Encryption and Decryption by AES algorithm using FPGA

Size: px
Start display at page:

Download "Encryption and Decryption by AES algorithm using FPGA"

Transcription

1 Encryption and Decryption by AES algorithm using FPGA Sayali S. Kshirsagar Department of Electronics SPPU MITAOE, Alandi(D), Pune, India Savita Pawar Department of Electronics & Telecommunication SPPU MITAOE, Alandi(D), Pune, India Abstract This paper presents AES (Advanced Encryption Standard), it is a cryptographic algorithm used to secure digital data. We have compared two architectures, one has a generic architecture and the other one have a clock gating approach. The later one is supposed to be more area efficient and power efficient. AES is Federal Information Processing Standard (FIPS), also known as Rjindael algorithm. It uses 128 bit cipher key and 128 bit plain text for encryption and decryption. For encryption, a block named key schedule is used which produces the cipher key packets in 32 bit form and with the plain text they both are transformed in a unique way to give the encrypted text of the same size. This technique effectively reduces the power dissipation in the clocking network. For implementing AES Rijndael algorithm on FPGA and ASIC Verilog Hardware Descriptive Language is used. Xilinx ISE Design Suite version 14.7 is used for the Synthesis and Simulation of the code. The design has been successfully tested on Altera Cyclone II EP2C35F672C6 FPGA. The results on different platforms have been compared. Keywords AES, FIPS, Rijndael, FPGA, plaintext, ciphertext, Daemen and Vincent Rijmen, is selected [2].This algorithm comes in 128 bits, 192 bits and 256 bits. The basic unit of processing in the AES algorithm is a byte, which is group of eight bits treated as a single entity [1]. Internally, the AES algorithm s operations are performed on a two-dimensional array of bytes called the State. For our ease, the state can also be written in the form of matrix. This matrix contains four rows of bytes. Each row of a state consists of N b numbers of bytes, where N b is the length of block divided by 32. The AES algorithm is implemented on hardware as well as software. Due to high power consumption in FPGAs, there are few architecture designs targeting low power or energy efficient AES implementation in FPGAs. Most of the designs are defined to be low area and energy efficient, do not have their power consumption data available to allow any sort of direct comparison. Various Combinations of low power consumption techniques are used by many researches to provide energy efficient FPGA s based AES implementation. C I. INTRODUCTION RYPTOGRAPHY is the technology and study of creating and making use of systems for communicating in secret through communication channels that are not secure. Nw-a-days, it has become imperative to secure our digital data for the security reasons. Be it banks important account statements or classified military data, we cannot let them to go in wrong hands. Continuous development is seen in Cryptographic Techniques. Before AES came into existence, the Data Encryption Standard (DES) was standard for encryption [2].A group of 15 AES candidate algorithms were declared in August All algorithms that were declared by AES candidates due to successful breaking of small key length were experimented by various cryptographic researchers around the world. Five algorithms were selected and subjected to further analysis. Finally, on October 2, 2000, NIST declared that the Rijndael algorithm, invented by Joan II. Overview of AES A full AES implementation can be divided into two main components- the cipher and the key expander. The cipher is the component which is used to perform encryption or decryption on blocks of input data, while the key expander is responsible for preparing the input key for use by the cipher in each round. There are four transformations provided in this algorithm: SubBytes, ShiftRows, MixColumns and AddRoundKey for encryption. The first and the last rounds differ from other rounds in that there is an initial AddRoundkey transformation at the beginning of the initial round and MixColumns transformation is not performed in the last round. The Key Schedule block produces a new key everytime for the rounds from the cipher key whichis given at the initial round.

2 Table I: Number of Rounds ( a word is 32 bits ) Key length (words) Number of rounds (Nr) AES AES AES A. Rijndael Mathematics The computations required in this algorithm are mainly done in the finite field. This field is a commutative ring in which the non-zero figures/compnents have multiplicative inverses. The field used is Galois Field (2 8 ). For our convenience, the notations described here are hexadecimal. Multiplication of two polynomials in finite field is obtained by performing modulo with an irreducible polynomial to ensure that the final result stays within the used finite field. This can be achieved by first multiplying each term of the second polynomial with all of the elements of the first polynomial. Figure 1: MixColumn Multiplication on column of a state III. AES Encryption Process Fig.2 gives the flowchart for the AES encryption Process. B. Encryption Transformations Sub-bytes: In these steps each byte of the state array is to be replaced by its equivalent byte from the S-BOX or the Inverse S- BOX. These steps introduce non-linearity in the cipher. C. ShiftRows : The ShiftRows function performs byte wise circular shifts on each of the rows of the State, and is intended to transpose or move bytes throughout the State in each round. Each row is rotated left by a different number of bytes; except the first row. D. MixColumns : This method is based on Galois Field multiplication. Each byte of a column is replaced by another value that is a function of all four bytes in the given column. The columns are considered as polynomials over GF (2 8 ) and multiplied modulo x with a fixed polynomial a(x), given by the following equation. a(x) = {03} x 3 + {01}x 2 + {01}x + {02}. AddRoundKey : There is simple bitwise XOR function used between the state matrix and the cipher key produced by the Key Schedule. Figure 2: AES Encryption Flow A. Decryption Transformations AddRoundKey is the inverse function of itself because the XOR function present in it which is defined by its inverse. The round keys genersted needs to be selected in the reverse order.

3 InvShiftRows functions similar to ShiftRows, only the last three rows of the state are shifted right cyclically instead of left. InvSubBytes is done using a pre-calculated substitution table called InvS-box. This table contains 256 numbers (from 0 to 255) and their respective values. InvMixColumns is a mixing operation that generally operates on the columns of the state, combining the four bytes in each column. It is basically a matrix multiplication but in Galois field. Fig. 3 shows the matrix multiplication representation. Figure 3:InvMixColumn Multiplication on a column of a state IV. AES Decryption Process Fig.4 gives the flowchart for the AES decryption Process. Figure 4: AES Decryption Flow round uses the original input key and for the remaining rounds the keys produced by the key expansion are used. The key expansion produces a four byte word at a time, based on the previous word and the word one key length back. The pseudocode for KeyExpansion is shown below. fori=0 to Nk - 1 wi = keyi end fori = Nk to 4(Nr + 1) - 1 temp = wi-1 if (i mod Nk = 0) temp = SubWord(RotWord(wi-1)) XOR Rcon(i / Nk) else if (Nk> 6 and i mod Nk = 4) temp = SubWord(wi-1) end if wi = wi-nk XOR temp end The RotWord cyclically shifts each byte in a word startin from a single byte to the left. The Rcon is a constant word array, and only the leftmost byte in each word is nonzero [8]. V. Design Methodology and fpga implementation To optimize the power and area we are implementing RTL clock gating technique. For comparison, we also implemented one circuit with generic architecture.. To create a novel architecture for AES we used FSM to execute the encryption and decryption using a common block. This resource sharing reduced the area effectively. A finite-state machine (FSM) is a mathematical model for computing. It is assumed as a machine that is in finite number of states defined for that machine. The machine is in only one state at a time. It can change to different states when started by the transition state method. A finite state machine is defined as a number of states, and the triggering condition for each transition. Finite-state machines can resolve and represent many problems, among which are automation(design), parsing, and other applications. 1) Key Schedule Key schedule consists of two modules, key expansion and selection of the round key. Key expansion is used to generate the round keys for each round based on the original input key. The initial

4 RTL Schematic and Description done busy Signal to indicate the presence of encrypted or decrypted data at the output port. Signal to indicate the initialization of rounds of the aes. Output Output Table. III describes the different modes of the finite state machine which depend on the value of the input signal addr. Hexadecimal notation is used to describe the value of addr. Table III: Modes of the FSM Figure 5: AES module The input and output port is shared between encrypted data and decrypted data Burst-mode communication varies from traditional continuous-mode communication in that data is transmitted in bursts or packets of 32 bit each rather than in a continuous data stream. As all the inputs and outputs are 128-bit wide so a burst operation for both writing and reading of data on 32-bit port is utilized. Fig. 5 represents the black box view of the AES module. Table II lists the total input/output signals of the module with their functional description. Table II: Signals of the module AES add r 00h 02h 04h 08h 80h Mode Data at the input port will be accepted in bursts as key. Data at the input port will be accepted in bursts as plaintext needed for encryption. Data at the input port will be accepted in bursts as ciphertext needed for decryption. Data at the output port is the ciphertext obtained in bursts after encryption. Data at the output port is the plaintext obtained in bursts after decryption. Operation write write write read Read Name Description Direction clk Clock signal to the aes. rst Reset signal to the aes. addr 8-bit wide signal used for different modes of FSM. burst Signal used to describe burst read and burst write operation. req Signal used to acknowledge the presence of input data and registering it. r_w Read or Write signal. High for reading and Low for writing. din 32- bit wide signal used for providing data to the aes. dout 32- bit wide signal used for providing encrypted or decrypted data. Output VI. Synthesis and Simulation results We have utilized Flip Flop based clock gating to improve the performance. The results of both the designs i.e. the generic AES architecture and clock gated AES architecture are compared for both FPGA and ASIC. The design for AES has been coded by Verilog HDL. Clock Gating was used to reduce the power consumption. The synthesis and simulation results are achieved using Xilinx ISE For hardware implementation Virtex 5, XC5VLX30 and FF676 are selected as Family, Device and Package respectively.

5 A. Simulation Figure 6(a) and 6 (b) discusses the results of the encryption process and 7(a) and 7(b) discusses the results of the decryption process. 7(a): s for Decryption. 4 long words (each 32-bit wide). FigFigure Figure 6(a): s for Encryption. 4 long words(each 32-bit wide). Figure7(b): Output for Decryption. 4 long words(each 32-bit wide). B. Synthesis Figure 8 discusses the synthesis results of the AES Design with RTL clock gating Figure 6(b): Output for Encryption. 4 long words(each 32-bit wide).

6 Figure 8: Device Utilization Summary for AES Design with RTL Clock Gating VII. Comparison of POWER REPORTS Power dissipation was evaluated for generic AES design and Clock gated AES design. For FPGA we used Xilinx Power Estimator to measure the Dynamic power. Figure 9 provides the power summary generated from XPE for the Power efficient AES design. implementation was discussed. Employing the Design Methodologies the design was successfully synthesized using both Xilinx ISE 14.7 and Quartus II 8.1. The discussed approach resulted in a flexible economic key expansion functionality to keep the amount of power consumed per operation to as low a level as possible which can be seen in the results.the Synthesis and Power reports give the area and power dissipation on the desired FPGA. The result shows that this design with special mode of data transmission reduces the area and power consumption some extent. A FPGA Based implementation of area-optimized AES encryption and decryption algorithm which meets the actual application is proposed in this thesis. After being coded with VHDL Hardware Description Language, Xilinx ISE 14.7i is used to synthesize and simulate the VHDL implementation of AES algorithm. Xilinx XC3SD1800A FPGA is taken as the target device. Altera s Cyclone II FPGA (EP2C35F672C6) was also targeted to implement the algorithm and Quartus II 8.1 software was used for that purpose. Ultimately, a synthesis simulation of the new algorithm has been done and successfully implemented AES encryption/decryption on single FPGA. IX. References Figure 9: Xilinx Power Estimator VIII. Conclusion In this thesis, the development and assessment of an Area Efficient and Low Power FPGA based full AES [1] J. Daemen and V. Rijmen, "AES Proposal: Rijndael. NIST AES Proposal," June Available at [2] National Institute of Standards and Technology (U.S.), "Advanced Encryption Standard (AES)," Available at AES.pdf. [3] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, P. Rohatgi, "Efficient Rijndael encryption implementation with composite field arithmetic," Lecture Notes in Computer Science 2162 (2001) [4] J. Daemen, V. Rijmen, " AES proposal: The Rijndael Block Cipher, " Version 2 (Sept. 1999) pp [5] Mr. Atul M. Borkar, Dr. R. V. Kshirsagar and Mrs. M. V. Vyawahare, FPGA Implementation of AES Algorithm, International Conference on Electronics Computer Technology (ICECT), pp , rd.

7 [6] Leelavathi.G, Prakasha S, Shaila K, Venugopal K R, L. M. Patnaik "Design and Implementation of Advanced Encryption Algorithm with FPGA and ASIC", International Journal of Research in Engineering & Advanced Technology [7] (IJREAT), Volume 1, Issue 3, June-July, A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of applied cryptography, CRC press, New York, 1997, pp [8] Xinmiao Zhang, Student Member, IEEE, and Keshab K. Parhi, Fellow, IEEE "High-Speed VLSI Architectures for the AES Algorithm", IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER [9] Frank Emnett and Mark Biegel,"Power Reduction Through RTL Clock Gating", SNUG San Jose [10] Dushyant Kumar Sharma,"Effects of Different Clock gating Techniques on Design", International Journal of Scientific & Engineering Research Volume 3, Issue 5, May

FPGA CAN BE IMPLEMENTED BY USING ADVANCED ENCRYPTION STANDARD ALGORITHM

FPGA CAN BE IMPLEMENTED BY USING ADVANCED ENCRYPTION STANDARD ALGORITHM FPGA CAN BE IMPLEMENTED BY USING ADVANCED ENCRYPTION STANDARD ALGORITHM P. Aatheeswaran 1, Dr.R.Suresh Babu 2 PG Scholar, Department of ECE, Jaya Engineering College, Chennai, Tamilnadu, India 1 Associate

More information

128 Bit ECB-AES Crypto Core Design using Rijndeal Algorithm for Secure Communication

128 Bit ECB-AES Crypto Core Design using Rijndeal Algorithm for Secure Communication IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 128 Bit ECB-AES Crypto Core Design using Rijndeal Algorithm for Secure Communication

More information

FPGA BASED CRYPTOGRAPHY FOR INTERNET SECURITY

FPGA BASED CRYPTOGRAPHY FOR INTERNET SECURITY Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 10, October 2015,

More information

Design and Implementation of Rijndael Encryption Algorithm Based on FPGA

Design and Implementation of Rijndael Encryption Algorithm Based on FPGA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 9, September 2013,

More information

Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures

Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures 1 Suresh Sharma, 2 T S B Sudarshan 1 Student, Computer Science & Engineering, IIT, Khragpur 2 Assistant

More information

FPGA Can be Implemented Using Advanced Encryption Standard Algorithm

FPGA Can be Implemented Using Advanced Encryption Standard Algorithm FPGA Can be Implemented Using Advanced Encryption Standard Algorithm Shahin Shafei Young Researchers and Elite Club, Mahabad Branch, Islamic Azad University, Mahabad, Iran Email:Shahin_shafei@yahoo.com

More information

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed Vijaya Kumar. B.1 #1, T. Thammi Reddy.2 #2 #1. Dept of Electronics and Communication, G.P.R.Engineering College,

More information

Implementation of Full -Parallelism AES Encryption and Decryption

Implementation of Full -Parallelism AES Encryption and Decryption Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption

More information

Energy Efficiency Analysis and Implementation of AES on an FPGA

Energy Efficiency Analysis and Implementation of AES on an FPGA Energy Efficiency Analysis and Implementation of AES on an FPGA by David Kenney A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied

More information

Efficient Hardware Design and Implementation of AES Cryptosystem

Efficient Hardware Design and Implementation of AES Cryptosystem Efficient Hardware Design and Implementation of AES Cryptosystem PRAVIN B. GHEWARI 1 MRS. JAYMALA K. PATIL 1 AMIT B. CHOUGULE 2 1 Department of Electronics & Telecommunication 2 Department of Computer

More information

Optimized AES Algorithm Using FeedBack Architecture Chintan Raval 1, Maitrey Patel 2, Bhargav Tarpara 3 1, 2,

Optimized AES Algorithm Using FeedBack Architecture Chintan Raval 1, Maitrey Patel 2, Bhargav Tarpara 3 1, 2, Optimized AES Algorithm Using FeedBack Architecture Chintan Raval 1, Maitrey Patel 2, Bhargav Tarpara 3 1, 2, Pursuing M.Tech., VLSI, U.V.Patel college of Engineering and Technology, Kherva, Mehsana, India

More information

Cryptographic Algorithms - AES

Cryptographic Algorithms - AES Areas for Discussion Cryptographic Algorithms - AES CNPA - Network Security Joseph Spring Department of Computer Science Advanced Encryption Standard 1 Motivation Contenders Finalists AES Design Feistel

More information

ECE596C: Handout #7. Analysis of DES and the AES Standard. Electrical and Computer Engineering, University of Arizona, Loukas Lazos

ECE596C: Handout #7. Analysis of DES and the AES Standard. Electrical and Computer Engineering, University of Arizona, Loukas Lazos ECE596C: Handout #7 Analysis of DES and the AES Standard Electrical and Computer Engineering, University of Arizona, Loukas Lazos Abstract. In this lecture we analyze the security properties of DES and

More information

Advanced Encryption Standard and Modes of Operation. Foundations of Cryptography - AES pp. 1 / 50

Advanced Encryption Standard and Modes of Operation. Foundations of Cryptography - AES pp. 1 / 50 Advanced Encryption Standard and Modes of Operation Foundations of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) is a symmetric cryptographic algorithm AES has been originally requested

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Secret Key Cryptography Block cipher DES 3DES

More information

Bus Matrix Synthesis Based On Steiner Graphs for Power Efficient System on Chip Communications

Bus Matrix Synthesis Based On Steiner Graphs for Power Efficient System on Chip Communications Bus Matrix Synthesis Based On Steiner Graphs for Power Efficient System on Chip Communications M.Jasmin Assistant Professor, Department Of ECE, Bharath University, Chennai,India ABSTRACT: Power consumption

More information

VLSI Implementation of Advanced Encryption Standard for secured Electronic Voting Machine

VLSI Implementation of Advanced Encryption Standard for secured Electronic Voting Machine www.ijraset.com VLSI Implementation of Advanced Encryption Standard for secured Electronic Voting Machine A. Jesu Silvancy 1, A. Jeyapaul Murugan 2 1 PG Scholar, 2 Assistant Professor, Dr. Sivanthi Aditanar

More information

Cryptography and Network Security. Sixth Edition by William Stallings

Cryptography and Network Security. Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 5 Advanced Encryption Standard Advance Encryption Standard Topics Origin of AES Basic AES Inside Algorithm Final Notes Origins

More information

Implementation of the block cipher Rijndael using Altera FPGA

Implementation of the block cipher Rijndael using Altera FPGA Regular paper Implementation of the block cipher Rijndael using Altera FPGA Piotr Mroczkowski Abstract A short description of the block cipher Rijndael is presented. Hardware implementation by means of

More information

AES ALGORITHM FOR ENCRYPTION

AES ALGORITHM FOR ENCRYPTION Volume 02 - Issue 05 May 2016 PP. 63-68 AES ALGORITHM FOR ENCRYPTION Radhika D.Bajaj M.Tech VLSI G.H. Raisoni Institute of Engineering And Technology For Women, Nagpur. Dr. U.M. Gokhale Electronics and

More information

Design Implementation of Composite Field S-Box using AES 256 Algorithm

Design Implementation of Composite Field S-Box using AES 256 Algorithm International Journal of Emerging Engineering Research and Technology Volume 3, Issue 12, December 2016, PP 43-51 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design Implementation of Composite Field

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 6: Advanced Encryption Standard (AES) Ion Petre Department of IT, Åbo Akademi University 1 Origin of AES 1999: NIST

More information

FAULT DETECTION IN THE ADVANCED ENCRYPTION STANDARD. G. Bertoni, L. Breveglieri, I. Koren and V. Piuri

FAULT DETECTION IN THE ADVANCED ENCRYPTION STANDARD. G. Bertoni, L. Breveglieri, I. Koren and V. Piuri FAULT DETECTION IN THE ADVANCED ENCRYPTION STANDARD G. Bertoni, L. Breveglieri, I. Koren and V. Piuri Abstract. The AES (Advanced Encryption Standard) is an emerging private-key cryptographic system. Performance

More information

Efficient Area and High Speed Advanced Encryption Standard Algorithm

Efficient Area and High Speed Advanced Encryption Standard Algorithm International Journal of Emerging Engineering Research and Technology Volume 3, Issue 7, July 2015, PP 140-146 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Efficient Area and High Speed Advanced Encryption

More information

ENHANCED AES ALGORITHM FOR STRONG ENCRYPTION

ENHANCED AES ALGORITHM FOR STRONG ENCRYPTION ENHANCED AES ALGORITHM FOR STRONG ENCRYPTION V. Sumathy & C. Navaneethan Assistant Professor, Department of CSE, Kingston Engineering College, Vellore, Tamil Nadu, India ABSTRACT In this paper we present

More information

International Journal of Informative & Futuristic Research ISSN:

International Journal of Informative & Futuristic Research ISSN: Reviewed Paper Volume 3 Issue 3 November 2015 International Journal of Informative & Futuristic Research ISSN: 2347-1697 FPGA Implementation Of AES 128 Bit Algorithm For High Speed Altera Devices Paper

More information

AES Advanced Encryption Standard

AES Advanced Encryption Standard AES Advanced Encryption Standard AES is iterated block cipher that supports block sizes of 128-bits and key sizes of 128, 192, and 256 bits. The AES finalist candidate algorithms were MARS, RC6, Rijndael,

More information

Content of this part

Content of this part UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Introduction to Cryptography ECE 597XX/697XX Part 4 The Advanced Encryption Standard (AES) Israel Koren ECE597/697 Koren Part.4.1

More information

FPGA Based Design of AES with Masked S-Box for Enhanced Security

FPGA Based Design of AES with Masked S-Box for Enhanced Security International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 5ǁ May 2014 ǁ PP.01-07 FPGA Based Design of AES with Masked S-Box for Enhanced Security

More information

Implementation of Stronger S-Box for Advanced Encryption Standard

Implementation of Stronger S-Box for Advanced Encryption Standard The International Journal Of Engineering And Science (IJES) Volume 3 Issue 12 December - 2014 Pages 39-47 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Implementation of Stronger S-Box for Advanced Encryption

More information

Design and Implementation of Rijindael s Encryption and Decryption Algorithm using NIOS- II Processor

Design and Implementation of Rijindael s Encryption and Decryption Algorithm using NIOS- II Processor Design and Implementation of Rijindael s Encryption and Decryption Algorithm using NIOS- II Processor Monika U. Jaiswal 1, Nilesh A. Mohota 2 1 Student, Electronics Department, JDCOEM, Nagpur, India 2

More information

VLSI Implementation of Advanced Encryption Standard using Rijndael Algorithm

VLSI Implementation of Advanced Encryption Standard using Rijndael Algorithm VLSI Implementation of Advanced Encryption Standard using Rijndael Algorithm Aditya Agarwal Assistant Professor, Electronics and Communication Engineering SRM University, NCR Campus, Ghaziabad, India ABSTRACT

More information

A Novel Approach of Area Optimized and pipelined FPGA Implementation of AES Encryption and Decryption

A Novel Approach of Area Optimized and pipelined FPGA Implementation of AES Encryption and Decryption International Journal of Scientific and Research Publications, Volume 3, Issue 9, September 2013 1 A Novel Approach of Area Optimized and pipelined FPGA Implementation of AES Encryption and Decryption

More information

Area Optimization in Masked Advanced Encryption Standard

Area Optimization in Masked Advanced Encryption Standard IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 06 (June. 2014), V1 PP 25-29 www.iosrjen.org Area Optimization in Masked Advanced Encryption Standard R.Vijayabhasker,

More information

Hardware Implementation of Cryptosystem by AES Algorithm Using FPGA

Hardware Implementation of Cryptosystem by AES Algorithm Using FPGA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

FPGA IMPLEMENTATION OF HIGHLY AREA EFFICIENT ADVANCED ENCRYPTION STANDARD ALGORITHM

FPGA IMPLEMENTATION OF HIGHLY AREA EFFICIENT ADVANCED ENCRYPTION STANDARD ALGORITHM FPGA IMPLEMENTATION OF HIGHLY AREA EFFICIENT ADVANCED ENCRYPTION STANDARD ALGORITHM D. Arivazhaki, V. Vijayakumar and T. Ravi Department of Electronics and Communication Engineering, Sathyabama University,

More information

IMPLEMENTATION OF EFFICIENT AND HIGH SPEED AES ALGORITHM FOR SECURED DATA TRANSMISSION

IMPLEMENTATION OF EFFICIENT AND HIGH SPEED AES ALGORITHM FOR SECURED DATA TRANSMISSION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.2, Issue 3 (Spl.) Sep 2012 22-29 TJPRC Pvt. Ltd., IMPLEMENTATION

More information

Low area implementation of AES ECB on FPGA

Low area implementation of AES ECB on FPGA Total AddRoundkey_3 MixCollumns AddRoundkey_ ShiftRows SubBytes 1 Low area implementation of AES ECB on FPGA Abstract This project aimed to create a low area implementation of the Rajindael cipher (AES)

More information

The Encryption Standards

The Encryption Standards The Encryption Standards Appendix F Version 1.0 Computer Security: Art and Science, 2 nd Edition Slide F-1 Outline Data Encryption Standard Algorithm Advanced Encryption Standard Background mathematics

More information

Design and Implementation of Advanced Encryption Algorithm with FPGA and ASIC

Design and Implementation of Advanced Encryption Algorithm with FPGA and ASIC Design and Implementation of Advanced Encryption Algorithm with FPGA and ASIC Leelavathi.G 1, Prakasha S 2, Shaila K 3, Venugopal K R 4, L M Patnaik 5 1 Assistant Professor, Govt.SKSJTI E&C Department,Bangalore.

More information

Lecture 2B. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 2B. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 2B RTL Design Methodology Transition from Pseudocode & Interface to a Corresponding Block Diagram Structure of a Typical Digital Data Inputs Datapath (Execution Unit) Data Outputs System Control

More information

Design of S-box and IN V S -box using Composite Field Arithmetic for AES Algorithm

Design of S-box and IN V S -box using Composite Field Arithmetic for AES Algorithm Design of S-box and IN V S -box using Composite Field Arithmetic for AES Algorithm Sushma D K Department of Electronics and Communication The Oxford College of Engineering Bangalore, India Dr. Manju Devi

More information

An Efficient FPGA Implementation of the Advanced Encryption Standard (AES) Algorithm Using S-Box

An Efficient FPGA Implementation of the Advanced Encryption Standard (AES) Algorithm Using S-Box Volume 5 Issue 2 June 2017 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org An Efficient FPGA Implementation of the Advanced Encryption

More information

FPGA and ASIC Implementations of AES

FPGA and ASIC Implementations of AES Chapter 10 FPGA and ASIC Implementations of AES Kris Gaj and Pawel Chodowiec 10.1 Introduction In 1997, an effort was initiated to develop a new American encryption standard to be commonly used well into

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 Advance Encryption Standard (AES) Rijndael algorithm is symmetric block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256

More information

The Study of GF (2 4 ) 2 AES Encryption for Wireless FPGA Node

The Study of GF (2 4 ) 2 AES Encryption for Wireless FPGA Node The Study of GF (2 4 ) 2 AES Encryption for Wireless FPGA Node W.Suntiamorntut 1, W. Wittayapanpracha Computer Engineering Department, Faculty of Engineering, Prince of Songkla University Hatyai Songkhla

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 5a January 29, 2013 CPSC 467b, Lecture 5a 1/37 Advanced Encryption Standard AES Alternatives CPSC 467b,

More information

AES Implementation for RFID Tags: The Hardware and Software Approaches

AES Implementation for RFID Tags: The Hardware and Software Approaches AES Implementation for RFID Tags: The Hardware and Software Approaches Thanapol Hongsongkiat ew Product Research Department Silicon Craft Technology Co., Ltd. Bangkok, Thailand thanapol@sic.co.th Abstract

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 5 January 23, 2012 CPSC 467b, Lecture 5 1/35 Advanced Encryption Standard AES Alternatives CPSC 467b,

More information

2016 Maxwell Scientific Publication Corp. Submitted: August 21, 2015 Accepted: September 11, 2015 Published: January 05, 2016

2016 Maxwell Scientific Publication Corp. Submitted: August 21, 2015 Accepted: September 11, 2015 Published: January 05, 2016 Research Journal of Applied Sciences, Engineering and Technology 12(1): 52-62, 2016 DOI:10.19026/rjaset.12.2303 ISSN: 2040-7459; e-issn: 2040-7467 2016 Maxwell Scientific Publication Corp. Submitted: August

More information

VLSI Implementation of Enhanced AES Cryptography

VLSI Implementation of Enhanced AES Cryptography ISSN (e): 2250 3005 Vol, 04 Issue, 7 July 2014 International Journal of Computational Engineering Research (IJCER) VLSI Implementation of Enhanced AES Cryptography Lakavath Srinivas 1, Zuber M. Patel 2,

More information

CRYPTOGRAPHY plays an important role in the security

CRYPTOGRAPHY plays an important role in the security IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 10, OCTOBER 2006 1153 On the Optimum Constructions of Composite Field for the AES Algorithm Xinmiao Zhang, Member, IEEE, Keshab

More information

Block Ciphers Introduction

Block Ciphers Introduction Technicalities Block Models Block Ciphers Introduction Orr Dunkelman Computer Science Department University of Haifa, Israel March 10th, 2013 Orr Dunkelman Cryptanalysis of Block Ciphers Seminar Introduction

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO.

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATION iii xii xiv xvii 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 TYPES OF WIRELESS COMMUNICATION

More information

Fully Pipelined High Throughput Cost Effective FPGA Based Implementation of AES Algorithm

Fully Pipelined High Throughput Cost Effective FPGA Based Implementation of AES Algorithm Fully Pipelined High Throughput Cost Effective FPGA Based Implementation of AES Algorithm Athira Das A J 1, Ajith Kumar B P 2 1 Student, Dept. of Electronics and Communication, Karavali Institute of Technology,

More information

A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm

A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm N. M. Kosaraju, M. Varanasi & Saraju P. Mohanty VLSI Design and CAD Laboratory Homepage: http://www.vdcl.cse.unt.edu

More information

Advanced Encryption Standard Implementation on Field Programmable Gate Arrays. Maryam Behrouzinekoo. B.Eng., University of Guilan, 2011

Advanced Encryption Standard Implementation on Field Programmable Gate Arrays. Maryam Behrouzinekoo. B.Eng., University of Guilan, 2011 Advanced Encryption Standard Implementation on Field Programmable Gate Arrays by Maryam Behrouzinekoo B.Eng., University of Guilan, 2011 A Report Submitted in Partial Fulfillment of the Requirements for

More information

High Performance Single-Chip FPGA Rijndael Algorithm Implementations

High Performance Single-Chip FPGA Rijndael Algorithm Implementations High Performance Single-Chip FPGA Rijndael Algorithm Implementations Máire McLoone and J.V McCanny DSiP TM Laboratories, School of Electrical and Electronic Engineering, The Queen s University of Belfast,

More information

A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box

A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 305 A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box Muhammad

More information

Week 5: Advanced Encryption Standard. Click

Week 5: Advanced Encryption Standard. Click Week 5: Advanced Encryption Standard Click http://www.nist.gov/aes 1 History of AES Calendar 1997 : Call For AES Candidate Algorithms by NIST 128-bit Block cipher 128/192/256-bit keys Worldwide-royalty

More information

Chapter 7 Advanced Encryption Standard (AES) 7.1

Chapter 7 Advanced Encryption Standard (AES) 7.1 Chapter 7 Advanced Encryption Standard (AES) 7.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 7 Objectives To review a short history of AES To define

More information

HIGH DATA RATE 8-BIT CRYPTO PROCESSOR

HIGH DATA RATE 8-BIT CRYPTO PROCESSOR HIGH DATA RATE 8-BIT CRYPTO PROCESSOR Sheikh M Farhan, Habibullah Jamal, Mohsin Rahmatullah University of Engineering and Technology, Taxila, Pakistan smfarhan@carepvtltd.com, (+92-51-2874794), 19-Ataturk

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security CRYPTOGRAPHY AND NETWORK SECURITY PRAKASH C. GUPTA Former Head Department of Information Technology Maharashtra Institute of Technology Pune Delhi-110092 2015 CRYPTOGRAPHY

More information

Design of Least Complex S-Box and its Fault Detection for Robust AES Algorithm

Design of Least Complex S-Box and its Fault Detection for Robust AES Algorithm Design of Least Complex S-Box and its Fault Detection for Robust AES Algorithm G. Alisha Evangeline, S. Krithiga, J. Jesu Mejula Abstract Advanced Encryption Standard (AES) is the symmetric key standard

More information

Design and Implementation of Encryption Unit Based on Customized AES Algorithm

Design and Implementation of Encryption Unit Based on Customized AES Algorithm International Journal of Video & Image Processing and Network Security IJVIPNS-IJENS Vol: 11 No: 33 Design and Implementation of Encryption Unit Based on Customized AES Algorithm Nabil Hamdy #1, Khaled

More information

Efficient Hardware Realization of Advanced Encryption Standard Algorithm using Virtex-5 FPGA

Efficient Hardware Realization of Advanced Encryption Standard Algorithm using Virtex-5 FPGA IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 59 Efficient Hardware Realization of Advanced Encryption Standard Algorithm using Virtex-5 FPGA Muhammad

More information

Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt Data

Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt Data Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt Data Ako Muhamad Abdullah MSc Computer Science UK PhD Student in Computer Science Department of Applied Mathematics & Computer Science

More information

Introduction to the new AES Standard: Rijndael

Introduction to the new AES Standard: Rijndael Introduction to the new AES Standard: Rijndael Paul Donis This paper will explain how the Rijndael Cipher Reference Code in C works. Rijndael is a block cipher that encrypts and decrypts 128, 192, and

More information

Low-power and area-optimized VLSI implementation of AES coprocessor for Zigbee system

Low-power and area-optimized VLSI implementation of AES coprocessor for Zigbee system June 2009, 16(3): 89 94 www.sciencedirect.com/science/journal/10058885 The Journal of China Universities of Posts and Telecommunications www.buptjournal.cn/xben Low-power and area-optimized VLSI implementation

More information

AES Core Specification. Author: Homer Hsing

AES Core Specification. Author: Homer Hsing AES Core Specification Author: Homer Hsing homer.hsing@gmail.com Rev. 0.1.1 October 30, 2012 This page has been intentionally left blank. www.opencores.org Rev 0.1.1 ii Revision History Rev. Date Author

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 7 September 23, 2015 CPSC 467, Lecture 7 1/1 Advanced Encryption Standard AES Alternatives CPSC 467,

More information

HOST Cryptography III ECE 525 ECE UNM 1 (1/18/18)

HOST Cryptography III ECE 525 ECE UNM 1 (1/18/18) AES Block Cipher Blockciphers are central tool in the design of protocols for shared-key cryptography What is a blockcipher? It is a function E of parameters k and n that maps { 0, 1} k { 0, 1} n { 0,

More information

Security against Timing Analysis Attack

Security against Timing Analysis Attack International Journal of Electrical and Computer Engineering (IJECE) Vol. 5, No. 4, August 2015, pp. 759~764 ISSN: 2088-8708 759 Security against Timing Analysis Attack Deevi Radha Rani 1, S. Venkateswarlu

More information

Design and analysis of an FPGA-based, multiprocessor HW-SW system for SCC applications

Design and analysis of an FPGA-based, multiprocessor HW-SW system for SCC applications Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2010 Design and analysis of an FPGA-based, multiprocessor HW-SW system for SCC applications Andrew Fitzgerald

More information

Data Encryption Standard (DES)

Data Encryption Standard (DES) Data Encryption Standard (DES) Best-known symmetric cryptography method: DES 1973: Call for a public cryptographic algorithm standard for commercial purposes by the National Bureau of Standards Goals:

More information

High Aberrance AES System Using a Reconstructable Function Core Generator

High Aberrance AES System Using a Reconstructable Function Core Generator High Aberrance AES System Using a Reconstructable Function Core Generator Third Prize High Aberrance AES System Using a Reconstructable Function Core Generator Institution: Participants: Instructor: I-Shou

More information

P V Sriniwas Shastry et al, Int.J.Computer Technology & Applications,Vol 5 (1),

P V Sriniwas Shastry et al, Int.J.Computer Technology & Applications,Vol 5 (1), On-The-Fly AES Key Expansion For All Key Sizes on ASIC P.V.Sriniwas Shastry 1, M. S. Sutaone 2, 1 Cummins College of Engineering for Women, Pune, 2 College of Engineering, Pune pvs.shastry@cumminscollege.in

More information

The Use of Runtime Reconfiguration on FPGA Circuits to Increase the Performance of the AES Algorithm Implementation

The Use of Runtime Reconfiguration on FPGA Circuits to Increase the Performance of the AES Algorithm Implementation Journal of Universal Computer Science, vol. 13, no. 3 (2007), 349-362 submitted: 30/11/06, accepted: 16/2/07, appeared: 28/3/07 J.UCS The Use of Runtime Reconfiguration on FPGA Circuits to Increase the

More information

Block Ciphers. Secure Software Systems

Block Ciphers. Secure Software Systems 1 Block Ciphers 2 Block Cipher Encryption function E C = E(k, P) Decryption function D P = D(k, C) Symmetric-key encryption Same key is used for both encryption and decryption Operates not bit-by-bit but

More information

An Efficient Pipelined Multiplicative Inverse Architecture for the AES Cryptosystem

An Efficient Pipelined Multiplicative Inverse Architecture for the AES Cryptosystem An Efficient Pipelined Multiplicative Inverse Architecture for the AES Cryptosystem Mostafa Abd-El-Barr and Amro Khattab Abstract In this paper, we introduce an architecture for performing a recursive

More information

EFFICIENT HARDWARE IMPLEMENTATIONS FOR THE ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM

EFFICIENT HARDWARE IMPLEMENTATIONS FOR THE ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM EFFICIENT HARDWARE IMPLEMENTATIONS FOR THE ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM by Issam Mahdi Hammad Submitted in partial fulfilment of the requirements for the degree of Master of Applied Science

More information

A New hybrid method in watermarking using DCT and AES

A New hybrid method in watermarking using DCT and AES International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 11 (November 2014), PP.64-69 A New hybrid method in watermarking using

More information

Digital Logic Design using Verilog and FPGA devices Part 2. An Introductory Lecture Series By Chirag Sangani

Digital Logic Design using Verilog and FPGA devices Part 2. An Introductory Lecture Series By Chirag Sangani Digital Logic Design using Verilog and FPGA devices Part 2 An Introductory Lecture Series By A Small Recap Verilog allows us to design circuits, FPGAs allow us to test these circuits in real-time. The

More information

Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl

Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl Kimmo Järvinen Department of Information and Computer Science Aalto University, School of Science and Technology Espoo,

More information

Design and ASIC Implementation of Modified Rijndael Cipher

Design and ASIC Implementation of Modified Rijndael Cipher Design and ASIC Implementation of Modified Rijndael Cipher Sushikshith H. Gowda 1, Dr. Aravind H. S. 2, Usha S. M. 3 1 M.Tech., VLSI Design & Embedded Systems, Dept. of E&C Engineering, JSSATE, Bengaluru,

More information

@ 2014 SEMAR GROUPS TECHNICAL SOCIETY.

@ 2014 SEMAR GROUPS TECHNICAL SOCIETY. www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.02, February-2014, Pages:0350-0355 Performance Improvement in Fault Detection Schemes for the Advanced Encryption Standard Using Composite

More information

Comparison of Performance of AES Standards Based Upon Encryption /Decryption Time and Throughput

Comparison of Performance of AES Standards Based Upon Encryption /Decryption Time and Throughput Comparison of Performance of AES Standards Based Upon Encryption /Decryption Time and Throughput Miss Navraj Khatri Mr Jagtar Singh Mr Rajeev dhanda NCCE,Israna,K.U Senior lecturer,ncce,israna,k.u Assistant

More information

Reference Cryptographic Accelerator

Reference Cryptographic Accelerator Ossi Paldanius Reference Cryptographic Accelerator Implementing AES Algorithm on an FPGA Helsinki Metropolia University of Applied Sciences Master of Engineering Information Technology Master s Thesis

More information

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT K.Sandyarani 1 and P. Nirmal Kumar 2 1 Research Scholar, Department of ECE, Sathyabama

More information

Lecture 5. Encryption Continued... Why not 2-DES?

Lecture 5. Encryption Continued... Why not 2-DES? Lecture 5 Encryption Continued... 1 Why not 2-DES? 2DES: C = DES ( K1, DES ( K2, P ) ) Seems to be hard to break by brute force, approx. 2 111 trials Assume Eve is trying to break 2DES and has a single

More information

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 4 The Advanced Encryption Standard (AES) ver. October 28, 2009

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 4 The Advanced Encryption Standard (AES) ver. October 28, 2009 Understanding Cryptography by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 4 The Advanced Encryption Standard (AES) ver. October 28, 29 These slides were prepared by Daehyun Strobel, Christof

More information

PARALLEL ANALYSIS OF THE RIJNDAEL BLOCK CIPHER

PARALLEL ANALYSIS OF THE RIJNDAEL BLOCK CIPHER PARALLEL ANALYSIS OF THE RIJNDAEL BLOCK CIPHER Philip Brisk, Adam Kaplan, Majid Sarrafzadeh Computer Science Department, University of California Los Angeles 3532C Boelter Hall, Los Angeles, CA 90095-1596

More information

Symmetric Key Cryptography

Symmetric Key Cryptography Symmetric Key Cryptography Michael Huth M.Huth@doc.ic.ac.uk www.doc.ic.ac.uk/~mrh/430/ Symmetric Key Cryptography (3.1) Introduction Also known as SECRET KEY, SINGLE KEY, PRIVATE KEY Sender and Receiver

More information

in a 4 4 matrix of bytes. Every round except for the last consists of 4 transformations: 1. ByteSubstitution - a single non-linear transformation is a

in a 4 4 matrix of bytes. Every round except for the last consists of 4 transformations: 1. ByteSubstitution - a single non-linear transformation is a Cryptanalysis of Reduced Variants of Rijndael Eli Biham Λ Nathan Keller y Abstract Rijndael was submitted to the AES selection process, and was later selected as one of the five finalists from which one

More information

Block Ciphers. Lucifer, DES, RC5, AES. CS 470 Introduction to Applied Cryptography. Ali Aydın Selçuk. CS470, A.A.Selçuk Block Ciphers 1

Block Ciphers. Lucifer, DES, RC5, AES. CS 470 Introduction to Applied Cryptography. Ali Aydın Selçuk. CS470, A.A.Selçuk Block Ciphers 1 Block Ciphers Lucifer, DES, RC5, AES CS 470 Introduction to Applied Cryptography Ali Aydın Selçuk CS470, A.A.Selçuk Block Ciphers 1 ... Block Ciphers & S-P Networks Block Ciphers: Substitution ciphers

More information

Symmetric encryption algorithm image for wireless multimedia sensor network

Symmetric encryption algorithm image for wireless multimedia sensor network Symmetric encryption algorithm image for wireless multimedia sensor network Amina Msolli, Abdelhamid Helali, Laboratory of Micro-Optoelectronics and Nanostructures (LMON), Faculty of Sciences Monastir

More information

Design and Implementation of Multi-Rate Encryption Unit Based on Customized AES

Design and Implementation of Multi-Rate Encryption Unit Based on Customized AES International Journal of Video & Image Processing and Network Security IJVIPNS-IJENS Vol: 11 No: 06 6 Design and Implementation of Multi-Rate Encryption Unit Based on Customized AES Ashraf D. Elbayoumy,

More information

ISSN: Page 320

ISSN: Page 320 A NEW METHOD FOR ENCRYPTION USING FUZZY SET THEORY Dr.S.S.Dhenakaran, M.Sc., M.Phil., Ph.D, Associate Professor Dept of Computer Science & Engg Alagappa University Karaikudi N.Kavinilavu Research Scholar

More information

PERFORMANCE COMPARISON OF ADVANCED ENCRYPTION STANDARD-128 ALGORITHMS FOR WIMAX APPLICATION WITH IMPROVED POWER-THROUGHPUT

PERFORMANCE COMPARISON OF ADVANCED ENCRYPTION STANDARD-128 ALGORITHMS FOR WIMAX APPLICATION WITH IMPROVED POWER-THROUGHPUT Journal of Engineering Science and Technology Vol. 11, No. 12 (2016) 1678-1694 School of Engineering, Taylor s University PERFORMANCE COMPARISON OF ADVANCED ENCRYPTION STANDARD-128 ALGORITHMS FOR WIMAX

More information

Secret Key Cryptography

Secret Key Cryptography Secret Key Cryptography 1 Block Cipher Scheme Encrypt Plaintext block of length N Decrypt Secret key Cipher block of length N 2 Generic Block Encryption Convert a plaintext block into an encrypted block:

More information