Addendum to the proof of log n approximation ratio for the greedy set cover algorithm

Size: px
Start display at page:

Download "Addendum to the proof of log n approximation ratio for the greedy set cover algorithm"

Transcription

1 Addendum to the proof of log n approximation ratio for the greedy set cover algorithm (From Vazirani s very nice book Approximation algorithms ) Let x, x 2,...,x n be the order in which the elements are covered (break ties arbitrarily) Lemma: c(x i )<=C*/(n-i+) Proof. Suppose we are selecting a set that will cover x i. The remaining elements can be covered with C* sets. Thus there largest set in C*, the optimal solution, will cover at least (n-i+)/c* elements. I.e., The cost per element is at most C*/(n-i+) Thus Theorem. The approximation cost is at most H(n) Proof. The cost is at most the sum of the costs c(x i ) n i= c( x ) i C * C * n i + n i= n C * H ( n) Proving the bound H(s) is more tedious.

2 Finding fragments of orders, partial orders, and total orders from - data Themes of the chapter Given a / a matrix Rows: observations, columns variables Can one find ordering information for the observations? Without additional assumptions, no; with some assumptions, yes Paleontological application: find orders for subsets of fossil sites a good ordering for (a subset of) the rows is one where the s are consecutive Also other applications 2

3 Themes of the chapter Finding small total orders (fragments) from - data Local models/patterns Finding partial orders from - data A global model Find total orders for - data A global model Finding small total orders (fragments) from - data Model: a subset of observations and a total order on the subset Task: find all such models fulfilling certain criteria Algorithm: a pattern discovery algorithm (levelwise search) 3

4 Finding partial orders from - data Model: a partial order over all observations Loglikelihood: proportional to the number of cases the observed occurrence patterns violate the continuity of species Prior: prefer partial orders that are as specific as possible Task: find a model with high likelihood * prior Algorithm: Find fragments and use heuristic search to build a good partial order Find total orders for - data Model: a total order Loglikelihood: how many cases the observed occurrence patterns violate the continuity of species Task: find the best total order for the observations Algorithm: spectral method 4

5 Type of data - data, large number of variables Examples: Occurrences of words in documents Occurrences of species in paleontological sites Occurrence of a particular motif in a promoter region of a gene Typically the data is sparse: only a few s Asymmetry between s and s A means that there really was something A has less information (in a way) Example Paleontological data from the NOW (Neogene Mammal Database) Fossil sites (one location, one layer) Each site contains fossils that are about the same age (+- Ma) Variables: species/genera A is reasonably certain A might be due to several reasons The species was not extant at that time The remains did not fossilize The tooth was overlooked 5

6 Site-genus -matrix site genus Background knowledge Species do not vanish and return An ordering of the sites with a between s is improbable time 6

7 Given data about the occurrences of genera in fossil sites Want to find an ordering in which occurrences of a genus are consecutive Lazarus count: how many s are between s Example: seriation in paleontological data Site Genus A better ordering A smaller Lazarus count 7

8 Find small total orders (fragments) from - occurrence data Fragment: a total ordering of a subset of observations E.g., c<a<d<f Intuitive interpretation: For most variables the sequence of observations has no pattern of the form c a d f Fragments of order / data set Fragment of order f is a sequence of observations t < t 2 < t 3 < < t k An variable A disagrees with fragment f, if for some i<j<h we have t i (A)=t h (A)=, but t j (A)=. Otherwise t agrees with f: Then the column for A has the form for the observations in f 8

9 Example A B C D E F a<b<c<d: dis ag dis dis b<d<f<a: ag dis ag ag What is a good fragment of order? A sequence f of rows, say, u<v<w<t Da(f): the number of variables disagreeing with the ordering Fr(f): the number of variables having at least 2 ones in the rows of f A good fragment has high Fr(f) and low Da(f) 9

10 Problem statement Given thresholds σ and γ Find all fragments of order f such that in the data Fr(f) > σ Da(f) < γ and all subfragments of f satisfy these and the fragment has smaller Da value than its peers Any other fragments from the same set of objects Algorithm How to find fragments with the specific properties? Start from fragments of length 2 No disagreements are possible Only the bound Fr(f)>σ needs to be tested Iteration: Assume fragments of length k- are known Then we can build candidate fragments of length k Continue until no new patterns are found A complete algorithm: all fragments will be found

11 Monotonicity property Fragment t < t 2 < t 3 < < t k can satisfy the requirements only if all subfragments of length k- satisfy them All these have to be in the collection of fragments of size k- The levelwise algorithm Algorithm Find F2, fragments of size 2 C = all triples A<B<C such that A<B, A<C, and B<C are in F2 k 3 While C is not empty compute Da(f) for all f in C Fk {f in C Fr(f)> σ and Da(f)< γ } k k+ C all fragments of length k such that all the subfragments of length k- are in Fk

12 Complexity of the algorithm Potentially exponential in the number of variables F+C = the size of the answer + all the candidates Proportional to F+C n m for a matrix with n rows and m columns Too low values of σ or too high values of γ will lead to huge outputs Experimental results Data about students and courses Columns: students Rows: courses D(s,c)= if student s has taken course c Here we know the true ordering Or actually two: official ordering Real order in which the student took the courses 2

13 Part of the recommendations Discovered fragment f Fr(f)=36, Da(f)=3.2% Results 3

14 Results (paleontological data) Fragments for sites Or transpose the matrix: fragments for species Sequences of sites such that there are very few Lazarus events Provide ways of looking at projections of the data Can be used to find partial orders Example: words in documents Represent collections of documents as term vectors Which words occur () in the document or not () Very large dimensionality, lots of observations 4

15 Example from Citeseer (in 25) What does this tell us about these terms? Databases and selectivity estimation together do not occur without queries Databases < queries < selectivity estimation Old (25) example from Google Scholar prior distribution MCMC 5, documents prior distribution MCMC 295 documents prior distribution MCMC 5 documents prior distribution MCMC 65 documents prior < distribution < MCMC 5

16 Example from Google Scholar, Nov. 24, 27 prior distribution MCMC 2,22, documents prior distribution MCMC 6,3 documents prior distribution MCMC 6,3 documents prior distribution MCMC,23 documents prior < distribution < MCMC An aside: have the ratios of the frequencies changed? Query Ratio p d m p d m p d m p d m

17 Next theme Find small total orders from - data Finding partial orders from - data Find total orders for - data Finding partial orders from - data Model: a partial order over all observations Loglikelihood: proportional to the number of cases the observed occurrence patterns violate the continuity of species Prior: prefer partial orders that are as specific as possible Task: find a model with high likelihood * prior Algorithm: Find fragments and use heuristic search to build a good partial order 7

18 Why partial orders? Determining the ages of sites is difficult Radioisotope methods apply only to few sites In paleontology the so-called MN system: 8 classes for the last 25 Ma Classes are assigned by ad hoc methods Searching for a total order might not be a good idea The MN system is a partial order Finding partial orders from data How to find a partial order that fits well with the data? What does this mean? 8

19 What is a good partial order? The Lazarus count of a species with respect to a partial order P: For how many sites the species was extinct at the site, but extant before and after it (as determined by P) The same definition as for total orders A good partial order has small Lazarus count Can be formulated as a likelihood (a Lazarus event is a false positive) Laz No Laz No Laz 9

20 What is a good partial order? Find a partial order that has a low Lazarus count The trivial partial order has Lazarus count Want to find a partial order that is specific (close to a total order) and agrees with the data Measures of specificity: the number of linear extensions of P (hard to compute) number of edges in P Find a partial order that has high specificity * likelihood Algorithm for finding partial orders Compute fragments from the unordered data E.g., a < d < b < e < f and b < e < c and b < a < c < f and Form a precedence matrix: in what fraction of the fragments does a precede b Form a partial order that approximates the precedence matrix (heuristic search) 2

21 Fragments and reverse fragments The fragment generation will produce for each fragment f also its reverse f R The pairwise precedence matrix would be useless Divide the fragments into two classes (graph cutting) Discard one class Build the precedence matrix From precedence matrix to partial order Heuristic search Add edges to the partial order so that the match with the precedence matrix improves Keep track of transitivity Difficult (and interesting) algorithmic problem Empirical results look good Very recent theoretical results 2

22 22

23 Early Miocene Transfer to late Miocene 23

24 Themes of the talk Find small total orders from - data Finding partial orders from - data Find total orders for - data Finding good total orders for a matrix Given a site-genus matrix What is a good total ordering for the rows? One in which there are as few Lazarus events as possible Model class: total orders Loglikelihood proportional to the number of Lazarus events 24

25 How to find such an ordering of the rows? If there is an ordering that has no Lazarus events, it can be found in linear time (Booth & Lueker) consecutive ones property But normally there are (lots of) Lazarus events Finding good total orders for a matrix The problem of finding the best ordering of the matrix is NP-hard Finding whether there is a submatrix of size k that has no Lazarus events is NP-hard The fragment method finds such submatrices Local search, traveling salesperson approaches Spectral methods 25

26 Spectral ordering for finding good total orders for a matrix Spectral ordering Compute a similarity measure s(i,j) between sites (e.g., dot product) Laplacian L(i,j) The eigenvector v corresponding to the second smallest eigenvalue of L satisfies Maps the points to -d, keeping similar points close to each other The values v i can be used to order the points 26

27 Empirical observation The eigenvector seems to minimize also Lazarus events Even better than some combinatorial algorithms Why? No really good intuitive theoretical understanding Related to mixing time of Markov chains etc. Site-genus -matrix 27

28 After spectral ordering Fortelius, Jernvall, Gionis, Mannila, Paleobiology 32 (26) 28

29 29

30 Questions Computational Why does it work so well? How well does it actually work (what is the smallest number of Lazarus events for this data?) How to interpret the coefficients? Paleontological Fully based on the occurrence matrix (excellent and bad) Site-species data is only one type of data; how to use other types of data for the ordering? Rough estimates of the sizes of the model classes N observations Fragments of size at most k N individual fragments 2 N k k sets of fragments Partial orders Total orders ( ) 2 O N 2 N! 3

31 Concluding remarks General task: finding order from unordered data Here using species continuity as the additional information Other applications are possible Model classes Fragments Partial orders Total orders Lots of open questions The unreasonable effectiveness of spectral methods on discrete optimization task Approximation guarantees Fragments from other applications MDL description of sequences via partial orders Etc. 3

32 References A. Gionis, T. Kujala and H. Mannila: Fragments of order. ACM SIGKDD 23, p A. Ukkonen, M. Fortelius, H. Mannila: Finding partial orders from unordered - data. ACM SIGKDD 25, p M. Fortelius, A. Gionis, J. Jernvall, H. Mannila, Spectral Ordering and Biochronology of European Fossil Mammals. Paleobiology 32, 2, (26). K. Puolamäki, M. Fortelius, H. Mannila: Seriation in Paleontological Data Using Markov Chain Monte Carlo Methods. PLoS Comput Biol 2(2): e6 A. Gionis, H. Mannila, K. Puolamaki, and A. Ukkonen, Algorithms for Discovering Bucket Orders from Data, 2th International Conference on Knowledge Discovery and Data Mining (KDD) 26, p

From Data to Knowledge Research Unit

From Data to Knowledge Research Unit Chapter 17 From Data to Knowledge Research Unit Heikki Mannila, Jaakko Hollmén, Kai Puolamäki, Gemma Garriga, Jouni Seppänen, Robert Gwadera, Sami Hanhijärvi, Hannes Heikinheimo, Samuel Myllykangas, Antti

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

Normal Forms for CFG s. Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form

Normal Forms for CFG s. Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form Normal Forms for CFG s Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form 1 Variables That Derive Nothing Consider: S -> AB, A -> aa a, B -> AB Although A derives

More information

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search Informal goal Clustering Given set of objects and measure of similarity between them, group similar objects together What mean by similar? What is good grouping? Computation time / quality tradeoff 1 2

More information

Lesson 2 7 Graph Partitioning

Lesson 2 7 Graph Partitioning Lesson 2 7 Graph Partitioning The Graph Partitioning Problem Look at the problem from a different angle: Let s multiply a sparse matrix A by a vector X. Recall the duality between matrices and graphs:

More information

Short-Cut MCMC: An Alternative to Adaptation

Short-Cut MCMC: An Alternative to Adaptation Short-Cut MCMC: An Alternative to Adaptation Radford M. Neal Dept. of Statistics and Dept. of Computer Science University of Toronto http://www.cs.utoronto.ca/ radford/ Third Workshop on Monte Carlo Methods,

More information

Coverage Approximation Algorithms

Coverage Approximation Algorithms DATA MINING LECTURE 12 Coverage Approximation Algorithms Example Promotion campaign on a social network We have a social network as a graph. People are more likely to buy a product if they have a friend

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm April 25, 2005 We seek x 1,..., x n 0 which mini- Problem. mizes C(x 1,..., x n ) = c 1 x 1 + + c n x n, subject to the constraint Ax b, where A is m n, b = m 1. Through the introduction

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 23.1 Introduction We spent last week proving that for certain problems,

More information

AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery

AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery : Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery Hong Cheng Philip S. Yu Jiawei Han University of Illinois at Urbana-Champaign IBM T. J. Watson Research Center {hcheng3, hanj}@cs.uiuc.edu,

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Community Detection. Community

Community Detection. Community Community Detection Community In social sciences: Community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group a.k.a. group,

More information

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanfordedu) February 6, 2018 Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 In the

More information

Lecture #3: PageRank Algorithm The Mathematics of Google Search

Lecture #3: PageRank Algorithm The Mathematics of Google Search Lecture #3: PageRank Algorithm The Mathematics of Google Search We live in a computer era. Internet is part of our everyday lives and information is only a click away. Just open your favorite search engine,

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University A large set of items, e.g., things sold in a supermarket. A large set of baskets, each of which is a small set of the items, e.g., the things one customer buys on

More information

Loopy Belief Propagation

Loopy Belief Propagation Loopy Belief Propagation Research Exam Kristin Branson September 29, 2003 Loopy Belief Propagation p.1/73 Problem Formalization Reasoning about any real-world problem requires assumptions about the structure

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 02/26/15 1. Consider a model of a nonbipartite undirected graph in which

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method Po-Shen Loh June 2010 1 Warm-up 1. (Russia 1996/4 In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees

More information

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class)

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) CPS 590.1 - Linear and integer programming Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) Please read the rules for assignments on the course web page. Contact Vince (conitzer@cs.duke.edu)

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview Chapter 888 Introduction This procedure generates D-optimal designs for multi-factor experiments with both quantitative and qualitative factors. The factors can have a mixed number of levels. For example,

More information

6 Distributed data management I Hashing

6 Distributed data management I Hashing 6 Distributed data management I Hashing There are two major approaches for the management of data in distributed systems: hashing and caching. The hashing approach tries to minimize the use of communication

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University September 30, 2016 1 Introduction (These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan.

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 03/02/17 1. Consider a model of a nonbipartite undirected graph in which

More information

Applied Algorithm Design Lecture 3

Applied Algorithm Design Lecture 3 Applied Algorithm Design Lecture 3 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 3 1 / 75 PART I : GREEDY ALGORITHMS Pietro Michiardi (Eurecom) Applied Algorithm

More information

Market baskets Frequent itemsets FP growth. Data mining. Frequent itemset Association&decision rule mining. University of Szeged.

Market baskets Frequent itemsets FP growth. Data mining. Frequent itemset Association&decision rule mining. University of Szeged. Frequent itemset Association&decision rule mining University of Szeged What frequent itemsets could be used for? Features/observations frequently co-occurring in some database can gain us useful insights

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect..1 3 1 Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,Open-List) 2. Repeat: a. If empty(open-list) then return failure

More information

Variable Selection 6.783, Biomedical Decision Support

Variable Selection 6.783, Biomedical Decision Support 6.783, Biomedical Decision Support (lrosasco@mit.edu) Department of Brain and Cognitive Science- MIT November 2, 2009 About this class Why selecting variables Approaches to variable selection Sparsity-based

More information

e-ccc-biclustering: Related work on biclustering algorithms for time series gene expression data

e-ccc-biclustering: Related work on biclustering algorithms for time series gene expression data : Related work on biclustering algorithms for time series gene expression data Sara C. Madeira 1,2,3, Arlindo L. Oliveira 1,2 1 Knowledge Discovery and Bioinformatics (KDBIO) group, INESC-ID, Lisbon, Portugal

More information

Randomized Algorithms Part Four

Randomized Algorithms Part Four Randomized Algorithms Part Four Announcements Problem Set Three due right now. Due Wednesday using a late day. Problem Set Four out, due next Monday, July 29. Play around with randomized algorithms! Approximate

More information

Randomized Algorithms Part Four

Randomized Algorithms Part Four Randomized Algorithms Part Four Announcements Problem Set Three due right now. Due Wednesday using a late day. Problem Set Four out, due next Monday, July 29. Play around with randomized algorithms! Approximate

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

Randomized algorithms have several advantages over deterministic ones. We discuss them here:

Randomized algorithms have several advantages over deterministic ones. We discuss them here: CS787: Advanced Algorithms Lecture 6: Randomized Algorithms In this lecture we introduce randomized algorithms. We will begin by motivating the use of randomized algorithms through a few examples. Then

More information

On Discovering Bucket Orders from Preference Data

On Discovering Bucket Orders from Preference Data On Discovering Bucket Orders from Preference Data Sreyash Kenkre Arindam Khan Vinayaka Pandit Abstract The problem of ordering a set of entities which contain inherent ties among them arises in many applications.

More information

Roadmap. PCY Algorithm

Roadmap. PCY Algorithm 1 Roadmap Frequent Patterns A-Priori Algorithm Improvements to A-Priori Park-Chen-Yu Algorithm Multistage Algorithm Approximate Algorithms Compacting Results Data Mining for Knowledge Management 50 PCY

More information

Clustering Algorithms for general similarity measures

Clustering Algorithms for general similarity measures Types of general clustering methods Clustering Algorithms for general similarity measures general similarity measure: specified by object X object similarity matrix 1 constructive algorithms agglomerative

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Topology Inference from Co-Occurrence Observations. Laura Balzano and Rob Nowak with Michael Rabbat and Matthew Roughan

Topology Inference from Co-Occurrence Observations. Laura Balzano and Rob Nowak with Michael Rabbat and Matthew Roughan Topology Inference from Co-Occurrence Observations Laura Balzano and Rob Nowak with Michael Rabbat and Matthew Roughan Co-Occurrence observations Co-Occurrence observations Network Inference for Co- Occurrences

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents E-Companion: On Styles in Product Design: An Analysis of US Design Patents 1 PART A: FORMALIZING THE DEFINITION OF STYLES A.1 Styles as categories of designs of similar form Our task involves categorizing

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley Project Proposals Due Friday, February 13 on bcourses Will discuss project topics on Monday Instructions

More information

Scan Scheduling Specification and Analysis

Scan Scheduling Specification and Analysis Scan Scheduling Specification and Analysis Bruno Dutertre System Design Laboratory SRI International Menlo Park, CA 94025 May 24, 2000 This work was partially funded by DARPA/AFRL under BAE System subcontract

More information

Approximability Results for the p-center Problem

Approximability Results for the p-center Problem Approximability Results for the p-center Problem Stefan Buettcher Course Project Algorithm Design and Analysis Prof. Timothy Chan University of Waterloo, Spring 2004 The p-center

More information

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Scene Completion Problem The Bare Data Approach High Dimensional Data Many real-world problems Web Search and Text Mining Billions

More information

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic Principles of AI Planning June 8th, 2010 7. Planning as search: relaxed planning tasks Principles of AI Planning 7. Planning as search: relaxed planning tasks Malte Helmert and Bernhard Nebel 7.1 How to

More information

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 Spectral Clustering Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 What are we going to talk about? Introduction Clustering and

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

Improvements to A-Priori. Bloom Filters Park-Chen-Yu Algorithm Multistage Algorithm Approximate Algorithms Compacting Results

Improvements to A-Priori. Bloom Filters Park-Chen-Yu Algorithm Multistage Algorithm Approximate Algorithms Compacting Results Improvements to A-Priori Bloom Filters Park-Chen-Yu Algorithm Multistage Algorithm Approximate Algorithms Compacting Results 1 Aside: Hash-Based Filtering Simple problem: I have a set S of one billion

More information

Chapter Design Techniques for Approximation Algorithms

Chapter Design Techniques for Approximation Algorithms Chapter 2 Design Techniques for Approximation Algorithms I N THE preceding chapter we observed that many relevant optimization problems are NP-hard, and that it is unlikely that we will ever be able to

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates CSE 51: Design and Analysis of Algorithms I Spring 016 Lecture 11: Clustering and the Spectral Partitioning Algorithm Lecturer: Shayan Oveis Gharan May nd Scribe: Yueqi Sheng Disclaimer: These notes have

More information

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection CSE 255 Lecture 6 Data Mining and Predictive Analytics Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.)

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) ' Sta306b May 11, 2012 $ PageRank: 1 Web search before Google (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) & % Sta306b May 11, 2012 PageRank: 2 Web search

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu [Kumar et al. 99] 2/13/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

A Weighted Kernel PCA Approach to Graph-Based Image Segmentation

A Weighted Kernel PCA Approach to Graph-Based Image Segmentation A Weighted Kernel PCA Approach to Graph-Based Image Segmentation Carlos Alzate Johan A. K. Suykens ESAT-SCD-SISTA Katholieke Universiteit Leuven Leuven, Belgium January 25, 2007 International Conference

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap. 4, Sect. 4.1 3 1 Recall that the ordering of FRINGE defines the search strategy Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,FRINGE)

More information

Lecture 7: Asymmetric K-Center

Lecture 7: Asymmetric K-Center Advanced Approximation Algorithms (CMU 18-854B, Spring 008) Lecture 7: Asymmetric K-Center February 5, 007 Lecturer: Anupam Gupta Scribe: Jeremiah Blocki In this lecture, we will consider the K-center

More information

Combinatorial Problems on Strings with Applications to Protein Folding

Combinatorial Problems on Strings with Applications to Protein Folding Combinatorial Problems on Strings with Applications to Protein Folding Alantha Newman 1 and Matthias Ruhl 2 1 MIT Laboratory for Computer Science Cambridge, MA 02139 alantha@theory.lcs.mit.edu 2 IBM Almaden

More information

Finding Similar Sets. Applications Shingling Minhashing Locality-Sensitive Hashing

Finding Similar Sets. Applications Shingling Minhashing Locality-Sensitive Hashing Finding Similar Sets Applications Shingling Minhashing Locality-Sensitive Hashing Goals Many Web-mining problems can be expressed as finding similar sets:. Pages with similar words, e.g., for classification

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Absorbing Random walks Coverage

Absorbing Random walks Coverage DATA MINING LECTURE 3 Absorbing Random walks Coverage Random Walks on Graphs Random walk: Start from a node chosen uniformly at random with probability. n Pick one of the outgoing edges uniformly at random

More information

SPERNER S LEMMA MOOR XU

SPERNER S LEMMA MOOR XU SPERNER S LEMMA MOOR XU Abstract. Is it possible to dissect a square into an odd number of triangles of equal area? This question was first answered by Paul Monsky in 970, and the solution requires elements

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

MSA220 - Statistical Learning for Big Data

MSA220 - Statistical Learning for Big Data MSA220 - Statistical Learning for Big Data Lecture 13 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Clustering Explorative analysis - finding groups

More information

Absorbing Random walks Coverage

Absorbing Random walks Coverage DATA MINING LECTURE 3 Absorbing Random walks Coverage Random Walks on Graphs Random walk: Start from a node chosen uniformly at random with probability. n Pick one of the outgoing edges uniformly at random

More information

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Formal Methods Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley The Boolean Satisfiability Problem (SAT) Given: A Boolean formula F(x 1, x 2, x 3,, x n ) Can F evaluate to 1

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

Closed Non-Derivable Itemsets

Closed Non-Derivable Itemsets Closed Non-Derivable Itemsets Juho Muhonen and Hannu Toivonen Helsinki Institute for Information Technology Basic Research Unit Department of Computer Science University of Helsinki Finland Abstract. Itemset

More information

Flexible Coloring. Xiaozhou Li a, Atri Rudra b, Ram Swaminathan a. Abstract

Flexible Coloring. Xiaozhou Li a, Atri Rudra b, Ram Swaminathan a. Abstract Flexible Coloring Xiaozhou Li a, Atri Rudra b, Ram Swaminathan a a firstname.lastname@hp.com, HP Labs, 1501 Page Mill Road, Palo Alto, CA 94304 b atri@buffalo.edu, Computer Sc. & Engg. dept., SUNY Buffalo,

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters Types of general clustering methods Clustering Algorithms for general similarity measures agglomerative versus divisive algorithms agglomerative = bottom-up build up clusters from single objects divisive

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about and give two simple examples of approximation algorithms 1 Overview

More information

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University Graphs: Introduction Ali Shokoufandeh, Department of Computer Science, Drexel University Overview of this talk Introduction: Notations and Definitions Graphs and Modeling Algorithmic Graph Theory and Combinatorial

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 1/8/2014 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 Supermarket shelf

More information

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING Roman Barták (Charles University in Prague, Czech Republic) MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING Two worlds planning vs. scheduling planning is about finding activities

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Behavioral Data Mining. Lecture 18 Clustering

Behavioral Data Mining. Lecture 18 Clustering Behavioral Data Mining Lecture 18 Clustering Outline Why? Cluster quality K-means Spectral clustering Generative Models Rationale Given a set {X i } for i = 1,,n, a clustering is a partition of the X i

More information

Algorithms Assignment 3 Solutions

Algorithms Assignment 3 Solutions Algorithms Assignment 3 Solutions 1. There is a row of n items, numbered from 1 to n. Each item has an integer value: item i has value A[i], where A[1..n] is an array. You wish to pick some of the items

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

Set Cover with Almost Consecutive Ones Property

Set Cover with Almost Consecutive Ones Property Set Cover with Almost Consecutive Ones Property 2004; Mecke, Wagner Entry author: Michael Dom INDEX TERMS: Covering Set problem, data reduction rules, enumerative algorithm. SYNONYMS: Hitting Set PROBLEM

More information

Unit VIII. Chapter 9. Link Analysis

Unit VIII. Chapter 9. Link Analysis Unit VIII Link Analysis: Page Ranking in web search engines, Efficient Computation of Page Rank using Map-Reduce and other approaches, Topic-Sensitive Page Rank, Link Spam, Hubs and Authorities (Text Book:2

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

Where have all the cars gone? A model for determining traffic flow throughout a road network

Where have all the cars gone? A model for determining traffic flow throughout a road network A model for determining traffic flow throughout a road network Harvey Mudd College Presentation Days 7 May 2008 Traffic monitoring Important Equations Lots of Traffic + Small Roads = Congestion Congestion

More information

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Hashing Structures Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Hashing Structures I. Motivation and Review II. Hash Functions III. HashTables I. Implementations

More information

CSE 549: Computational Biology

CSE 549: Computational Biology CSE 549: Computational Biology Phylogenomics 1 slides marked with * by Carl Kingsford Tree of Life 2 * H5N1 Influenza Strains Salzberg, Kingsford, et al., 2007 3 * H5N1 Influenza Strains The 2007 outbreak

More information

UNIVERSITY of OSLO. Faculty of Mathematics and Natural Sciences. INF 4130/9135: Algoritmer: Design og effektivitet Date of exam: 14th December 2012

UNIVERSITY of OSLO. Faculty of Mathematics and Natural Sciences. INF 4130/9135: Algoritmer: Design og effektivitet Date of exam: 14th December 2012 UNIVERSITY of OSLO Faculty of Mathematics and Natural Sciences Exam in: INF 40/9: Algoritmer: Design og effektivitet Date of exam: 4th December 202 Exam hours: 09:00 :00 (4 hours) Exam paper consists of:

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 CSCI-GA.3520-001 Honors Analysis of Algorithms Solutions to Problem Set 1 Problem 1 An O(n) algorithm that finds the kth integer in an array a = (a 1,..., a n ) of n distinct integers. Basic Idea Using

More information

Adaptive Filters Algorithms (Part 2)

Adaptive Filters Algorithms (Part 2) Adaptive Filters Algorithms (Part 2) Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Electrical Engineering and Information Technology Digital Signal Processing and System

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information