We shall represent a relation as a table with columns and rows. Each column of the table has a name, or attribute. Each row is called a tuple.

Size: px
Start display at page:

Download "We shall represent a relation as a table with columns and rows. Each column of the table has a name, or attribute. Each row is called a tuple."

Transcription

1 Logical Database design Earlier we saw how to convert an unorganized text description of information requirements into a conceptual design, by the use of ER diagrams. The advantage of ER diagrams is that they force you to identify data requirements that are implicitly known, but not explicitly written down in the original description. Here we will see how to convert this ER into a logical design (this will be defined below) of a relational database. The logical model is also called a Relational Model. We shall represent a relation as a table with columns and rows. Each column of the table has a name, or attribute. Each row is called a tuple. Domain: a set of atomic values that an attribute can take Attribute: name of a column in a particular table (all data is stored in tables). Each attribute A i must have a domain, dom(a i ). Relational Schema: The design of one table, containing the name of the table (i.e. the name of the relation), and the names of all the columns, or attributes. Example: STUDENT( Name, SID, Age, GPA) Degree of a Relation: the number of attributes in the relation's schema. Tuple, t, of R( A1, A2, A3,, An): an ORDERED set of values, < v1, v2, v3,, vn>, where each v i is a value from dom( A i ). Relation Instance, r( R): a set of tuples; thus, r( R) = { t1, t2, t3,, tm} Attributes dom(gpa) = [0.0, 12.0] dom( Name) = character string, max length 100. Name SID Age GPA CHAN Kin Ho LAM Wai Kin MAN Ko Yee LEE Chi Cheung Each row is one tuple; This instance of schema STUDENT has 5 tuples t3 = <MAN Ko Yee, , 21, 7.5> Alvin LAM

2 NOTES: 1. The tuples in an instance of a relation are not considered to be ordered putting the rows in a different sequence does not change the table. 2. Once the schema, R( A1, A2, A3,, An) is defined, the values, v i, in each tuple, t, must be ordered as t = <v1, v2, v3,, vn> Integrity Constraints Each relational schema must satisfy the following four types of constraints. A. Domain constraints Each attribute Ai must be an atomic value from dom( Ai) for that attribute. The attribute, Name in the example is a BAD DESIGN (because sometimes we may want to search a person by only using their last name. B. Key Constraints Superkey of R: A set of attributes, SK, of R such that no two tuples in any valid relational instance, r( R), will have the same value for SK. Therefore, for any two distinct tuples, t1 and t2 in r( R), t1[ SK]!= t2[sk]. Key of R: A minimal superkey. That is, a superkey, K, of R such that the removal of ANY attribute from K will result in a set of attributes that are not a superkey. Example CAR( State, LicensePlateNo, VehicleID, Model, Year, Manufacturer) This schema has two keys: K1 = { State, LicensePlateNo} K2 = { VehicleID } Both K1 and K2 are superkeys. K3 = { VehicleID, Manufacturer} is a superkey, but not a key (Why?). If a relation has more than one keys, we can select any one (arbitrarily) to be the primary key. Primary Key attributes are underlined in the schema: CAR( State, LicensePlateNo, VehicleID, Model, Year, Manufacturer)

3 C. Entity Integrity Constraints The primary key attribute, PK, of any relational schema R in a database cannot have null values in any tuple. In other words, for each table in a DB, there must be a key; for each key, every row in the table must have non-null values. This is because PK is used to identify the individual tuples. Mathematically, t[pk]!= NULL for any tuple t r( R). D. Referential Integrity Constraints Referential integrity constraints are used to specify the relationships between two relations in a database. Consider a referencing relation, R1, and a referenced relation, R2. Tuples in the referencing relation, R1, have attributed FK (called foreign key attributes) that reference the primary key attributes of the referenced relation, R2. A tuple, t1, in R1 is said to reference a tuple, t2, in R2 if t1[fk] = t2[pk]. A referential integrity constraint can be displayed in a relational database schema as a directed arc from the referencing (foreign) key to the referenced (primary) key. Examples are shown in the figure below: EMPLOYEE ENo Name Address DeptNo SupENo DEPT Dno DName Locn MgrENo

4 ER-to-Relational Mapping Now we are ready to lay down some informal methods to help us create the Relational schemas from our ER models. These will be described in the following steps: 1. For each regular entity, E, in the ER model, create a relation R that includes all the simple attributes of E. Select the primary key for E, and mark it. 2. For each weak entity type, W, in the ER model, with the Owner entity type, E, create a relation R with all attributes of W as attributes of W, plus the primary key of E. [Note: if there are identical tuples in W which share the same owner tuple, then we need to create an additional index attribute in W.] 3. For each binary relation type, R, in the ER model, identify the participating entity types, S and T. For 1:1 relationship between S and T Choose one relation, say S. Include the primary key of T as a foreign key of S. For 1:N relationship between S and T Let S be the entity on the N side of the relationship. Include the primary key of T as a foreign key in S. For M: N relation between S and T Create a new relation, P, to represent R. Include the primary keys of both, S and T as foreign keys of P. 4. For each multi-valued attribute A, create a new relation, R, that includes all attributes corresponding to A, plus the primary key attribute, K, of the relation that represents the entity type/relationship type that has A as an attribute. 5. For each n-ary relationship type, n > 2, create a new relation S. Include as foreign key attributes in S the primary keys of the relations representing each of the participating entity types. Also include any simple attributes of the n-ary relationship type as attributes of S.

5 Formal Relational Database Design We have seen the informal procedure to map the ER model into a logical model (relational database schema). How do we know that this is a good schema? We shall now study the formal theory which can help us to understand (a) what is a good relational database design, (b) why it is good, and (c) how do we design good relational database schemas. To do so, we shall learn the concepts of Functional dependencies and Normal forms. We shall use our EMPLOYEE-DEPARTMENT-PROJECTS example. To give us some motivation, let us first see what kinds of problems can arise if we fail to design the database properly. 1. Redundant Information in Tuples and Update Anomalies Consider a (poorly) designed database where the Employee and Department information is planned in one table, and the Employee and Project information in another table: EMPLOYEE_DEPT SSN LName Address DNumber DName BDate MgrSSN EMPLOYEE_PROJ SSN PNumber Hours LName PName PLocation Problems: (a) Information is stored redundantly -- repeated information wasted storage. For example, if 5 employees work for Department number 4, then the department name and manager's SSN for Department 3 is stored 3 times in the table.

6 (b) Insertion anomalies. When we enter the record for a new employee, we must specify ALL data fields for his department correctly. For example, if a new employee joins Dept 5, then we must ensure that the data entered for Dept 5 in the new record is consistent with the data for Dept 5 in all earlier records of other employees of Dept 5. (c) Deletion Anomalies. If a dept has one employee working in it, and we delete the information of this employee, then the information of the department is also lost. We may not want this to happen. (d) Modification Anomalies. If we modify a value, we must make the entire table consistent very carefully. For example, if an employee changes departments from Dept 5 to Dept 4, then his entire record must be changed, not just his DNumber field. If a department changes its manager, the entire table must be scanned and modified. In other bad DB designs, several other problems can occur. The most important ones include the following: 2. Null values in Tuples Consider a DB design: STUDENT( SID, Name, Phone, , SocietyName, MembershipNo) which is used to store student information. For all students who did not join any society, the last two attributes will contain NULL values. If there are many such students, then this will be considered as a poor DB design, and it would be better to store information in two relational schemas: STUDENT( SID, Name, Phone, ), MEMBERSHIP( SID, SocietyName, MembershipNo). In general, we should design tables which have the fewest NULL value entries. If an attribute has NULL value very frequently in a table, it should be placed in a separate table (along with the primary key). 3. Spurious (false) Tuples To avoid anomalies and null values in tuples, most DBs must be designed to store data by using several tables. However, at any given time, we may need some information that is partly contained in two or more different tables. When we combine the information contained in two separate tables, in other words, when we JOIN the two tables, some care must be taken, other wise we may get some misleading (or FALSE) information. I will illustrate the problem of spurious tuples with the example of a poorly designed Projects-Parts- Suppliers database:

7 PROJECT_PARTS SUPPLIER_PARTS ProjectNo PartNo SupplierNo PartNo Qty Proj1 P1 S1 P1 10 Proj2 P1 S2 P2 25 Proj2 P2 S2 P1 20 Suppose we are interested to know: Which suppliers supplied the parts for Proj2? Obviously this information can only be obtained by somehow combining the information in the two tables (why?). The common link between the two tables is the PartNo (assume that PartNo uniquely identifies the part). From PROJECT_PARTS, we can easily see that Proj2 uses P1 and P2. P2 is supplied by S2 (from tuple-2 of SUPPLIER_PARTS). However, which supplier supplied P1 to Proj2? If we match the PartNo in tuple-2 of PROJECT_PARTS with PartNo in SUPPLIER_PARTS, then we get two matches: tuple-1 S1, and tuple-3 S2. However, from this, we cannot conclude that both S1 and S2 supplied parts P1 to Proj2 (why?). In the above example, we say that JOINING the information of the two tables created some false information; in other words, if we use the above DB design to store data, some information that we know is actually getting lost. We call such JOIN s that create information loss as LOSSY-JOINS. A good database design must guarantee LOSSLESS JOIN operations on its tables. The above examples are obviously simple; however, a real DB may have tens of tables, with many attributes in each. Some tables may have created as an extension of a previously existing DB. How can we guarantee that the DB will not have any possibility of such errors? There is a logical process that allows us to design good databases: it is called normalization. We now study normalization. Functional Dependencies Normalization depends on identifying logical relationships between data, called Functional dependencies (FDs), and Keys. FDs are constraints between the attributes of relations in the universe of discourse.

8 Definition: A set of attributes, X, functionally determines a set of attributes Y if the value of X determines a unique value for Y. This is written as: X Y. The implication of the statement X Y is that, for any two tuples, t1 and t2, if t1[ X] = t2[ X], then t1[ Y] = t2[ Y]. Examples of FD's: {SSN} {Employee name} {Employee SSN, Project Number} {Hours per week} If K is a key of R, then K functionally determines all attributes of R. Inference Rules for FD's Given a set of FDs, we can infer other FDs that will also be true. Such inference requires proof, based on the use of the above definition of FD, and some logical reasoning. Armstrong's Inference Rules: A1. (Reflexive). If Y X, then X Y A2. (Augmentation). If X Y, then XZ YZ (Note: XZ denotes X U Z, the union of the sets of attributes X and Z). A3. (Transitive). If X Y and Y Z, then X Z Using A1, A2 and A3, we can also prove some additional useful inference rules: A4. (Decomposition). If X YZ, the X Y and X Z A5. (Union). If X Y and X Z, then X YZ A6. (Pseudotransitive). If X Y and WY Z, then WX Z

9 Equivalence of sets of FDs: Two sets of FDs, F and G are said to be equivalent if every FD in F can be inferred from G, and every FD in G can be inferred from F. Minimal set of FDs: A set of FDs is minimal if it satisfies the following conditions. (a) Every dependency in F has a single attribute for its RHS (right hand side). (b) We cannot remove any dependency from F, and have a set of dependencies equivalent to F. (c) We cannot replace any dependency, X A, in F with a dependency, Y A, where Y X, and still have a set of dependencies equivalent to F. In general, we know the following to be true: (1) Every set of FDs has an equivalent minimal set; and (2) There can be several equivalent minimal sets. The First Normal Form (1NF) A relational schema is in 1NF if it does not contain any composite attributes, multi-valued attributes, and nested relations. It is possible to convert any schema that is not in 1NF into one or more schemas that are in 1NF: STUDENT_COURSES Composite Multi-valued SID 0401 Name John Smith SemYr Fall 05 Courses ie110, ie215 Not 1NF 0402 Jane Doe Fall 05 ie110, ie317 STUDENT_COURSES_1NF SID Lname Fname Sem Yr Course 0401 Smith John Fall 05 ie Smith John Fall 05 ie215 1NF 0402 Doe Jane Fall 05 ie Doe Jane Fall 05 ie317

10 EMPLOYEE_PROJECTS Composite Projects SSN Lname Fname ProjNo Hours 1123 Smith John P1 P Not 1NF 3312 Doe Jane P2 P EMPLOYEE EMP_PROJECTS SSN Lname Fname SSN ProjNo Hours 1123 Smith John 1123 P Doe Jane 1123 P2 5 1NF P2 P Second Normal Form (2NF). 2NF uses the concepts of FDs and the primary key. Definitions: Prime Attribute: An attribute that is a member of the primary key. Full functional Dependency: A FD, Y Z, where the removal of ANY attribute from Y means that the FD will not hold true any more. Examples: {SSN, PNumber} Hours is a Full FD, since neither {SSN} Hours, nor {PNumber} Hours is true. {SSN, PNumber} EName is NOT a Full FD, since {SSN} EName is also true. Second Normal Form: A relational schema, R, is in 2NF if every non-prime attribute A in R is fully functionally dependent on the primary key.

11 Consider a DB storing information about employees, projects, and what project each employee works on. The schema EMP_PROJ below attempts to store all this data in one table. The arrows denote the FD s in the schema. You can easily check that a table constructed with this schema will result in many anomalies. We can use the definition of 2NF above to break this schema into a set of three schemas which are in 2NF. EMP_PROJ SSN Pnumber Hours EName PName PLocation EMP_PROJ1 SSN PNumber Hours EMP_PROJ2 SSN EName EMP_PROJ3 PNumber PName PLocation The Third Normal Form ( 3NF) The third normal form ensures that a schema design does not contain any transitive FD s. Transitive Functional Dependency is an FD Y Z that can be derived from two FDs Y X and X Z. Examples: SSN MgrSSN is a transitive dependency, because SSN DNumber, and DNumber MgrSSN. SSN LName is NOT a transitive dependency, since there is no attribute X, such that SSN X, and X LName. Third Normal Form: a relational schema is in 3NF if it is in 2NF, and no non-prime attribute A in R is transitively dependent on the primary key.

12 Below is an example of a schema that is not in 3NF, and how to decompose it into a pair of 3NF relational schemas. EMP_DEPT SSN EName Address Dno DName MgrSSN EMP_DEPT1 SSN EName Address Dno EMP_DEPT2 DNo DName MgrSSN For most applications, achieving 3NF as defined above will provide an acceptable logical design. However, note that the entire process above is dependent on the (arbitrary) selection of primary keys from all possible candidate keys. There is a broader definition of 3NF which considers the existence of multiple candidate keys. General Normal Form Definitions The general 1NF definition is identical to the one before. A relational schema is in 2NF if it is in 1NF, and if every non-prime attribute A in R is fully functionally dependent on every key of R. The general 3NF definition requires our earlier definition of superkeys ( a superkey of R is a set of attributes which contain a key of R). A relational schema R is in 3NF if whenever a FD X A holds in R, then either X is a superkey of R, or A is a prime attribute of R.

13 Example: Consider a simplified database for Government records on land sales in different districts. Each lot of land has a unique ID number for the territory. Within each district, each lot is also assigned a lot#, which is unique in the district. Further, the tax rate to be paid is determined by the district. Finally, the government controls the cost of land to be uniform across the territory, so that the price can be determined by the area of the lot. LOTS PropertyID District Lot# Area Price TaxRate 1NF FD1 FD2 FD3 FD4 LOTS1 PropertyID FD1 FD2 District Lot# FD4 Area Price 2NF LOTS2 District TaxRate 3NF LOTS1A LOTS1B PropertyID FD1 FD2 District Lot# Area Area Price Notice: there are two candidate keys: { PropertyID} and { District, Lot#}. 2NF: TaxRate is partially dependent upon the candidate key { District, Lot#}, due to FD3. Hence we break this schema into two parts to achieve 2NF, as shown.

14 3NF: LOTS2 is already in 3NF according to the general definition. However, LOTS1 violates the general definition of 3NF, since by FD4, Area -> Price. However, (a) Area is not a superkey of LOTS2; AND, (b) Price is not a prime attribute of LOTS2. Therefore we further break LOTS1 into LOTS1A and LOTS1B to achieve 3NF. Acknowledgements: The notes have been based (with minor modifications) on lecture notes of Prof Navathe, as distributed by Dr. Kamal Karlapalem for COMP231, HKUST.

Functional Dependencies and Normalization for Relational Databases Design & Analysis of Database Systems

Functional Dependencies and Normalization for Relational Databases Design & Analysis of Database Systems Functional Dependencies and Normalization for Relational Databases 406.426 Design & Analysis of Database Systems Jonghun Park jonghun@snu.ac.kr Dept. of Industrial Engineering Seoul National University

More information

Chapter 10. Normalization. Chapter Outline. Chapter Outline(contd.)

Chapter 10. Normalization. Chapter Outline. Chapter Outline(contd.) Chapter 10 Normalization Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant Information in Tuples and Update Anomalies 1.3 Null

More information

Relational Database design. Slides By: Shree Jaswal

Relational Database design. Slides By: Shree Jaswal Relational Database design Slides By: Shree Jaswal Topics: Design guidelines for relational schema, Functional Dependencies, Definition of Normal Forms- 1NF, 2NF, 3NF, BCNF, Converting Relational Schema

More information

Chapter 14. Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies

Chapter 14. Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies Chapter 14 Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies Copyright 2012 Ramez Elmasri and Shamkant B. Navathe Chapter Outline 1 Informal Design Guidelines

More information

Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2

Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2 Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2 Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Chapter 10. Chapter Outline. Chapter Outline. Functional Dependencies and Normalization for Relational Databases

Chapter 10. Chapter Outline. Chapter Outline. Functional Dependencies and Normalization for Relational Databases Chapter 10 Functional Dependencies and Normalization for Relational Databases Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Informal Design Guidelines for Relational Databases

Informal Design Guidelines for Relational Databases Outline Informal Design Guidelines for Relational Databases Semantics of the Relation Attributes Redundant Information in Tuples and Update Anomalies Null Values in Tuples Spurious Tuples Functional Dependencies

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 14 Basics of Functional Dependencies and Normalization for Relational Databases Slide 14-2 Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1 Semantics of the Relation Attributes

More information

Functional Dependencies and. Databases. 1 Informal Design Guidelines for Relational Databases. 4 General Normal Form Definitions (For Multiple Keys)

Functional Dependencies and. Databases. 1 Informal Design Guidelines for Relational Databases. 4 General Normal Form Definitions (For Multiple Keys) 1 / 13 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant d Information in Tuples and Update Anomalies 1.3 Null Values in Tuples 1.4 Spurious Tuples

More information

Normalization. Murali Mani. What and Why Normalization? To remove potential redundancy in design

Normalization. Murali Mani. What and Why Normalization? To remove potential redundancy in design 1 Normalization What and Why Normalization? To remove potential redundancy in design Redundancy causes several anomalies: insert, delete and update Normalization uses concept of dependencies Functional

More information

Mapping ER Diagrams to. Relations (Cont d) Mapping ER Diagrams to. Exercise. Relations. Mapping ER Diagrams to Relations (Cont d) Exercise

Mapping ER Diagrams to. Relations (Cont d) Mapping ER Diagrams to. Exercise. Relations. Mapping ER Diagrams to Relations (Cont d) Exercise CSC 74 Database Management Systems Topic #6: Database Design Weak Entity Type E Create a relation R Include all simple attributes and simple components of composite attributes. Include the primary key

More information

Functional Dependencies & Normalization for Relational DBs. Truong Tuan Anh CSE-HCMUT

Functional Dependencies & Normalization for Relational DBs. Truong Tuan Anh CSE-HCMUT Functional Dependencies & Normalization for Relational DBs Truong Tuan Anh CSE-HCMUT 1 2 Contents 1 Introduction 2 Functional dependencies (FDs) 3 Normalization 4 Relational database schema design algorithms

More information

Chapter 14 Outline. Normalization for Relational Databases: Outline. Chapter 14: Basics of Functional Dependencies and

Chapter 14 Outline. Normalization for Relational Databases: Outline. Chapter 14: Basics of Functional Dependencies and Ramez Elmasri, Shamkant B. Navathe(2016) Fundamentals of Database Systems (7th Edition), pearson, isbn 10: 0-13-397077-9;isbn-13:978-0-13-397077-7. Chapter 14: Basics of Functional Dependencies and Normalization

More information

UNIT 3 DATABASE DESIGN

UNIT 3 DATABASE DESIGN UNIT 3 DATABASE DESIGN Objective To study design guidelines for relational databases. To know about Functional dependencies. To have an understanding on First, Second, Third Normal forms To study about

More information

Database Design Theory and Normalization. CS 377: Database Systems

Database Design Theory and Normalization. CS 377: Database Systems Database Design Theory and Normalization CS 377: Database Systems Recap: What Has Been Covered Lectures 1-2: Database Overview & Concepts Lecture 4: Representational Model (Relational Model) & Mapping

More information

MODULE: 3 FUNCTIONAL DEPENDENCIES

MODULE: 3 FUNCTIONAL DEPENDENCIES MODULE: 3 (13 hours) Database design: functional dependencies - Inference Rules for Functional Dependencies - Closure -- Minimal Cover -Normal forms First-second and third normal forms Boyce- Codd normal

More information

COSC Dr. Ramon Lawrence. Emp Relation

COSC Dr. Ramon Lawrence. Emp Relation COSC 304 Introduction to Database Systems Normalization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Normalization Normalization is a technique for producing relations

More information

Dr. Anis Koubaa. Advanced Databases SE487. Prince Sultan University

Dr. Anis Koubaa. Advanced Databases SE487. Prince Sultan University Advanced Databases Prince Sultan University College of Computer and Information Sciences Fall 2013 Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases Anis Koubaa SE487

More information

Guideline 1: Semantic of the relation attributes Do not mix attributes from distinct real world. example

Guideline 1: Semantic of the relation attributes Do not mix attributes from distinct real world. example Design guidelines for relational schema Semantic of the relation attributes Do not mix attributes from distinct real world Design a relation schema so that it is easy to explain its meaning. Do not combine

More information

Relational Design 1 / 34

Relational Design 1 / 34 Relational Design 1 / 34 Relational Design Basic design approaches. What makes a good design better than a bad design? How do we tell we have a "good" design? How to we go about creating a good design?

More information

Relational Model. CS 377: Database Systems

Relational Model. CS 377: Database Systems Relational Model CS 377: Database Systems ER Model: Recap Recap: Conceptual Models A high-level description of the database Sufficiently precise that technical people can understand it But, not so precise

More information

The Relational Data Model and Relational Database Constraints

The Relational Data Model and Relational Database Constraints CHAPTER 5 The Relational Data Model and Relational Database Constraints Copyright 2017 Ramez Elmasri and Shamkant B. Navathe Slide 1-2 Chapter Outline Relational Model Concepts Relational Model Constraints

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Relational Databases: Tuples, Tables, Schemas, Relational Algebra Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Overview

More information

CS 2451 Database Systems: Database and Schema Design

CS 2451 Database Systems: Database and Schema Design CS 2451 Database Systems: Database and Schema Design http://www.seas.gwu.edu/~bhagiweb/cs2541 Spring 2018 Instructor: Dr. Bhagi Narahari Relational Model: Definitions Review Relations/tables, Attributes/Columns,

More information

The strategy for achieving a good design is to decompose a badly designed relation appropriately.

The strategy for achieving a good design is to decompose a badly designed relation appropriately. The strategy for achieving a good design is to decompose a badly designed relation appropriately. Functional Dependencies The single most important concept in relational schema design theory is that of

More information

Chapter 5. The Relational Data Model and Relational Database Constraints. Slide 5-١. Copyright 2007 Ramez Elmasri and Shamkant B.

Chapter 5. The Relational Data Model and Relational Database Constraints. Slide 5-١. Copyright 2007 Ramez Elmasri and Shamkant B. Slide 5-١ Chapter 5 The Relational Data Model and Relational Database Constraints Chapter Outline Relational Model Concepts Relational Model Constraints and Relational Database Schemas Update Operations

More information

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 5-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 5-1 Slide 5-1 Chapter 5 The Relational Data Model and Relational Database Constraints Chapter Outline Relational Model Concepts Relational Model Constraints and Relational Database Schemas Update Operations

More information

01/01/2017. Chapter 5: The Relational Data Model and Relational Database Constraints: Outline. Chapter 5: Relational Database Constraints

01/01/2017. Chapter 5: The Relational Data Model and Relational Database Constraints: Outline. Chapter 5: Relational Database Constraints Chapter 5: The Relational Data Model and Relational Database Constraints: Outline Ramez Elmasri, Shamkant B. Navathe(2017) Fundamentals of Database Systems (7th Edition),pearson, isbn 10: 0-13-397077-9;isbn-13:978-0-13-397077-7.

More information

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 5-1

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 5-1 Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 5-1 Chapter 5 The Relational Data Model and Relational Database Constraints Copyright 2007 Pearson Education, Inc. Publishing

More information

CS403- Database Management Systems Solved Objective Midterm Papers For Preparation of Midterm Exam

CS403- Database Management Systems Solved Objective Midterm Papers For Preparation of Midterm Exam CS403- Database Management Systems Solved Objective Midterm Papers For Preparation of Midterm Exam Question No: 1 ( Marks: 1 ) - Please choose one Which of the following is NOT a feature of Context DFD?

More information

COSC 304 Introduction to Database Systems. Entity-Relationship Modeling

COSC 304 Introduction to Database Systems. Entity-Relationship Modeling COSC 304 Introduction to Database Systems Entity-Relationship Modeling Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Conceptual Database Design Conceptual database design

More information

Databases -Normalization I. (GF Royle, N Spadaccini ) Databases - Normalization I 1 / 24

Databases -Normalization I. (GF Royle, N Spadaccini ) Databases - Normalization I 1 / 24 Databases -Normalization I (GF Royle, N Spadaccini 2006-2010) Databases - Normalization I 1 / 24 This lecture This lecture introduces normal forms, decomposition and normalization. We will explore problems

More information

Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA

Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA Chapter 6: Relational Data Model and Relational Algebra 1 Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA RELATIONAL MODEL CONCEPTS The relational model represents the database as a collection

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms M. Tamer Özsu David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Fall 2012 CS 348 Schema Refinement

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms Grant Weddell Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Spring 2016 CS 348 (Intro to DB Mgmt)

More information

TDDD12 Databasteknik Föreläsning 4: Normalisering

TDDD12 Databasteknik Föreläsning 4: Normalisering What is Good Design TDDD12 Databasteknik Föreläsning 4: Normalisering Can we be sure that the translation from the EER diagram to relational tables results in a good database design? Or: Confronted with

More information

CMP-3440 Database Systems

CMP-3440 Database Systems CMP-3440 Database Systems Logical Design Lecture 03 zain 1 Database Design Process Application 1 Conceptual requirements Application 1 External Model Application 2 Application 3 Application 4 External

More information

This lecture. Databases -Normalization I. Repeating Data. Redundancy. This lecture introduces normal forms, decomposition and normalization.

This lecture. Databases -Normalization I. Repeating Data. Redundancy. This lecture introduces normal forms, decomposition and normalization. This lecture Databases -Normalization I This lecture introduces normal forms, decomposition and normalization (GF Royle 2006-8, N Spadaccini 2008) Databases - Normalization I 1 / 23 (GF Royle 2006-8, N

More information

Relational Design: Characteristics of Well-designed DB

Relational Design: Characteristics of Well-designed DB 1. Minimal duplication Relational Design: Characteristics of Well-designed DB Consider table newfaculty (Result of F aculty T each Course) Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz 20000 Cotts

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms Grant Weddell David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Spring 2012 CS 348 (Intro to

More information

CS403- Database Management Systems Solved MCQS From Midterm Papers. CS403- Database Management Systems MIDTERM EXAMINATION - Spring 2010

CS403- Database Management Systems Solved MCQS From Midterm Papers. CS403- Database Management Systems MIDTERM EXAMINATION - Spring 2010 CS403- Database Management Systems Solved MCQS From Midterm Papers April 29,2012 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 CS403- Database Management Systems MIDTERM EXAMINATION - Spring

More information

Translation of ER-diagram into Relational Schema. Dr. Sunnie S. Chung CIS430/530

Translation of ER-diagram into Relational Schema. Dr. Sunnie S. Chung CIS430/530 Translation of ER-diagram into Relational Schema Dr. Sunnie S. Chung CIS430/530 Learning Objectives Define each of the following database terms Relation Primary key Foreign key Referential integrity Field

More information

PES Institute of Technology Bangalore South Campus (1 K.M before Electronic City,Bangalore ) Department of MCA. Solution Set - Test-II

PES Institute of Technology Bangalore South Campus (1 K.M before Electronic City,Bangalore ) Department of MCA. Solution Set - Test-II PES Institute of Technology Bangalore South Campus (1 K.M before Electronic City,Bangalore 560100 ) Solution Set - Test-II Sub: Database Management Systems 16MCA23 Date: 04/04/2017 Sem & Section:II Duration:

More information

CS 377 Database Systems

CS 377 Database Systems CS 377 Database Systems Relational Data Model Li Xiong Department of Mathematics and Computer Science Emory University 1 Outline Relational Model Concepts Relational Model Constraints Relational Database

More information

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2013

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2013 Q.2 (a) What are the different types of database end users? Discuss the main activities of each. End users are the people whose jobs require access to the database for querying, updating, and generating

More information

Database Management System (15ECSC208) UNIT I: Chapter 2: Relational Data Model and Relational Algebra

Database Management System (15ECSC208) UNIT I: Chapter 2: Relational Data Model and Relational Algebra Database Management System (15ECSC208) UNIT I: Chapter 2: Relational Data Model and Relational Algebra Relational Data Model and Relational Constraints Part 1 A simplified diagram to illustrate the main

More information

COSC344 Database Theory and Applications. σ a= c (P) S. Lecture 4 Relational algebra. π A, P X Q. COSC344 Lecture 4 1

COSC344 Database Theory and Applications. σ a= c (P) S. Lecture 4 Relational algebra. π A, P X Q. COSC344 Lecture 4 1 COSC344 Database Theory and Applications σ a= c (P) S π A, C (H) P P X Q Lecture 4 Relational algebra COSC344 Lecture 4 1 Overview Last Lecture Relational Model This Lecture ER to Relational mapping Relational

More information

FUNCTIONAL DEPENDENCIES CHAPTER , 15.5 (6/E) CHAPTER , 10.5 (5/E)

FUNCTIONAL DEPENDENCIES CHAPTER , 15.5 (6/E) CHAPTER , 10.5 (5/E) FUNCTIONAL DEPENDENCIES CHAPTER 15.1-15.2, 15.5 (6/E) CHAPTER 10.1-10.2, 10.5 (5/E) 4 LECTURE OUTLINE Design guidelines for relation schemas Functional dependencies Definition and interpretation Formal

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to this

More information

RELATIONAL DATA MODEL

RELATIONAL DATA MODEL RELATIONAL DATA MODEL 3.1 Introduction The relational model of data was introduced by Codd (1970). It is based on a simple and uniform data structure - the relation - and has a solid theoretical and mathematical

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to

More information

Let s briefly review important EER inheritance concepts

Let s briefly review important EER inheritance concepts Let s briefly review important EER inheritance concepts 1 is-a relationship Copyright (c) 2011 Pearson Education 2 Basic Constraints Partial / Disjoint: Single line / d in circle Each entity can be an

More information

KINGDOM OF SAUDI ARABIA-JAZAN UNIVERSITY COLLEGE OF COMPUTER SCIENCE & INFORMATION SYSTEMS 221 INFS 3 DATABASE SYSTEMS-1 REVIEW QUESTIONS

KINGDOM OF SAUDI ARABIA-JAZAN UNIVERSITY COLLEGE OF COMPUTER SCIENCE & INFORMATION SYSTEMS 221 INFS 3 DATABASE SYSTEMS-1 REVIEW QUESTIONS KINGDOM OF SAUDI ARABIA-JAZAN UNIVERSITY COLLEGE OF COMPUTER SCIENCE & INFORMATION SYSTEMS 221 INFS 3 DATABASE SYSTEMS-1 REVIEW QUESTIONS Chapter 1: Databases and Database Users 1. Define the following

More information

CSE 562 Database Systems

CSE 562 Database Systems Goal CSE 562 Database Systems Question: The relational model is great, but how do I go about designing my database schema? Database Design Some slides are based or modified from originals by Magdalena

More information

In Chapters 3 through 6, we presented various aspects

In Chapters 3 through 6, we presented various aspects 15 chapter Basics of Functional Dependencies and Normalization for Relational Databases In Chapters 3 through 6, we presented various aspects of the relational model and the languages associated with it.

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) The Relational Model Lecture 3, January 18, 2015 Mohammad Hammoud Today Last Session: The entity relationship (ER) model Today s Session: ER model (Cont d): conceptual design

More information

The Relational Model. Chapter 3. Comp 521 Files and Databases Fall

The Relational Model. Chapter 3. Comp 521 Files and Databases Fall The Relational Model Chapter 3 Comp 521 Files and Databases Fall 2012 1 Why Study the Relational Model? Most widely used model by industry. IBM, Informix, Microsoft, Oracle, Sybase, etc. It is simple,

More information

The Relational Data Model and Relational Database Constraints

The Relational Data Model and Relational Database Constraints The Relational Data Model and Relational Database Constraints First introduced by Ted Codd from IBM Research in 1970, seminal paper, which introduced the Relational Model of Data representation. It is

More information

Chapter 5. Relational Model Concepts 5/2/2008. Chapter Outline. Relational Database Constraints

Chapter 5. Relational Model Concepts 5/2/2008. Chapter Outline. Relational Database Constraints Chapter 5 The Relational Data Model and Relational Database Constraints Copyright 2004 Pearson Education, Inc. Chapter Outline Relational Model Concepts Relational Model Constraints and Relational Database

More information

Chapter 5. Relational Model Concepts 9/4/2012. Chapter Outline. The Relational Data Model and Relational Database Constraints

Chapter 5. Relational Model Concepts 9/4/2012. Chapter Outline. The Relational Data Model and Relational Database Constraints Chapter 5 The Relational Data Model and Relational Database Constraints Copyright 2004 Pearson Education, Inc. Chapter Outline Relational Model Constraints and Relational Database Schemas Update Operations

More information

CS411 Database Systems. 05: Relational Schema Design Ch , except and

CS411 Database Systems. 05: Relational Schema Design Ch , except and CS411 Database Systems 05: Relational Schema Design Ch. 3.1-3.5, except 3.4.2-3.4.3 and 3.5.3. 1 How does this fit in? ER Diagrams: Data Definition Translation to Relational Schema: Data Definition Relational

More information

CS 338 Functional Dependencies

CS 338 Functional Dependencies CS 338 Functional Dependencies Bojana Bislimovska Winter 2016 Outline Design Guidelines for Relation Schemas Functional Dependency Set and Attribute Closure Schema Decomposition Boyce-Codd Normal Form

More information

Translation of ER-diagram into Relational Schema. Dr. Sunnie S. Chung CIS430/530

Translation of ER-diagram into Relational Schema. Dr. Sunnie S. Chung CIS430/530 Translation of ER-diagram into Relational Schema Dr. Sunnie S. Chung CIS430/530 Learning Objectives Define each of the following database terms 9.2 Relation Primary key Foreign key Referential integrity

More information

Lecture5 Functional Dependencies and Normalization for Relational Databases

Lecture5 Functional Dependencies and Normalization for Relational Databases College of Computer and Information Sciences - Information Systems Dept. Lecture5 Functional Dependencies and Normalization for Relational Databases Ref. Chapter14-15 Prepared by L. Nouf Almujally & Aisha

More information

More Relational Algebra

More Relational Algebra More Relational Algebra LECTURE 6 Dr. Philipp Leitner philipp.leitner@chalmers.se @xleitix LECTURE 6 Covers Parts of Chapter 8 Parts of Chapter 14 (high-level!) Please read this up until next lecture!

More information

The Basic (Flat) Relational Model. Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Basic (Flat) Relational Model. Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley The Basic (Flat) Relational Model Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 3 Outline The Relational Data Model and Relational Database Constraints Relational

More information

V. Database Design CS448/ How to obtain a good relational database schema

V. Database Design CS448/ How to obtain a good relational database schema V. How to obtain a good relational database schema Deriving new relational schema from ER-diagrams Normal forms: use of constraints in evaluating existing relational schema CS448/648 1 Translating an E-R

More information

CSE 132A Database Systems Principles

CSE 132A Database Systems Principles CSE 132A Database Systems Principles Prof. Alin Deutsch RELATIONAL DATA MODEL Some slides are based or modified from originals by Elmasri and Navathe, Fundamentals of Database Systems, 4th Edition 2004

More information

Normalization. VI. Normalization of Database Tables. Need for Normalization. Normalization Process. Review of Functional Dependence Concepts

Normalization. VI. Normalization of Database Tables. Need for Normalization. Normalization Process. Review of Functional Dependence Concepts VI. Normalization of Database Tables Normalization Evaluating and correcting relational schema designs to minimize data redundancies Reduces data anomalies Assigns attributes to tables based on functional

More information

The Relational Model

The Relational Model The Relational Model UVic C SC 370, Fall 2002 Daniel M. German Department of Computer Science University of Victoria 3 1 The Relational Model CSC 370 dmgerman@uvic.ca Overview How is data represented in

More information

CSIT5300: Advanced Database Systems

CSIT5300: Advanced Database Systems CSIT5300: Advanced Database Systems L02: Relational Data Model Dr. Kenneth LEUNG Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong SAR, China kwtleung@cse.ust.hk

More information

COSC344 Database Theory and Applications. σ a= c (P) Lecture 3 The Relational Data. Model. π A, COSC344 Lecture 3 1

COSC344 Database Theory and Applications. σ a= c (P) Lecture 3 The Relational Data. Model. π A, COSC344 Lecture 3 1 COSC344 Database Theory and Applications σ a= c (P) S P Lecture 3 The Relational Data π A, C (H) Model COSC344 Lecture 3 1 Overview Last Lecture Database design ER modelling This Lecture Relational model

More information

Unit 3 : Relational Database Design

Unit 3 : Relational Database Design Unit 3 : Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Content Relational Model: Basic concepts, Attributes and Domains, CODD's Rules, Relational

More information

The Entity-Relationship (ER) Model 2

The Entity-Relationship (ER) Model 2 The Entity-Relationship (ER) Model 2 Week 2 Professor Jessica Lin Keys Differences between entities must be expressed in terms of attributes. A superkey is a set of one or more attributes which, taken

More information

The Relational Model. Chapter 3. Comp 521 Files and Databases Fall

The Relational Model. Chapter 3. Comp 521 Files and Databases Fall The Relational Model Chapter 3 Comp 521 Files and Databases Fall 2014 1 Why the Relational Model? Most widely used model by industry. IBM, Informix, Microsoft, Oracle, Sybase, MySQL, Postgres, Sqlite,

More information

ER Model. Objectives (2/2) Electricite Du Laos (EDL) Dr. Kanda Runapongsa Saikaew, Computer Engineering, KKU 1

ER Model. Objectives (2/2) Electricite Du Laos (EDL) Dr. Kanda Runapongsa Saikaew, Computer Engineering, KKU 1 ER Model Asst. Prof. Dr. Kanda Runapongsa Saikaew (krunapon@kku.ac.th) Dept of Computer Engineering Khon Kaen University Objectives (1/2) Relational Data Model Terminology of relational data model How

More information

Advanced Databases (SE487) Prince Sultan University College of Computer and Information Sciences

Advanced Databases (SE487) Prince Sultan University College of Computer and Information Sciences Advanced Databases (SE487) Prince Sultan University College of Computer and Information Sciences ER to Relational Mapping Anis Koubaa Chapter 9 Outline } Relational Database Design Using ER-to-Relational

More information

CSC 742 Database Management Systems

CSC 742 Database Management Systems CSC 742 Database Management Systems Topic #5: Relational Model Spring 2002 CSC 742: DBMS by Dr. Peng Ning 1 Motivation A relation is a mathematical abstraction for a table The theory of relations provides

More information

Conceptual Database Design. COSC 304 Introduction to Database Systems. Entity-Relationship Modeling. Entity-Relationship Modeling

Conceptual Database Design. COSC 304 Introduction to Database Systems. Entity-Relationship Modeling. Entity-Relationship Modeling COSC 304 Introduction to Database Systems Entity-Relationship Modeling Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Conceptual Database Design Conceptual database design

More information

SVY227: Databases for GIS

SVY227: Databases for GIS SVY227: Databases for GIS Lecture 6: Relational Database Normalisation 2. Dr Stuart Barr School of Civil Engineering & Geosciences University of Newcastle upon Tyne. Email: S.L.Barr@ncl.ac.uk Lecture 6:

More information

customer = (customer_id, _ customer_name, customer_street,

customer = (customer_id, _ customer_name, customer_street, Relational Database Design COMPILED BY: RITURAJ JAIN The Banking Schema branch = (branch_name, branch_city, assets) customer = (customer_id, _ customer_name, customer_street, customer_city) account = (account_number,

More information

Database Management System

Database Management System Database Management System Lecture 4 Database Design Normalization and View * Some materials adapted from R. Ramakrishnan, J. Gehrke and Shawn Bowers Today s Agenda Normalization View Database Management

More information

The Relational Model. Chapter 3

The Relational Model. Chapter 3 The Relational Model Chapter 3 Why Study the Relational Model? Most widely used model. Systems: IBM DB2, Informix, Microsoft (Access and SQL Server), Oracle, Sybase, MySQL, etc. Legacy systems in older

More information

MIDTERM EXAMINATION Spring 2010 CS403- Database Management Systems (Session - 4) Ref No: Time: 60 min Marks: 38

MIDTERM EXAMINATION Spring 2010 CS403- Database Management Systems (Session - 4) Ref No: Time: 60 min Marks: 38 Student Info StudentID: Center: ExamDate: MIDTERM EXAMINATION Spring 2010 CS403- Database Management Systems (Session - 4) Ref No: 1356458 Time: 60 min Marks: 38 BC080402322 OPKST 5/28/2010 12:00:00 AM

More information

NORMALISATION (Relational Database Schema Design Revisited)

NORMALISATION (Relational Database Schema Design Revisited) NORMALISATION (Relational Database Schema Design Revisited) Designing an ER Diagram is fairly intuitive, and faithfully following the steps to map an ER diagram to tables may not always result in the best

More information

ITCS 3160 DATA BASE DESIGN AND IMPLEMENTATION

ITCS 3160 DATA BASE DESIGN AND IMPLEMENTATION ITCS 3160 DATA BASE DESIGN AND IMPLEMENTATION JING YANG 2010 FALL Class 3: The Relational Data Model and Relational Database Constraints Outline 2 The Relational Data Model and Relational Database Constraints

More information

The Relational Model

The Relational Model The Relational Model UVic C SC 370, Fall 2002 Daniel M. German Department of Computer Science University of Victoria September 25, 2002 Version: 1.03 3 1 The Relational Model (1.03) CSC 370 dmgerman@uvic.ca

More information

Chapter 8: Relational Database Design

Chapter 8: Relational Database Design Chapter 8: Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 8: Relational Database Design Features of Good Relational Design Atomic Domains

More information

High Level Database Models

High Level Database Models ICS 321 Fall 2011 High Level Database Models Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 9/21/2011 Lipyeow Lim -- University of Hawaii at Manoa 1 Database

More information

The Relational Model 2. Week 3

The Relational Model 2. Week 3 The Relational Model 2 Week 3 1 We have seen how to create a database schema, how do we create an actual database on our computers? professor(pid : string, name : string) course(pid : string, number :

More information

The Relational Model. Chapter 3. Database Management Systems, R. Ramakrishnan and J. Gehrke 1

The Relational Model. Chapter 3. Database Management Systems, R. Ramakrishnan and J. Gehrke 1 The Relational Model Chapter 3 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.

More information

Lecture4: Guidelines for good relational design Mapping ERD to Relation. Ref. Chapter3

Lecture4: Guidelines for good relational design Mapping ERD to Relation. Ref. Chapter3 College of Computer and Information Sciences - Information Systems Dept. Lecture4: Guidelines for good relational design Mapping ERD to Relation. Ref. Chapter3 Prepared by L. Nouf Almujally & Aisha AlArfaj

More information

UNIT 2 RELATIONAL MODEL

UNIT 2 RELATIONAL MODEL UNIT 2 RELATIONAL MODEL RELATIONAL MODEL CONCEPTS The relational Model of Data is based on the concept of a Relation. A Relation is a mathematical concept based on the ideas of sets. The strength of the

More information

Functional Dependencies and Normalization

Functional Dependencies and Normalization Functional Dependencies and Normalization Jose M. Peña jose.m.pena@liu.se Overview Real world Databases DBMS Model Physical database Queries Processing of queries and updates Access to stored data Answers

More information

FUNCTIONAL DEPENDENCIES

FUNCTIONAL DEPENDENCIES FUNCTIONAL DEPENDENCIES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? Database Design Theory: Functional Dependencies Armstrong s rules The Closure Algorithm

More information

Data Modeling. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Data Modeling. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Data Modeling Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Outline v Conceptual Design: ER Model v Relational Model v Logical Design: from ER to Relational 2 Conceptual

More information

CS430 Final March 14, 2005

CS430 Final March 14, 2005 Name: W#: CS430 Final March 14, 2005 Write your answers in the space provided. Use the back of the page if you need more space. Values of questions are as indicated. 1. (4 points) What are the four ACID

More information

Relational Model and Relational Algebra. Rose-Hulman Institute of Technology Curt Clifton

Relational Model and Relational Algebra. Rose-Hulman Institute of Technology Curt Clifton Relational Model and Relational Algebra Rose-Hulman Institute of Technology Curt Clifton Administrative Notes Grading Weights Schedule Updated Review ER Design Techniques Avoid redundancy and don t duplicate

More information

Relational Database Systems Part 01. Karine Reis Ferreira

Relational Database Systems Part 01. Karine Reis Ferreira Relational Database Systems Part 01 Karine Reis Ferreira karine@dpi.inpe.br Aula da disciplina Computação Aplicada I (CAP 241) 2016 Database System Database: is a collection of related data. represents

More information

Database Management System 15

Database Management System 15 Database Management System 15 Trivial and Non-Trivial Canonical /Minimal School of Computer Engineering, KIIT University 15.1 First characterize fully the data requirements of the prospective database

More information