Prediction of Difficult Keyword Queries Lubna.C*, Kasim K Pursuing M.Tech (CSE)*, Associate Professor (CSE) MEA Engineering College, Perinthalmanna Kerala, India lubna9990@gmail.com, kasim_mlp@gmail.com

More information

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc.

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc. CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems Leigh M. Smith Humtap Inc. leigh@humtap.com Basic system overview Segmentation (Frames, Onsets, Beats, Bars, Chord Changes, etc) Feature

More information

Web-Scale Extraction of Structured Data

Web-Scale Extraction of Structured Data Web-Scale Extraction of Structured Data Michael J. Cafarella University of Washington mjc@cs.washington.edu Jayant Madhavan Google Inc. jayant@google.com Alon Halevy Google Inc. halevy@google.com ABSTRACT

More information

Topics du jour CS347. Centroid/NN. Example

Topics du jour CS347. Centroid/NN. Example Topics du jour CS347 Lecture 10 May 14, 2001 Prabhakar Raghavan Centroid/nearest-neighbor classification Bayesian Classification Link-based classification Document summarization Centroid/NN Given training

More information

Document Retrieval using Predication Similarity

Document Retrieval using Predication Similarity Document Retrieval using Predication Similarity Kalpa Gunaratna 1 Kno.e.sis Center, Wright State University, Dayton, OH 45435 USA kalpa@knoesis.org Abstract. Document retrieval has been an important research

More information

A scalable AI Knowledge Graph Solution for Healthcare (and many other industries) Dr. Jans Aasman

A scalable AI Knowledge Graph Solution for Healthcare (and many other industries) Dr. Jans Aasman A scalable AI Knowledge Graph Solution for Healthcare (and many other industries) Dr. Jans Aasman About Franz Inc. Privately held, Self-funded, Profitable since 1984 Headquartered: Oakland, CA Flagship

More information

Principles of Dataspaces

Principles of Dataspaces Principles of Dataspaces Seminar From Databases to Dataspaces Summer Term 2007 Monika Podolecheva University of Konstanz Department of Computer and Information Science Tutor: Prof. M. Scholl, Alexander

More information

Entity and Knowledge Base-oriented Information Retrieval

Entity and Knowledge Base-oriented Information Retrieval Entity and Knowledge Base-oriented Information Retrieval Presenter: Liuqing Li liuqing@vt.edu Digital Library Research Laboratory Virginia Polytechnic Institute and State University Blacksburg, VA 24061

More information

Kripke style Dynamic model for Web Annotation with Similarity and Reliability

Kripke style Dynamic model for Web Annotation with Similarity and Reliability Kripke style Dynamic model for Web Annotation with Similarity and Reliability M. Kopecký 1, M. Vomlelová 2, P. Vojtáš 1 Faculty of Mathematics and Physics Charles University Malostranske namesti 25, Prague,

More information

PRIS at TAC2012 KBP Track

PRIS at TAC2012 KBP Track PRIS at TAC2012 KBP Track Yan Li, Sijia Chen, Zhihua Zhou, Jie Yin, Hao Luo, Liyin Hong, Weiran Xu, Guang Chen, Jun Guo School of Information and Communication Engineering Beijing University of Posts and

More information

Combining Text Embedding and Knowledge Graph Embedding Techniques for Academic Search Engines

Combining Text Embedding and Knowledge Graph Embedding Techniques for Academic Search Engines Combining Text Embedding and Knowledge Graph Embedding Techniques for Academic Search Engines SemDeep-4, Oct. 2018 Gengchen Mai Krzysztof Janowicz Bo Yan STKO Lab, University of California, Santa Barbara

More information

A Survey Of Different Text Mining Techniques Varsha C. Pande 1 and Dr. A.S. Khandelwal 2

A Survey Of Different Text Mining Techniques Varsha C. Pande 1 and Dr. A.S. Khandelwal 2 A Survey Of Different Text Mining Techniques Varsha C. Pande 1 and Dr. A.S. Khandelwal 2 1 Department of Electronics & Comp. Sc, RTMNU, Nagpur, India 2 Department of Computer Science, Hislop College, Nagpur,

More information

Linking Entities in Chinese Queries to Knowledge Graph

Linking Entities in Chinese Queries to Knowledge Graph Linking Entities in Chinese Queries to Knowledge Graph Jun Li 1, Jinxian Pan 2, Chen Ye 1, Yong Huang 1, Danlu Wen 1, and Zhichun Wang 1(B) 1 Beijing Normal University, Beijing, China zcwang@bnu.edu.cn

More information

Open Data Integration. Renée J. Miller

Open Data Integration. Renée J. Miller Open Data Integration Renée J. Miller miller@northeastern.edu !2 Open Data Principles Timely & Comprehensive Accessible and Usable Complete - All public data is made available. Public data is data that

More information

KNOWLEDGE GRAPHS. Lecture 1: Introduction and Motivation. TU Dresden, 16th Oct Markus Krötzsch Knowledge-Based Systems

KNOWLEDGE GRAPHS. Lecture 1: Introduction and Motivation. TU Dresden, 16th Oct Markus Krötzsch Knowledge-Based Systems KNOWLEDGE GRAPHS Lecture 1: Introduction and Motivation Markus Krötzsch Knowledge-Based Systems TU Dresden, 16th Oct 2018 Introduction and Organisation Markus Krötzsch, 16th Oct 2018 Knowledge Graphs slide

More information

Tuning. Philipp Koehn presented by Gaurav Kumar. 28 September 2017

Tuning. Philipp Koehn presented by Gaurav Kumar. 28 September 2017 Tuning Philipp Koehn presented by Gaurav Kumar 28 September 2017 The Story so Far: Generative Models 1 The definition of translation probability follows a mathematical derivation argmax e p(e f) = argmax

More information

Relational Retrieval Using a Combination of Path-Constrained Random Walks

Relational Retrieval Using a Combination of Path-Constrained Random Walks Relational Retrieval Using a Combination of Path-Constrained Random Walks Ni Lao, William W. Cohen University 2010.9.22 Outline Relational Retrieval Problems Path-constrained random walks The need for

More information

Ontology based Model and Procedure Creation for Topic Analysis in Chinese Language

Ontology based Model and Procedure Creation for Topic Analysis in Chinese Language Ontology based Model and Procedure Creation for Topic Analysis in Chinese Language Dong Han and Kilian Stoffel Information Management Institute, University of Neuchâtel Pierre-à-Mazel 7, CH-2000 Neuchâtel,

More information

Natural Language Processing with PoolParty

Natural Language Processing with PoolParty Natural Language Processing with PoolParty Table of Content Introduction to PoolParty 2 Resolving Language Problems 4 Key Features 5 Entity Extraction and Term Extraction 5 Shadow Concepts 6 Word Sense

More information

Exam Marco Kuhlmann. This exam consists of three parts:

Exam Marco Kuhlmann. This exam consists of three parts: TDDE09, 729A27 Natural Language Processing (2017) Exam 2017-03-13 Marco Kuhlmann This exam consists of three parts: 1. Part A consists of 5 items, each worth 3 points. These items test your understanding

More information

Tips and Guidance for Analyzing Data. Executive Summary

Tips and Guidance for Analyzing Data. Executive Summary Tips and Guidance for Analyzing Data Executive Summary This document has information and suggestions about three things: 1) how to quickly do a preliminary analysis of time-series data; 2) key things to

More information