A Graphical, Functional-Dependency Preserving Normalization Algorithm for Relational Databases. 1. Abstract. 2. Introduction

Size: px
Start display at page:

Download "A Graphical, Functional-Dependency Preserving Normalization Algorithm for Relational Databases. 1. Abstract. 2. Introduction"

Transcription

1 A Graphical, Functional-Dependency Preserving Normalization Algorithm for Relational Databases Jonathan P. Bernick * Department of Computer Science Coastal Carolina University Conway, SC Abstract The normalization of relational databases is a topic of ongoing interest. We present a graphical normalization algorithm for relational databases that is lossless, functional-dependency preserving, and able to normalize relations with multiple candidate keys. Applications of this algorithm and future research directions are discussed. 2. Introduction The normalization of relational databases, and the teaching thereof to university students, are topics of ongoing interest to the information technology community (Mitrovic, 2001; Sanders and Shin, 2002). In this paper we present a graphical normalization algorithm for relational databases that has the twin advantages of being able to handle relations with multiple candidate keys and being easy to teach to students. Consider the case of a database designer normalizing a billing database for a small business. The database currently has one relation, R, with schema R = R(Order_id, Purchaser_id, Name, Address, City, State, Zip, Total_cost, Bill_paid), which is under an irreducible set of functional dependencies S such that S = {O PTB, P NAZ, Z CS}, where each attribute is represented by its first letter. As defined, R is in second normal form (2NF), and thus contains considerable redundancy. Accordingly, it is desirable to decompose R into multiple relations in third normal form (3NF); however, prior to doing so, let s draw a sketch of the functional dependencies of S, using the left-side of one functional dependency as the right-hand side of another functional dependency whenever possible. This results in Figure 1. Figure 1. Figure 2. * jbernick@coastal.edu

2 With a standard normalization algorithm, we would create a lossless, functional-dependency preserving decomposition of R by creating one new relation for each unique left-hand side in S (Elmasri and Navathe, 2000), resulting in three new relations R1(Order_id, Purchaser_id, Total_cost, Bill_paid), R2(Purchaser_id, Name, Address, Zip), R3(City, State, Zip). Note, though, that we accomplish the same thing by circling each attribute in Figure 1 that nontransitively determines one or more attributes together with the attributes thus nontransitively determined (Figure 2), and making the contents of each circle into a relation. Now let us consider a slightly more complex normalization. A large manufacturing concern divides the territories in which it operates into geographical regions, each of which contains exactly one factory, each of which is managed by exactly one manager who is responsible for all company activities in that region. The unnormalized relation R which stores information about the managers has the schema R = R(Manager, Factory, Region, Title, Years_of_service, Salary, Benefits) under an irreducible set of functional dependencies S = {M FTY, F R, R M, TY SB}. We find ourselves in a bit of a quandary; the relation is in 2NF and requires normalization, but in addition to primary key Manager R has alternate keys Factory and Region, and thus no decomposition algorithm that is lossless and guaranteed to be functional-dependency preserving exists to decompose the relation into Boyce-Codd Normal Form (BCNF) (Date, 2004). However, observe what happens when we draw a diagram of the functional dependencies of S in the manner of the previous example (Figure 3): Figure 3. Figure 4. Figure 3 clearly illustrates that the functional dependencies M F, F R, and R M form a loop, indicating that attributes R, F, and M have a 1-1 relationship, and accordingly must all be present in the same relation to avoid increasing redundancy, as should any attribute sets nontransitively dependent on R, F, and M. Accordingly, if we first circle the R-F-M loop together with all those attribute sets nontransitively dependent on R, F, or M, and thereafter circle any attribute sets not part of the R-F-M loop that nontransitively determine one or more attributes together with the attributes thus nontransitively determined (Figure 4), and make the contents of each circle into a relation, we may create a BCNF / 3NF decomposition R1(Manager, Factory, Region, Title, Years_of_service), R2(Title, Years_of_service, Salary, Benefits),

3 that is both lossless and functional-dependency preserving. This remainder of this paper will be devoted to formalizing and discussing the normalization method used in the above examples. 3. Theory Before stating the normalization algorithm it will be necessary to define two terms. Firstly, we will henceforth refer to illustrations of sets of functional dependencies of the form of Figures 1-4 as dependency diagrams, and note that they may be created applying the following rules to an irreducible set of functional dependencies recursively: 1. No left-hand side of a functional dependency may appear in a dependency diagram more than once. 2. No right-hand side of a functional dependency may appear in a dependency diagram more than once. 3. Any set of nontrivial transitive functional dependencies of the form {A B, B C} is represented as A B C. Secondly, consider some relation R and some set L = {A 1,...,A n }, where A 1,...,A n are attribute sets such that A i R and A i transitively or nontransitively functionally determines A j for every A i,a j L. We may then define L as a loop, and note that it may easily be proven that if two loops L 1 and L 2 exist such that L 1 L 2, then L 1 L 2 is also a loop. 4. Algorithm Given a relation R under a set of functional dependencies S, we may normalize R by applying the following algorithm: 1. Compute an irreducible cover S of S. 2. Draw a dependency diagram for S. 3. For each loop, draw a circle containing that loop and any attribute set nontransitively dependent on any attribute set in that loop. 4. For each nonloop attribute set that nontransitively determines one or more attribute sets, draw a circle containing that attribute set together with the attribute sets thus nontransitively determined. 5. For each circle created in the previous two steps, create a relation whose attributes are all the attributes contained in the attribute sets contained in that circle. 6. For each candidate key of R: If any of the attributes of that candidate key do not appear in the relations created in the previous step, create an additional relation whose attributes are the attributes of that candidate key. 7. Remove any redundant relations from the decomposition.

4 We will now give two more examples: 1. Let us consider a relation R under a set of functional dependencies S such that R = R(Employee_id, Name, SSN, Title, Duties, Years_of_service, Compensation), One possible irreducible cover of S is S = {E NSTY, S ENTY, T D, TY C}. S = {E NSTY, S E, T D, TY C}, which results in the dependency diagram in Figure 5. Examining this diagram, we notice one loop, which results in the circle in Figure 6, and two nonloop attribute sets that nontransitively determine other attributes, resulting in the additional circles in Figure 7. From the contents of these circles, we create three relations Figure 5. Figure 6. Figure 7. R1(Employee_id, Name, SSN, Title, Years_of_service), R2(Title, Duties), R3(Title, Years_of_service, Compensation). Since the only primary key attribute of R is contained in R1, and since no redundant relations exist, we are finished. 2. The algorithm is helpful even when no functional-dependency preserving BCNF/3NF decomposition is possible. Let us consider a relation R under a set of functional dependencies S such that R = R(Name, Residence_or_business, Address, City, State, Zip), S = {NR AZ, ACS Z, Z CS}. Since S is already irreducible, we create a dependency diagram (Figure 8) and circle the nontransitive dependencies (Figure 9), resulting in relations R1(Name, Residence_or_business, Address, Zip), R2(Address, City, State, Zip), R3(Zip, City, State).

5 Finally, since R3 R2 and is thus redundant, we drop R3, making our final decomposition R1(Name, Residence_or_business, Address, Zip), R2(Address, City, State, Zip), with R1 in 3NF and R2 in 2NF, and the redundancy of the original relation greatly reduced. Figure 8. Figure Results and Discussion In addition to general relational database design, the algorithm presented in this paper is wellsuited to teaching normalization in college-level database courses. Students frequently have great difficulty learning normalization, in part because they often lack the mathematical background necessary to give them an intuitive understanding of the processes involved. By enabling students to draw a picture illustrating the normalization process, normalization is thus made less abstract and more concrete, and accordingly easier to learn. Possible future research directions include expanding this algorithm to work with higher normal forms, and with other types of databases. 6. Conclusions In this paper we have presented a graphical normalization algorithm for relational databases, demonstrated its efficacy, and suggested applications and research directions for that algorithm. 7. References 1. Date, C. J., An Introduction to Database Systems, Eighth Edition, Addison Wesley Longman, Inc., Elmasri, R., and Navathe, S., Fundamentals of Database Systems, Third Edition, Addison Wesley, Mitrovic, A., NORMIT: a Web-Enabled Tutor for Database Normalization, Proceedings of the International Conference on Computers in Education (ICCE'02), Sanders, G., and Shin, S., Denormalization Effects on Performance of RDBMS, Proceedings of Hawaii International Conference on System Sciences, 2001.

A Translation of the One-to-One Relationship for Introductory. Relational Database Courses

A Translation of the One-to-One Relationship for Introductory. Relational Database Courses 12/17/2002 A Translation of the One-to-One Relationship for Introductory Relational Database Courses Jonathan P. Bernick Department of Computer Science Coastal Carolina University Conway, South Carolina

More information

Chapter 14. Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies

Chapter 14. Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies Chapter 14 Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies Copyright 2012 Ramez Elmasri and Shamkant B. Navathe Chapter Outline 1 Informal Design Guidelines

More information

Functional Dependencies and. Databases. 1 Informal Design Guidelines for Relational Databases. 4 General Normal Form Definitions (For Multiple Keys)

Functional Dependencies and. Databases. 1 Informal Design Guidelines for Relational Databases. 4 General Normal Form Definitions (For Multiple Keys) 1 / 13 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant d Information in Tuples and Update Anomalies 1.3 Null Values in Tuples 1.4 Spurious Tuples

More information

Relational Database design. Slides By: Shree Jaswal

Relational Database design. Slides By: Shree Jaswal Relational Database design Slides By: Shree Jaswal Topics: Design guidelines for relational schema, Functional Dependencies, Definition of Normal Forms- 1NF, 2NF, 3NF, BCNF, Converting Relational Schema

More information

Chapter 14 Outline. Normalization for Relational Databases: Outline. Chapter 14: Basics of Functional Dependencies and

Chapter 14 Outline. Normalization for Relational Databases: Outline. Chapter 14: Basics of Functional Dependencies and Ramez Elmasri, Shamkant B. Navathe(2016) Fundamentals of Database Systems (7th Edition), pearson, isbn 10: 0-13-397077-9;isbn-13:978-0-13-397077-7. Chapter 14: Basics of Functional Dependencies and Normalization

More information

Informal Design Guidelines for Relational Databases

Informal Design Guidelines for Relational Databases Outline Informal Design Guidelines for Relational Databases Semantics of the Relation Attributes Redundant Information in Tuples and Update Anomalies Null Values in Tuples Spurious Tuples Functional Dependencies

More information

Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2

Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2 Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2 Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Chapter 10. Normalization. Chapter Outline. Chapter Outline(contd.)

Chapter 10. Normalization. Chapter Outline. Chapter Outline(contd.) Chapter 10 Normalization Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant Information in Tuples and Update Anomalies 1.3 Null

More information

Database Foundations. 3-9 Validating Data Using Normalization. Copyright 2015, Oracle and/or its affiliates. All rights reserved.

Database Foundations. 3-9 Validating Data Using Normalization. Copyright 2015, Oracle and/or its affiliates. All rights reserved. Database Foundations 3-9 Roadmap Conceptual and Physical Data Models Business Rules Entities Attributes Unique Identifiers Relationships Validating Relationships Tracking Data Changes over Time Validating

More information

Database design III. Quiz time! Using FDs to detect anomalies. Decomposition. Decomposition. Boyce-Codd Normal Form 11/4/16

Database design III. Quiz time! Using FDs to detect anomalies. Decomposition. Decomposition. Boyce-Codd Normal Form 11/4/16 Lecture 3 Quiz time! Database design III Functional dependencies cont. BCNF and 3NF What s wrong with this schema? {(, 2, Databases, Steven Van Acker ), (, 4, Databases, Rogardt Heldal )} Redundancy! Using

More information

Relational Design: Characteristics of Well-designed DB

Relational Design: Characteristics of Well-designed DB 1. Minimal duplication Relational Design: Characteristics of Well-designed DB Consider table newfaculty (Result of F aculty T each Course) Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz 20000 Cotts

More information

Chapter 10. Chapter Outline. Chapter Outline. Functional Dependencies and Normalization for Relational Databases

Chapter 10. Chapter Outline. Chapter Outline. Functional Dependencies and Normalization for Relational Databases Chapter 10 Functional Dependencies and Normalization for Relational Databases Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Normalization. Murali Mani. What and Why Normalization? To remove potential redundancy in design

Normalization. Murali Mani. What and Why Normalization? To remove potential redundancy in design 1 Normalization What and Why Normalization? To remove potential redundancy in design Redundancy causes several anomalies: insert, delete and update Normalization uses concept of dependencies Functional

More information

Part II: Using FD Theory to do Database Design

Part II: Using FD Theory to do Database Design Part II: Using FD Theory to do Database Design 32 Recall that poorly designed table? part manufacturer manaddress seller selleraddress price 1983 Hammers R Us 99 Pinecrest ABC 1229 Bloor W 5.59 8624 Lee

More information

UNIT 3 DATABASE DESIGN

UNIT 3 DATABASE DESIGN UNIT 3 DATABASE DESIGN Objective To study design guidelines for relational databases. To know about Functional dependencies. To have an understanding on First, Second, Third Normal forms To study about

More information

Redundancy:Dependencies between attributes within a relation cause redundancy.

Redundancy:Dependencies between attributes within a relation cause redundancy. Normalization Normalization: It is the process of removing redundant data from your tables in order to improve storage efficiency, data integrity and scalability. This improvement is balanced against an

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to

More information

The strategy for achieving a good design is to decompose a badly designed relation appropriately.

The strategy for achieving a good design is to decompose a badly designed relation appropriately. The strategy for achieving a good design is to decompose a badly designed relation appropriately. Functional Dependencies The single most important concept in relational schema design theory is that of

More information

IJREAS Volume 2, Issue 2 (February 2012) ISSN: COMPARING MANUAL AND AUTOMATIC NORMALIZATION TECHNIQUES FOR RELATIONAL DATABASE ABSTRACT

IJREAS Volume 2, Issue 2 (February 2012) ISSN: COMPARING MANUAL AND AUTOMATIC NORMALIZATION TECHNIQUES FOR RELATIONAL DATABASE ABSTRACT COMPARING MANUAL AND AUTOMATIC NORMALIZATION TECHNIQUES FOR RELATIONAL DATABASE Sherry Verma * ABSTRACT Normalization is a process of analyzing the given relation schemas based on their Functional dependencies

More information

COSC Dr. Ramon Lawrence. Emp Relation

COSC Dr. Ramon Lawrence. Emp Relation COSC 304 Introduction to Database Systems Normalization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Normalization Normalization is a technique for producing relations

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 14 Basics of Functional Dependencies and Normalization for Relational Databases Slide 14-2 Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1 Semantics of the Relation Attributes

More information

Database Management System Prof. Partha Pratim Das Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Database Management System Prof. Partha Pratim Das Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Database Management System Prof. Partha Pratim Das Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 19 Relational Database Design (Contd.) Welcome to module

More information

Normalisation. Normalisation. Normalisation

Normalisation. Normalisation. Normalisation Normalisation Normalisation Main objective in developing a logical data model for relational database systems is to create an accurate and efficient representation of the data, its relationships, and constraints

More information

Functional Dependencies and Finding a Minimal Cover

Functional Dependencies and Finding a Minimal Cover Functional Dependencies and Finding a Minimal Cover Robert Soulé 1 Normalization An anomaly occurs in a database when you can update, insert, or delete data, and get undesired side-effects. These side

More information

CMU SCS CMU SCS CMU SCS CMU SCS whole nothing but

CMU SCS CMU SCS CMU SCS CMU SCS whole nothing but Faloutsos & Pavlo 15-415/615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications Lecture #17: Schema Refinement & Normalization - Normal Forms (R&G, ch. 19) Overview - detailed

More information

Relational Design 1 / 34

Relational Design 1 / 34 Relational Design 1 / 34 Relational Design Basic design approaches. What makes a good design better than a bad design? How do we tell we have a "good" design? How to we go about creating a good design?

More information

CS 338 Functional Dependencies

CS 338 Functional Dependencies CS 338 Functional Dependencies Bojana Bislimovska Winter 2016 Outline Design Guidelines for Relation Schemas Functional Dependency Set and Attribute Closure Schema Decomposition Boyce-Codd Normal Form

More information

Functional dependency theory

Functional dependency theory Functional dependency theory Introduction to Database Design 2012, Lecture 8 Course evaluation Recalling normal forms Functional dependency theory Computing closures of attribute sets BCNF decomposition

More information

Lecture 11 - Chapter 8 Relational Database Design Part 1

Lecture 11 - Chapter 8 Relational Database Design Part 1 CMSC 461, Database Management Systems Spring 2018 Lecture 11 - Chapter 8 Relational Database Design Part 1 These slides are based on Database System Concepts 6th edition book and are a modified version

More information

Relational Database Design (II)

Relational Database Design (II) Relational Database Design (II) 1 Roadmap of This Lecture Algorithms for Functional Dependencies (cont d) Decomposition Using Multi-valued Dependencies More Normal Form Database-Design Process Modeling

More information

Functional Dependencies & Normalization for Relational DBs. Truong Tuan Anh CSE-HCMUT

Functional Dependencies & Normalization for Relational DBs. Truong Tuan Anh CSE-HCMUT Functional Dependencies & Normalization for Relational DBs Truong Tuan Anh CSE-HCMUT 1 2 Contents 1 Introduction 2 Functional dependencies (FDs) 3 Normalization 4 Relational database schema design algorithms

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Overview - detailed. Goal. Faloutsos & Pavlo CMU SCS /615

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Overview - detailed. Goal. Faloutsos & Pavlo CMU SCS /615 Faloutsos & Pavlo 15-415/615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications Lecture #17: Schema Refinement & Normalization - Normal Forms (R&G, ch. 19) Overview - detailed

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to this

More information

Combining schemas. Problems: redundancy, hard to update, possible NULLs

Combining schemas. Problems: redundancy, hard to update, possible NULLs Handout Combining schemas Problems: redundancy, hard to update, possible NULLs Problems? Conclusion: Whether the join attribute is PK or not makes a great difference when combining schemas! Splitting schemas,

More information

CSE 562 Database Systems

CSE 562 Database Systems Goal CSE 562 Database Systems Question: The relational model is great, but how do I go about designing my database schema? Database Design Some slides are based or modified from originals by Magdalena

More information

Normalization Rule. First Normal Form (1NF) Normalization rule are divided into following normal form. 1. First Normal Form. 2. Second Normal Form

Normalization Rule. First Normal Form (1NF) Normalization rule are divided into following normal form. 1. First Normal Form. 2. Second Normal Form Normalization Rule Normalization rule are divided into following normal form. 1. First Normal Form 2. Second Normal Form 3. Third Normal Form 4. BCNF First Normal Form (1NF) As per First Normal Form, no

More information

DC62 Database management system JUNE 2013

DC62 Database management system JUNE 2013 Q2 (a) Explain the differences between conceptual & external schema. Ans2 a. Page Number 24 of textbook. Q2 (b) Describe the four components of a database system. A database system is composed of four

More information

Ryan Marcotte CS 475 (Advanced Topics in Databases) March 14, 2011

Ryan Marcotte  CS 475 (Advanced Topics in Databases) March 14, 2011 Ryan Marcotte www.cs.uregina.ca/~marcottr CS 475 (Advanced Topics in Databases) March 14, 2011 Outline Introduction to XNF and motivation for its creation Analysis of XNF s link to BCNF Algorithm for converting

More information

Steps in normalisation. Steps in normalisation 7/15/2014

Steps in normalisation. Steps in normalisation 7/15/2014 Introduction to normalisation Normalisation Normalisation = a formal process for deciding which attributes should be grouped together in a relation Normalisation is the process of decomposing relations

More information

CSCI 403: Databases 13 - Functional Dependencies and Normalization

CSCI 403: Databases 13 - Functional Dependencies and Normalization CSCI 403: Databases 13 - Functional Dependencies and Normalization Introduction The point of this lecture material is to discuss some objective measures of the goodness of a database schema. The method

More information

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Student Name: ID: Part 1: Multiple-Choice Questions (17 questions, 1

More information

In This Lecture. Normalisation to BCNF. Lossless decomposition. Normalisation so Far. Relational algebra reminder: product

In This Lecture. Normalisation to BCNF. Lossless decomposition. Normalisation so Far. Relational algebra reminder: product In This Lecture Normalisation to BCNF Database Systems Lecture 12 Natasha Alechina More normalisation Brief review of relational algebra Lossless decomposition Boyce-Codd normal form (BCNF) Higher normal

More information

DATABASE DESIGN I - 1DL300

DATABASE DESIGN I - 1DL300 DATABASE DESIGN I - 1DL300 Autumn 2012 An Introductory Course on Database Systems http://www.it.uu.se/edu/course/homepage/dbastekn/ht12/ Uppsala Database Laboratory Department of Information Technology,

More information

CS 2451 Database Systems: Database and Schema Design

CS 2451 Database Systems: Database and Schema Design CS 2451 Database Systems: Database and Schema Design http://www.seas.gwu.edu/~bhagiweb/cs2541 Spring 2018 Instructor: Dr. Bhagi Narahari Relational Model: Definitions Review Relations/tables, Attributes/Columns,

More information

Theory of Normal Forms Decomposition of Relations. Overview

Theory of Normal Forms Decomposition of Relations. Overview .. Winter 2008 CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar.. Overview Theory of Normal Forms Decomposition of Relations Functional Dependencies capture the attribute dependencies

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms Grant Weddell David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Spring 2012 CS 348 (Intro to

More information

NORMAL FORMS. CS121: Relational Databases Fall 2017 Lecture 18

NORMAL FORMS. CS121: Relational Databases Fall 2017 Lecture 18 NORMAL FORMS CS121: Relational Databases Fall 2017 Lecture 18 Equivalent Schemas 2 Many different schemas can represent a set of data Which one is best? What does best even mean? Main goals: Representation

More information

ACS-2914 Normalization March 2009 NORMALIZATION 2. Ron McFadyen 1. Normalization 3. De-normalization 3

ACS-2914 Normalization March 2009 NORMALIZATION 2. Ron McFadyen 1. Normalization 3. De-normalization 3 NORMALIZATION 2 Normalization 3 De-normalization 3 Functional Dependencies 4 Generating functional dependency maps from database design maps 5 Anomalies 8 Partial Functional Dependencies 10 Transitive

More information

Chapter 8: Relational Database Design

Chapter 8: Relational Database Design Chapter 8: Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 8: Relational Database Design Features of Good Relational Design Atomic Domains

More information

Unit 2. Unit 3. Unit 4

Unit 2. Unit 3. Unit 4 Course Objectives At the end of the course the student will be able to: 1. Differentiate database systems from traditional file systems by enumerating the features provided by database systems.. 2. Design

More information

CS411 Database Systems. 05: Relational Schema Design Ch , except and

CS411 Database Systems. 05: Relational Schema Design Ch , except and CS411 Database Systems 05: Relational Schema Design Ch. 3.1-3.5, except 3.4.2-3.4.3 and 3.5.3. 1 How does this fit in? ER Diagrams: Data Definition Translation to Relational Schema: Data Definition Relational

More information

Techno India Batanagar Computer Science and Engineering. Model Questions. Subject Name: Database Management System Subject Code: CS 601

Techno India Batanagar Computer Science and Engineering. Model Questions. Subject Name: Database Management System Subject Code: CS 601 Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Database Management System Subject Code: CS 601 Multiple Choice Type Questions 1. Data structure or the data stored

More information

Mapping ER Diagrams to. Relations (Cont d) Mapping ER Diagrams to. Exercise. Relations. Mapping ER Diagrams to Relations (Cont d) Exercise

Mapping ER Diagrams to. Relations (Cont d) Mapping ER Diagrams to. Exercise. Relations. Mapping ER Diagrams to Relations (Cont d) Exercise CSC 74 Database Management Systems Topic #6: Database Design Weak Entity Type E Create a relation R Include all simple attributes and simple components of composite attributes. Include the primary key

More information

Schema Normalization. 30 th August Submitted By: Saurabh Singla Rahul Bhatnagar

Schema Normalization. 30 th August Submitted By: Saurabh Singla Rahul Bhatnagar Schema Normalization 30 th August 2011 Submitted By: Saurabh Singla 09010146 Rahul Bhatnagar 09010136 Normalization Consider the following ER diagram with some FD: Instructor iid A Student sid Department

More information

TDDD12 Databasteknik Föreläsning 4: Normalisering

TDDD12 Databasteknik Föreläsning 4: Normalisering What is Good Design TDDD12 Databasteknik Föreläsning 4: Normalisering Can we be sure that the translation from the EER diagram to relational tables results in a good database design? Or: Confronted with

More information

Functional Dependencies CS 1270

Functional Dependencies CS 1270 Functional Dependencies CS 1270 Constraints We use constraints to enforce semantic requirements on a DBMS Predicates that the DBMS must ensure to be always true. Predicates are checked when the DBMS chooses

More information

The Relational Model and Normalization

The Relational Model and Normalization The Relational Model and Normalization 1. Introduction 2 2. Relational Model Terminology 3 4. Normal Forms 11 5. Multi-valued Dependency 21 6. The Fifth Normal Form 22 The Relational Model and Normalization

More information

Dr. Anis Koubaa. Advanced Databases SE487. Prince Sultan University

Dr. Anis Koubaa. Advanced Databases SE487. Prince Sultan University Advanced Databases Prince Sultan University College of Computer and Information Sciences Fall 2013 Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases Anis Koubaa SE487

More information

CT13 DATABASE MANAGEMENT SYSTEMS DEC 2015

CT13 DATABASE MANAGEMENT SYSTEMS DEC 2015 Q.1 a. Explain the role of concurrency control software in DBMS with an example. Answer: Concurrency control software in DBMS ensures that several users trying to update the same data do so in a controlled

More information

Chapter 14. Chapter 14 - Objectives. Purpose of Normalization. Purpose of Normalization

Chapter 14. Chapter 14 - Objectives. Purpose of Normalization. Purpose of Normalization Chapter 14 - Objectives Chapter 14 Normalization The purpose of normalization. How normalization can be used when designing a relational database. The potential problems associated with redundant data

More information

Midterm Exam #1 Version A CS 122A Winter 2017

Midterm Exam #1 Version A CS 122A Winter 2017 NAME: SEAT NO.: STUDENT ID: Midterm Exam #1 Version A CS 122A Winter 2017 Max. Points: 100 (Please read the instructions carefully) Instructions: - The total time for the exam is 50 minutes; be sure to

More information

customer = (customer_id, _ customer_name, customer_street,

customer = (customer_id, _ customer_name, customer_street, Relational Database Design COMPILED BY: RITURAJ JAIN The Banking Schema branch = (branch_name, branch_city, assets) customer = (customer_id, _ customer_name, customer_street, customer_city) account = (account_number,

More information

UNIT -III. Two Marks. The main goal of normalization is to reduce redundant data. Normalization is based on functional dependencies.

UNIT -III. Two Marks. The main goal of normalization is to reduce redundant data. Normalization is based on functional dependencies. UNIT -III Relational Database Design: Features of Good Relational Designs- Atomic Domains and First Normal Form- Second Normal Form-Decomposition Using Functional Dependencies- Functional-Dependency Theory-Algorithms

More information

Concepts from

Concepts from 1 Concepts from 3.1-3.2 Functional dependencies Keys & superkeys of a relation Reasoning about FDs Closure of a set of attributes Closure of a set of FDs Minimal basis for a set of FDs 2 Plan How can we

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms Grant Weddell Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Spring 2016 CS 348 (Intro to DB Mgmt)

More information

Midterm Exam #1 Version B CS 122A Winter 2017

Midterm Exam #1 Version B CS 122A Winter 2017 NAME: SEAT NO.: STUDENT ID: Midterm Exam #1 Version B CS 122A Winter 2017 Max. Points: 100 (Please read the instructions carefully) Instructions: - The total time for the exam is 50 minutes; be sure to

More information

Lectures 12: Design Theory I. 1. Normal forms & functional dependencies 2/19/2018. Today s Lecture. What you will learn about in this section

Lectures 12: Design Theory I. 1. Normal forms & functional dependencies 2/19/2018. Today s Lecture. What you will learn about in this section Today s Lecture Lectures 12: Design Theory I Professor Xiannong Meng Spring 2018 Lecture and activity contents are based on what Prof Chris Ré used in his CS 145 in the fall 2016 term with permission 1.

More information

Database Normalization Complete

Database Normalization Complete Database Normalization Complete Table Of Contents Part 1 - Introduction 1.1 What is Normalization? 1.2 Why should I Normalize? 1.3 Terminology 1.4 Summary JasonM (jasonm@accessvba.com) Last Updated: 28

More information

Database Systems: Design, Implementation, and Management Tenth Edition. Chapter 6 Normalization of Database Tables

Database Systems: Design, Implementation, and Management Tenth Edition. Chapter 6 Normalization of Database Tables Database Systems: Design, Implementation, and Management Tenth Edition Chapter 6 Normalization of Database Tables Objectives In this chapter, students will learn: What normalization is and what role it

More information

Draw A Relational Schema And Diagram The Functional Dependencies In The Relation >>>CLICK HERE<<<

Draw A Relational Schema And Diagram The Functional Dependencies In The Relation >>>CLICK HERE<<< Draw A Relational Schema And Diagram The Functional Dependencies In The Relation I need to draw relational schema and dependency diagram showing transitive and partial Functional dependency and normalization

More information

Homework 3: Relational Database Design Theory (100 points)

Homework 3: Relational Database Design Theory (100 points) CS 122A: Introduction to Data Management Spring 2018 Homework 3: Relational Database Design Theory (100 points) Due Date: Wed, Apr 25 (5:00 PM) Submission All HW assignments should be turned in with a

More information

UFCEKG : Dt Data, Schemas Sh and Applications. Lecture 10 Database Theory & Practice (4) : Data Normalization

UFCEKG : Dt Data, Schemas Sh and Applications. Lecture 10 Database Theory & Practice (4) : Data Normalization UFCEKG 20 2 2 : Dt Data, Schemas Sh and Applications Lecture 10 Database Theory & Practice (4) : Data Normalization Normalization (1) o What is Normalization? Informally, Normalization can be thought of

More information

Chapter 3. The Relational database design

Chapter 3. The Relational database design Chapter 3 The Relational database design Chapter 3 - Objectives Terminology of relational model. How tables are used to represent data. Connection between mathematical relations and relations in the relational

More information

M S Ramaiah Institute of Technology Department of Computer Science And Engineering

M S Ramaiah Institute of Technology Department of Computer Science And Engineering M S Ramaiah Institute of Technology Department of Computer Science And Engineering COURSE DESIGN, DELIVERY AND ASSESMENT Semester: V Course Code: CS513 Course Name: Database systems Course Faculty: Sl#

More information

Normalization. Anomalies Functional Dependencies Closures Key Computation Projecting Relations BCNF Reconstructing Information Other Normal Forms

Normalization. Anomalies Functional Dependencies Closures Key Computation Projecting Relations BCNF Reconstructing Information Other Normal Forms Anomalies Functional Dependencies Closures Key Computation Projecting Relations BCNF Reconstructing Information Other Normal Forms Normalization Niklas Fors (niklas.fors@cs.lth.se) Normalization 1 / 45

More information

Examination examples

Examination examples Examination examples Databasteknik (5 hours) 1. Relational Algebra & SQL (4 pts total; 2 pts each). Part A Consider the relations R(A, B), and S(C, D). Of the following three equivalences between expressions

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms M. Tamer Özsu David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Fall 2012 CS 348 Schema Refinement

More information

Unit 3 : Relational Database Design

Unit 3 : Relational Database Design Unit 3 : Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Content Relational Model: Basic concepts, Attributes and Domains, CODD's Rules, Relational

More information

Database Design Theory and Normalization. CS 377: Database Systems

Database Design Theory and Normalization. CS 377: Database Systems Database Design Theory and Normalization CS 377: Database Systems Recap: What Has Been Covered Lectures 1-2: Database Overview & Concepts Lecture 4: Representational Model (Relational Model) & Mapping

More information

Normalization 03. CSE3421 notes

Normalization 03. CSE3421 notes Normalization 03 CSE3421 notes 1 Example F: A B (1) ABCD E (2) EF G (3) EF H (4) ACDF EG (5) Calculate the minimal cover of F. 2 Step 1: Put F in standard form FDs (1) (4) are already in standard form.

More information

Database Management System

Database Management System Database Management System Lecture 4 Database Design Normalization and View * Some materials adapted from R. Ramakrishnan, J. Gehrke and Shawn Bowers Today s Agenda Normalization View Database Management

More information

DBMS Chapter Three IS304. Database Normalization-Comp.

DBMS Chapter Three IS304. Database Normalization-Comp. Database Normalization-Comp. Contents 4. Boyce Codd Normal Form (BCNF) 5. Fourth Normal Form (4NF) 6. Fifth Normal Form (5NF) 7. Sixth Normal Form (6NF) 1 4. Boyce Codd Normal Form (BCNF) In the first

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Quiz #2 Next Wednesday Comp 521 Files and Databases Fall 2010 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

Normalisation. Databases: Topic 4

Normalisation. Databases: Topic 4 Normalisation Databases: Topic 4 Resources for this Topic Readings (text): - Chapter 3 Other Readings: - Chapple, M (n.d) Database Normalization Basics, Retrieved from http://databases.about.com/od/specificproducts/a/normalization.htm

More information

The Relational Data Model

The Relational Data Model The Relational Data Model Lecture 6 1 Outline Relational Data Model Functional Dependencies Logical Schema Design Reading Chapter 8 2 1 The Relational Data Model Data Modeling Relational Schema Physical

More information

Functional Dependencies and Normalization for Relational Databases Design & Analysis of Database Systems

Functional Dependencies and Normalization for Relational Databases Design & Analysis of Database Systems Functional Dependencies and Normalization for Relational Databases 406.426 Design & Analysis of Database Systems Jonghun Park jonghun@snu.ac.kr Dept. of Industrial Engineering Seoul National University

More information

V. Database Design CS448/ How to obtain a good relational database schema

V. Database Design CS448/ How to obtain a good relational database schema V. How to obtain a good relational database schema Deriving new relational schema from ER-diagrams Normal forms: use of constraints in evaluating existing relational schema CS448/648 1 Translating an E-R

More information

Databases 1. Daniel POP

Databases 1. Daniel POP Databases 1 Daniel POP Week 6 & 7 Agenda Introduction to normalization Functional dependencies 1NF 2NF 3NF. Transitive dependencies BCNF 4NF. Multivalued dependencies 5NF De-normalization Normalization

More information

Schema And Draw The Dependency Diagram

Schema And Draw The Dependency Diagram Given That Information Write The Relational Schema And Draw The Dependency Diagram below, write the relational schema, draw its dependency diagram, and identify all You can assume that any given product

More information

A CPU Scheduling Algorithm Simulator

A CPU Scheduling Algorithm Simulator A CPU Scheduling Algorithm Simulator Sukanya Suranauwarat School of Applied Statistics, National Institute of Development Administration, 118 Seri Thai Rd., Bangkapi, Bangkok 10240, Thailand sukanya@as.nida.ac.th

More information

Part 7: Relational Normal Forms

Part 7: Relational Normal Forms 7. Relational Normal Forms 7-1 Part 7: Relational Normal Forms References: Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed., Ch. 14, Functional Dependencies and Normalization for Relational Databases

More information

Databases Tutorial. March,15,2012 Jing Chen Mcmaster University

Databases Tutorial. March,15,2012 Jing Chen Mcmaster University Databases Tutorial March,15,2012 Jing Chen Mcmaster University Outline 1NF Functional Dependencies BCNF 3NF Larger Schema Suppose we combine borrower and loan to get bor_loan - borrower = (customer_id,

More information

Part V Relational Database Design Theory

Part V Relational Database Design Theory Part V Relational Database Design Theory Relational Database Design Theory 1 Target Model of the Logical Design 2 Relational DB Design 3 Normal Forms 4 Transformation Properties 5 Design Methods Saake

More information

Normalization Normalization

Normalization Normalization Normalization Normalization We discuss four normal forms: first, second, third, and Boyce-Codd normal forms 1NF, 2NF, 3NF, and BCNF Normalization is a process that improves a database design by generating

More information

Administrivia. Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Relational Model: Keys. Correction: Implied FDs

Administrivia. Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Relational Model: Keys. Correction: Implied FDs Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications Administrivia HW6 is due Tuesday March 24 th. C. Faloutsos A. Pavlo Lecture#17: Schema Refinement & Normalization Faloutsos/Pavlo

More information

Lecture5 Functional Dependencies and Normalization for Relational Databases

Lecture5 Functional Dependencies and Normalization for Relational Databases College of Computer and Information Sciences - Information Systems Dept. Lecture5 Functional Dependencies and Normalization for Relational Databases Ref. Chapter14-15 Prepared by L. Nouf Almujally & Aisha

More information

Functional Dependencies and Normalization

Functional Dependencies and Normalization Functional Dependencies and Normalization Jose M. Peña jose.m.pena@liu.se Overview Real world Databases DBMS Model Physical database Queries Processing of queries and updates Access to stored data Answers

More information

Edited by: Nada Alhirabi. Normalization

Edited by: Nada Alhirabi. Normalization Edited by: Nada Alhirabi Normalization Normalization:Why do we need to normalize? 1. To avoid redundancy (less storage space needed, and data is consistent) Ssn c-id Grade Name Address 123 cs331 A smith

More information

Relational Design Theory. Relational Design Theory. Example. Example. A badly designed schema can result in several anomalies.

Relational Design Theory. Relational Design Theory. Example. Example. A badly designed schema can result in several anomalies. Relational Design Theory Relational Design Theory A badly designed schema can result in several anomalies Update-Anomalies: If we modify a single fact, we have to change several tuples Insert-Anomalies:

More information

City University of Hong Kong Course Syllabus. offered by Department of Computer Science with effect from Semester A 2017/18

City University of Hong Kong Course Syllabus. offered by Department of Computer Science with effect from Semester A 2017/18 City University of Hong Kong offered by Department of Computer Science with effect from Semester A 2017/18 Part I Course Overview Course Title: Database Systems Course Code: CS3402 Course Duration: 1 semester

More information