Weaving Relations for Cache Performance

Size: px
Start display at page:

Download "Weaving Relations for Cache Performance"

Transcription

1 Weaving Relations for Cache Performance Anastassia Ailamaki Carnegie Mellon David DeWitt, Mark Hill, and Marios Skounakis University of Wisconsin-Madison

2 Memory Hierarchies PROCESSOR EXECUTION PIPELINE MAIN MEMORY

3 Memory Hierarchies PROCESSOR EXECUTION PIPELINE L1 I-CACHE L1 D-CACHE L2 CACHE $$$ MAIN MEMORY Cache misses are etremely epensive

4 Processor/Memory Speed Gap cycles per instruction VAX 11/780 CPI memory latency Pentium II Xeon Memory latency 1 access to memory # 1000 instruction opportunities

5 Breakdown of Memory Delays PII Xeon running NT 4.0, 4 commercial DBMSs: A,B,C,D Memory-related delays: 40%-80% of eecution time Range Selection (no inde) Range selection (clustered inde) Join (no inde) Memory stall time (%) 100% 80% 60% 40% 20% 0% 100% 80% 60% 40% 20% 0% 100% 80% 60% 40% 20% 0% A B C D DBMS A B C D DBMS A B C D DBMS L1 Data L2 Data L1 Instruction L2 Instruction Data accesses on caches: 19%-86% of memory stalls

6 Data Placement on Disk Pages Slotted Pages: Used by all commercial DBMSs 9 Store table records sequentially - Intra-record locality (attributes of record r together) / Doesn t work well on today s memory hierarchies Alternative: Vertical partitioning [Copeland 85] 9 Store n-attribute table as n single-attribute tables - Inter-record locality, saves unnecessary I/O / Destroys intra-record locality => epensive to reconstruct record Contribution: Partition Attributes Across - have the cake and eat it, too Inter-record locality + low record reconstruction cost

7 Outline The memory/processor speed gap What s wrong with slotted pages? Partition Attributes Across (PAX) Performance results Summary

8 Current Scheme: Slotted Pages Formal name: NSM (N-ary Storage Model) R PAGE HEADER RH ,' 661 1DPH -DQH $JH Jane 30 RH John 45 RH Jim 20 RH4 -RKQ 7658 Susan 52 -LP 6XVDQ /HRQ 'DQ Records are stored sequentially Offsets to start of each record at end of page

9 Predicate Evaluation using NSM PAGE HEADER RH Jane 30 RH John 45 RH Jim 20 RH4 Jane 30 RH block 1 45 RH block Susan Leon Jim 20 RH4 block Leon block 4 CACHE MAIN MEMORY VHOHFW QDPH IURP 5 ZKHUH DJH! NSM pushes non-referenced data to the cache

10 Need New Data Page Layout Eliminates unnecessary memory accesses Improves inter-record locality Keeps a record s fields together Does not affect I/O performance and, most importantly, is low-implementation-cost, high-impact

11 Partition Attributes Across (PAX) NSM PAGE PAX PAGE PAGE HEADER RH PAGE HEADER Jane 30 RH John RH Jim 20 RH Susan 52 Jane John Jim Susan Partition data within the page for spatial locality

12 Predicate Evaluation using PAX PAGE HEADER block 1 Jane John Jim Suzan CACHE VHOHFW QDPH IURP 5 MAIN MEMORY ZKHUH DJH! Fewer cache misses, low reconstruction cost

13 A Real NSM Record HEADER FIXED-LENGTH VALUES VARIABLE-LENGTH VALUES null bitmap, record length, etc offsets to variablelength fields NSM: All fields of record stored together + slots

14 PAX: Detailed Design # records free space attribute # attributes sizes pid v 4 f } Page Header F - Minipage Jane John presence bits v-offsets presence bits V - Minipage F - Minipage PAX: Group fields + amortizes record headers

15 Outline The memory/processor speed gap What s wrong with slotted pages? Partition Attributes Across (PAX) Performance results Summary

16 Sanity Check: Basic Evaluation Main-memory resident R, numeric fields Query: select avg (a i ) from R where a j >= Lo and a j <= Hi PII Xeon running Windows NT 4 16KB L1-I, 16KB L1-D, 512 KB L2, 512 MB RAM Used processor counters Implemented schemes on Shore Storage Manager Similar behavior to commercial Database Systems

17 Why Use Shore? Compare Shore query behavior with commercial DBMS Eecution time & memory delays (range selection) 100% Eecution time breakdown 100% Memory stall time breakdown % eecution time 80% 60% 40% 20% Memory stall time (%) 80% 60% 40% 20% 0% 0% A B C D Shore DBMS Computation Memory Branch mispr. Resource A B C D Shore DBMS L1 Data L2 Data L1 Instruction L2 Instruction We can use Shore to evaluate DSS workload behavior

18 Effect on Accessing Cache Data Cache data stalls Sensitivity to Selectivity stall cycles / record NSM PAX page layout L1 Data stalls L2 Data stalls stall cycles / record NSM L2 PAX L2 1% 5% 10% 20% 50% 100% selectivity PAX saves 70% of NSM s data cache penalty PAX reduces cache misses at both L1 and L2 Selectivity doesn t matter for PAX data stalls

19 Time and Sensitivity Analysis 1800 Eecution time breakdown 6 Sensitivity to # of attributes clock cycles per record Hardware Resource Branch Mispredict Memory Computation elapsed time (sec) NSM PAX NSM PAX page layout # of attributes in record PAX: 75% less memory penalty than NSM (10% of time) Eecution times converge as number of attrs increases

20 Evaluation Using a DSS Benchmark 100M, 200M, and 500M TPC-H DBs Queries: 1. Range Selections w/ variable parameters (RS) 2. TPC-H Q1 and Q6 sequential scans lots of aggregates (sum, avg, count) grouping/ordering of results 3. TPC-H Q12 and Q14 (Adaptive Hybrid) Hash Join comple where clause, conditional aggregates 128MB buffer pool

21 TPC-H Queries: Speedup PAX/NSM Speedup on PII/NT PAX/NSM Speedup 60% 45% 30% 15% 100 MB 200 MB 500 MB 0% RS Q1 Q6 Q12 Q14 Query PAX improves performance even with I/O Speedup differs across DB sizes

22 Updates Policy: Update in-place Variable-length: Shift when needed PAX only needs shift minipage data Update statement: update R set a p =a p + b where a q > Lo and a q < Hi

23 Updates: Speedup PAX/NSM Speedup on PII/NT PAX/NSM Speedup 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% 2% 10% 20% 50% 100% Number of updated attributes PAX always speeds queries up (7-17%) Lower selectivity => reads dominate speedup High selectivity => speedup dominated by write-backs

24 PAX: a low-cost, high-impact DP technique Performance Eliminates unnecessary memory references High utilization of cache space/bandwidth Faster than NSM (does not affect I/O) Usability Summary Orthogonal to other storage decisions Easy to implement in large eisting DBMSs

Bridging the Processor/Memory Performance Gap in Database Applications

Bridging the Processor/Memory Performance Gap in Database Applications Bridging the Processor/Memory Performance Gap in Database Applications Anastassia Ailamaki Carnegie Mellon http://www.cs.cmu.edu/~natassa Memory Hierarchies PROCESSOR EXECUTION PIPELINE L1 I-CACHE L1 D-CACHE

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance Weaving Relations for Cache Performance Anastassia Ailamaki Carnegie Mellon Computer Platforms in 198 Execution PROCESSOR 1 cycles/instruction Data and Instructions cycles

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance VLDB 2001, Rome, Italy Best Paper Award Weaving Relations for Cache Performance Anastassia Ailamaki David J. DeWitt Mark D. Hill Marios Skounakis Presented by: Ippokratis Pandis Bottleneck in DBMSs Processor

More information

Architecture-Conscious Database Systems

Architecture-Conscious Database Systems Architecture-Conscious Database Systems Anastassia Ailamaki Ph.D. Examination November 30, 2000 A DBMS on a 1980 Computer DBMS Execution PROCESSOR 10 cycles/instruction DBMS Data and Instructions 6 cycles

More information

Walking Four Machines by the Shore

Walking Four Machines by the Shore Walking Four Machines by the Shore Anastassia Ailamaki www.cs.cmu.edu/~natassa with Mark Hill and David DeWitt University of Wisconsin - Madison Workloads on Modern Platforms Cycles per instruction 3.0

More information

Data Page Layouts for Relational Databases on Deep Memory Hierarchies

Data Page Layouts for Relational Databases on Deep Memory Hierarchies Data Page Layouts for Relational Databases on Deep Memory Hierarchies Anastassia Ailamaki David J. DeWitt Mark D. Hill Carnegie Mellon University natassa@cmu.edu University of Wisconsin - Madison {dewitt,

More information

Column Stores - The solution to TB disk drives? David J. DeWitt Computer Sciences Dept. University of Wisconsin

Column Stores - The solution to TB disk drives? David J. DeWitt Computer Sciences Dept. University of Wisconsin Column Stores - The solution to TB disk drives? David J. DeWitt Computer Sciences Dept. University of Wisconsin Problem Statement TB disks are coming! Superwide, frequently sparse tables are common DB

More information

Architecture-Conscious Database Systems

Architecture-Conscious Database Systems Architecture-Conscious Database Systems 2009 VLDB Summer School Shanghai Peter Boncz (CWI) Sources Thank You! l l l l Database Architectures for New Hardware VLDB 2004 tutorial, Anastassia Ailamaki Query

More information

Anastasia Ailamaki. Performance and energy analysis using transactional workloads

Anastasia Ailamaki. Performance and energy analysis using transactional workloads Performance and energy analysis using transactional workloads Anastasia Ailamaki EPFL and RAW Labs SA students: Danica Porobic, Utku Sirin, and Pinar Tozun Online Transaction Processing $2B+ industry Characteristics:

More information

STEPS Towards Cache-Resident Transaction Processing

STEPS Towards Cache-Resident Transaction Processing STEPS Towards Cache-Resident Transaction Processing Stavros Harizopoulos joint work with Anastassia Ailamaki VLDB 2004 Carnegie ellon CPI OLTP workloads on modern CPUs 6 4 2 L2-I stalls L2-D stalls L1-I

More information

DBMSs on a Modern Processor: Where Does Time Go? Revisited

DBMSs on a Modern Processor: Where Does Time Go? Revisited DBMSs on a Modern Processor: Where Does Time Go? Revisited Matthew Becker Information Systems Carnegie Mellon University mbecker+@cmu.edu Naju Mancheril School of Computer Science Carnegie Mellon University

More information

Cache-Aware Database Systems Internals Chapter 7

Cache-Aware Database Systems Internals Chapter 7 Cache-Aware Database Systems Internals Chapter 7 1 Data Placement in RDBMSs A careful analysis of query processing operators and data placement schemes in RDBMS reveals a paradox: Workloads perform sequential

More information

Cache-Aware Database Systems Internals. Chapter 7

Cache-Aware Database Systems Internals. Chapter 7 Cache-Aware Database Systems Internals Chapter 7 Data Placement in RDBMSs A careful analysis of query processing operators and data placement schemes in RDBMS reveals a paradox: Workloads perform sequential

More information

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007.

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007. Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS Marcin Zukowski Sandor Heman, Niels Nes, Peter Boncz CWI, Amsterdam VLDB 2007 Outline Scans in a DBMS Cooperative Scans Benchmarks DSM version VLDB,

More information

June 2003 CMU-CS School of Computer Science. Carnegie Mellon University. Pittsburgh, PA Abstract

June 2003 CMU-CS School of Computer Science. Carnegie Mellon University. Pittsburgh, PA Abstract DBmbench: Fast and Accurate Database Workload Representation on Modern Microarchitecture Minglong Shao Anastassia Ailamaki Babak Falsafi Database Group Carnegie Mellon University Computer Architecture

More information

A Multi-resolution Block Storage Model for Database Design

A Multi-resolution Block Storage Model for Database Design A Multi-resolution Block Storage Model for Database Design Jingren Zhou Columbia University jrzhou@cs.columbia.edu Kenneth A. Ross Columbia University kar@cs.columbia.edu Abstract We propose a new storage

More information

Query co-processing on Commodity Processors. Processor Performance / Time. Focus of this tutorial

Query co-processing on Commodity Processors. Processor Performance / Time. Focus of this tutorial Query co-processing on Commodity Processors Anastassia Ailamaki Carnegie Mellon University Naga K. Govindaraju Dinesh Manocha University of North Carolina at Chapel Hill Processor Performance / Time Performance

More information

Physical Data Organization. Introduction to Databases CompSci 316 Fall 2018

Physical Data Organization. Introduction to Databases CompSci 316 Fall 2018 Physical Data Organization Introduction to Databases CompSci 316 Fall 2018 2 Announcements (Tue., Nov. 6) Homework #3 due today Project milestone #2 due Thursday No separate progress update this week Use

More information

Prefetch Threads for Database Operations on a Simultaneous Multi-threaded Processor

Prefetch Threads for Database Operations on a Simultaneous Multi-threaded Processor Prefetch Threads for Database Operations on a Simultaneous Multi-threaded Processor Kostas Papadopoulos December 11, 2005 Abstract Simultaneous Multi-threading (SMT) has been developed to increase instruction

More information

System R and the Relational Model

System R and the Relational Model IC-65 Advances in Database Management Systems Roadmap System R and the Relational Model Intro Codd s paper System R - design Anastasia Ailamaki www.cs.cmu.edu/~natassa 2 The Roots The Roots Codd (CACM

More information

DBMSs On A Modern Processor: Where Does Time Go?

DBMSs On A Modern Processor: Where Does Time Go? DBMSs On A Modern Processor: Where Does Time Go? Anastassia Ailamaki David J. DeWitt Mark D. Hill David A. Wood University of Wisconsin-Madison Computer Science Dept. 1210 W. Dayton St. Madison, WI 53706

More information

Column-Stores vs. Row-Stores: How Different Are They Really?

Column-Stores vs. Row-Stores: How Different Are They Really? Column-Stores vs. Row-Stores: How Different Are They Really? Daniel J. Abadi, Samuel Madden and Nabil Hachem SIGMOD 2008 Presented by: Souvik Pal Subhro Bhattacharyya Department of Computer Science Indian

More information

Column Stores vs. Row Stores How Different Are They Really?

Column Stores vs. Row Stores How Different Are They Really? Column Stores vs. Row Stores How Different Are They Really? Daniel J. Abadi (Yale) Samuel R. Madden (MIT) Nabil Hachem (AvantGarde) Presented By : Kanika Nagpal OUTLINE Introduction Motivation Background

More information

Data Morphing: An Adaptive, Cache-Conscious Storage Technique

Data Morphing: An Adaptive, Cache-Conscious Storage Technique Data Morphing: An Adaptive, Cache-Conscious Storage Technique Richard A. Hankins Jignesh M. Patel University of Michigan 1301 Beal Avenue; Ann Arbor, MI 48109-2122; USA {hankinsr, jignesh}@eecs.umich.edu

More information

Do Query Op5mizers Need to be SSD- aware?

Do Query Op5mizers Need to be SSD- aware? Do Query Op5mizers Need to be SSD- aware? Steven Pelley, Kristen LeFevre, Thomas F. Wenisch, University of Michigan CSE ADMS 2011 1 Enterprise flash: a new hope Disk Flash Model WD 10Krpm OCZ RevoDrive

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals: Part II Lecture 10, February 17, 2014 Mohammad Hammoud Last Session: DBMS Internals- Part I Today Today s Session: DBMS Internals- Part II Brief summaries

More information

Query Processing. Lecture #10. Andy Pavlo Computer Science Carnegie Mellon Univ. Database Systems / Fall 2018

Query Processing. Lecture #10. Andy Pavlo Computer Science Carnegie Mellon Univ. Database Systems / Fall 2018 Query Processing Lecture #10 Database Systems 15-445/15-645 Fall 2018 AP Andy Pavlo Computer Science Carnegie Mellon Univ. 2 ADMINISTRIVIA Project #2 Checkpoint #1 is due Monday October 9 th @ 11:59pm

More information

Database Systems. November 2, 2011 Lecture #7. topobo (mit)

Database Systems. November 2, 2011 Lecture #7. topobo (mit) Database Systems November 2, 2011 Lecture #7 1 topobo (mit) 1 Announcement Assignment #2 due today Assignment #3 out today & due on 11/16. Midterm exam in class next week. Cover Chapters 1, 2,

More information

Page 1. Memory Hierarchies (Part 2)

Page 1. Memory Hierarchies (Part 2) Memory Hierarchies (Part ) Outline of Lectures on Memory Systems Memory Hierarchies Cache Memory 3 Virtual Memory 4 The future Increasing distance from the processor in access time Review: The Memory Hierarchy

More information

Outline. Parallel Database Systems. Information explosion. Parallelism in DBMSs. Relational DBMS parallelism. Relational DBMSs.

Outline. Parallel Database Systems. Information explosion. Parallelism in DBMSs. Relational DBMS parallelism. Relational DBMSs. Parallel Database Systems STAVROS HARIZOPOULOS stavros@cs.cmu.edu Outline Background Hardware architectures and performance metrics Parallel database techniques Gamma Bonus: NCR / Teradata Conclusions

More information

Column Store Internals

Column Store Internals Column Store Internals Sebastian Meine SQL Stylist with sqlity.net sebastian@sqlity.net Outline Outline Column Store Storage Aggregates Batch Processing History 1 History First mention of idea to cluster

More information

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Database Management Systems need to:

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Database Management Systems need to: Storing : Disks and Files base Management System, R. Ramakrishnan and J. Gehrke 1 Storing and Retrieving base Management Systems need to: Store large volumes of data Store data reliably (so that data is

More information

Join Processing for Flash SSDs: Remembering Past Lessons

Join Processing for Flash SSDs: Remembering Past Lessons Join Processing for Flash SSDs: Remembering Past Lessons Jaeyoung Do, Jignesh M. Patel Department of Computer Sciences University of Wisconsin-Madison $/MB GB Flash Solid State Drives (SSDs) Benefits of

More information

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Chapter 7

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Chapter 7 Storing : Disks and Files Chapter 7 base Management Systems, R. Ramakrishnan and J. Gehrke 1 Storing and Retrieving base Management Systems need to: Store large volumes of data Store data reliably (so

More information

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes?

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes? Storing and Retrieving Storing : Disks and Files base Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve data efficiently Alternatives for

More information

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes?

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes? Storing and Retrieving Storing : Disks and Files Chapter 9 base Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve data efficiently Alternatives

More information

Join Processing for Flash SSDs: Remembering Past Lessons

Join Processing for Flash SSDs: Remembering Past Lessons Join Processing for Flash SSDs: Remembering Past essons Jaeyoung Do Univ. of Wisconsin-Madison jae@cs.wisc.edu Jignesh M. Patel Univ. of Wisconsin-Madison jignesh@cs.wisc.edu ABSTRACT Flash solid state

More information

Memory Hierarchy Motivation, Definitions, Four Questions about Memory Hierarchy

Memory Hierarchy Motivation, Definitions, Four Questions about Memory Hierarchy Memory Hierarchy Motivation, Definitions, Four Questions about Memory Hierarchy Soner Onder Michigan Technological University Randy Katz & David A. Patterson University of California, Berkeley Levels in

More information

I/O Characterization of Commercial Workloads

I/O Characterization of Commercial Workloads I/O Characterization of Commercial Workloads Kimberly Keeton, Alistair Veitch, Doug Obal, and John Wilkes Storage Systems Program Hewlett-Packard Laboratories www.hpl.hp.com/research/itc/csl/ssp kkeeton@hpl.hp.com

More information

PARALLEL & DISTRIBUTED DATABASES CS561-SPRING 2012 WPI, MOHAMED ELTABAKH

PARALLEL & DISTRIBUTED DATABASES CS561-SPRING 2012 WPI, MOHAMED ELTABAKH PARALLEL & DISTRIBUTED DATABASES CS561-SPRING 2012 WPI, MOHAMED ELTABAKH 1 INTRODUCTION In centralized database: Data is located in one place (one server) All DBMS functionalities are done by that server

More information

Advanced Database Systems

Advanced Database Systems Lecture IV Query Processing Kyumars Sheykh Esmaili Basic Steps in Query Processing 2 Query Optimization Many equivalent execution plans Choosing the best one Based on Heuristics, Cost Will be discussed

More information

Roadmap DB Sys. Design & Impl. Review. Detailed roadmap. Interface. Interface (cont d) Buffer Management - DBMIN

Roadmap DB Sys. Design & Impl. Review. Detailed roadmap. Interface. Interface (cont d) Buffer Management - DBMIN 15-721 DB Sys. Design & Impl. Buffer Management - DBMIN Christos Faloutsos www.cs.cmu.edu/~christos Roadmap 1) Roots: System R and Ingres 2) Implementation: buffering, indexing, q-opt 3) Transactions:

More information

EECS 470. Lecture 18. Simultaneous Multithreading. Fall 2018 Jon Beaumont

EECS 470. Lecture 18. Simultaneous Multithreading. Fall 2018 Jon Beaumont Lecture 18 Simultaneous Multithreading Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Falsafi, Hill, Hoe, Lipasti, Martin, Roth, Shen, Smith, Sohi,

More information

Storage. Holger Pirk

Storage. Holger Pirk Storage Holger Pirk Purpose of this lecture We are going down the rabbit hole now We are crossing the threshold into the system (No more rules without exceptions :-) Understand storage alternatives in-memory

More information

(Storage System) Access Methods Buffer Manager

(Storage System) Access Methods Buffer Manager 6.830 Lecture 5 9/20/2017 Project partners due next Wednesday. Lab 1 due next Monday start now!!! Recap Anatomy of a database system Major Components: Admission Control Connection Management ---------------------------------------(Query

More information

Chapter 2: Memory Hierarchy Design Part 2

Chapter 2: Memory Hierarchy Design Part 2 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

Parser. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text.

Parser. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text. Lifecycle of an SQL Query CSE 190D base System Implementation Arun Kumar Query Query Result

More information

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005] CSF Improving Cache Performance [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005] Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

CSE 190D Database System Implementation

CSE 190D Database System Implementation CSE 190D Database System Implementation Arun Kumar Topic 1: Data Storage, Buffer Management, and File Organization Chapters 8 and 9 (except 8.5.4 and 9.2) of Cow Book Slide ACKs: Jignesh Patel, Paris Koutris

More information

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Cache Memory COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline The Need for Cache Memory The Basics

More information

Chapter 05. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 05. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 05 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.

More information

CS 405G: Introduction to Database Systems. Storage

CS 405G: Introduction to Database Systems. Storage CS 405G: Introduction to Database Systems Storage It s all about disks! Outline That s why we always draw databases as And why the single most important metric in database processing is the number of disk

More information

Parallel DBMS. Chapter 22, Part A

Parallel DBMS. Chapter 22, Part A Parallel DBMS Chapter 22, Part A Slides by Joe Hellerstein, UCB, with some material from Jim Gray, Microsoft Research. See also: http://www.research.microsoft.com/research/barc/gray/pdb95.ppt Database

More information

Caching Basics. Memory Hierarchies

Caching Basics. Memory Hierarchies Caching Basics CS448 1 Memory Hierarchies Takes advantage of locality of reference principle Most programs do not access all code and data uniformly, but repeat for certain data choices spatial nearby

More information

Important Note. Today: Starting at the Bottom. DBMS Architecture. General HeapFile Operations. HeapFile In SimpleDB. CSE 444: Database Internals

Important Note. Today: Starting at the Bottom. DBMS Architecture. General HeapFile Operations. HeapFile In SimpleDB. CSE 444: Database Internals Important Note CSE : base Internals Lectures show principles Lecture storage and buffer management You need to think through what you will actually implement in SimpleDB! Try to implement the simplest

More information

Avrilia Floratou (University of Wisconsin Madison) Jignesh M. Patel (University of Wisconsin Madison) Willis Lang (University of Wisconsin Madison)

Avrilia Floratou (University of Wisconsin Madison) Jignesh M. Patel (University of Wisconsin Madison) Willis Lang (University of Wisconsin Madison) Avrilia Floratou (University of Wisconsin Madison) Jignesh M. Patel (University of Wisconsin Madison) Willis Lang (University of Wisconsin Madison) Alan Halverson (Microsoft Jim Gray Systems Lab) On-site

More information

Designing Database Operators for Flash-enabled Memory Hierarchies

Designing Database Operators for Flash-enabled Memory Hierarchies Designing Database Operators for Flash-enabled Memory Hierarchies Goetz Graefe Stavros Harizopoulos Harumi Kuno Mehul A. Shah Dimitris Tsirogiannis Janet L. Wiener Hewlett-Packard Laboratories, Palo Alto,

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 6 - Storage and Indexing

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 6 - Storage and Indexing CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 6 - Storage and Indexing References Generalized Search Trees for Database Systems. J. M. Hellerstein, J. F. Naughton

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 22: Direct Mapped Cache Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Intel 8-core i7-5960x 3 GHz, 8-core, 20 MB of cache, 140

More information

Announcements (March 1) Query Processing: A Systems View. Physical (execution) plan. Announcements (March 3) Physical plan execution

Announcements (March 1) Query Processing: A Systems View. Physical (execution) plan. Announcements (March 3) Physical plan execution Announcements (March 1) 2 Query Processing: A Systems View CPS 216 Advanced Database Systems Reading assignment due Wednesday Buffer management Homework #2 due this Thursday Course project proposal due

More information

Memory. Lecture 22 CS301

Memory. Lecture 22 CS301 Memory Lecture 22 CS301 Administrative Daily Review of today s lecture w Due tomorrow (11/13) at 8am HW #8 due today at 5pm Program #2 due Friday, 11/16 at 11:59pm Test #2 Wednesday Pipelined Machine Fetch

More information

Parallel DBMS. Prof. Yanlei Diao. University of Massachusetts Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Parallel DBMS. Prof. Yanlei Diao. University of Massachusetts Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Parallel DBMS Prof. Yanlei Diao University of Massachusetts Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke I. Parallel Databases 101 Rise of parallel databases: late 80 s Architecture: shared-nothing

More information

Meet the Walkers! Accelerating Index Traversals for In-Memory Databases"

Meet the Walkers! Accelerating Index Traversals for In-Memory Databases Meet the Walkers! Accelerating Index Traversals for In-Memory Databases Onur Kocberber Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, Parthasarathy Ranganathan Our World is Data-Driven! Data resides

More information

ECE7995 (6) Improving Cache Performance. [Adapted from Mary Jane Irwin s slides (PSU)]

ECE7995 (6) Improving Cache Performance. [Adapted from Mary Jane Irwin s slides (PSU)] ECE7995 (6) Improving Cache Performance [Adapted from Mary Jane Irwin s slides (PSU)] Measuring Cache Performance Assuming cache hit costs are included as part of the normal CPU execution cycle, then CPU

More information

Advanced Topics in Database Systems Performance. System R and the Relational Model

Advanced Topics in Database Systems Performance. System R and the Relational Model 15-823 Advanced Topics in Database Systems Performance System R and the Relational Model The Roots! Codd (CACM 70): Relational Model! Bachman (Turing Award, 1973): DBTG! (network model based on COBOL)!

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 17: Pipelining Wrapup Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Outline The textbook includes lots of information Focus on

More information

Processor Architecture V! Wrap-Up!

Processor Architecture V! Wrap-Up! Processor Architecture V! Wrap-Up! Lecture 7, April 28 th 2011 Alexandre David Slides by Randal E. Bryant! Carnegie Mellon University! Overview! Wrap-Up of PIPE Design! n Performance analysis! n Fetch

More information

Memory Hierarchy: Motivation

Memory Hierarchy: Motivation Memory Hierarchy: Motivation The gap between CPU performance and main memory speed has been widening with higher performance CPUs creating performance bottlenecks for memory access instructions. The memory

More information

Control Hazards. Prediction

Control Hazards. Prediction Control Hazards The nub of the problem: In what pipeline stage does the processor fetch the next instruction? If that instruction is a conditional branch, when does the processor know whether the conditional

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals: Part II Lecture 11, February 17, 2015 Mohammad Hammoud Last Session: DBMS Internals- Part I Today Today s Session: DBMS Internals- Part II A Brief Summary

More information

HW1 Solutions. Type Old Mix New Mix Cost CPI

HW1 Solutions. Type Old Mix New Mix Cost CPI HW1 Solutions Problem 1 TABLE 1 1. Given the parameters of Problem 6 (note that int =35% and shift=5% to fix typo in book problem), consider a strength-reducing optimization that converts multiplies by

More information

Chapter 2: Memory Hierarchy Design Part 2

Chapter 2: Memory Hierarchy Design Part 2 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

4.1 Introduction 4.3 Datapath 4.4 Control 4.5 Pipeline overview 4.6 Pipeline control * 4.7 Data hazard & forwarding * 4.

4.1 Introduction 4.3 Datapath 4.4 Control 4.5 Pipeline overview 4.6 Pipeline control * 4.7 Data hazard & forwarding * 4. Chapter 4: CPU 4.1 Introduction 4.3 Datapath 4.4 Control 4.5 Pipeline overview 4.6 Pipeline control * 4.7 Data hazard & forwarding * 4.8 Control hazard 4.14 Concluding Rem marks Hazards Situations that

More information

STORING DATA: DISK AND FILES

STORING DATA: DISK AND FILES STORING DATA: DISK AND FILES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? How does a DBMS store data? disk, SSD, main memory The Buffer manager controls how

More information

Disks, Memories & Buffer Management

Disks, Memories & Buffer Management Disks, Memories & Buffer Management The two offices of memory are collection and distribution. - Samuel Johnson CS3223 - Storage 1 What does a DBMS Store? Relations Actual data Indexes Data structures

More information

Jignesh M. Patel. Blog:

Jignesh M. Patel. Blog: Jignesh M. Patel Blog: http://bigfastdata.blogspot.com Go back to the design Query Cache from Processing for Conscious 98s Modern (at Algorithms Hardware least for Hash Joins) 995 24 2 Processor Processor

More information

Lecture notes for CS Chapter 2, part 1 10/23/18

Lecture notes for CS Chapter 2, part 1 10/23/18 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

Database Systems and Modern CPU Architecture

Database Systems and Modern CPU Architecture Database Systems and Modern CPU Architecture Prof. Dr. Torsten Grust Winter Term 2006/07 Hard Disk 2 RAM Administrativa Lecture hours (@ MI HS 2): Monday, 09:15 10:00 Tuesday, 14:15 15:45 No lectures on

More information

Erik Riedel Hewlett-Packard Labs

Erik Riedel Hewlett-Packard Labs Erik Riedel Hewlett-Packard Labs Greg Ganger, Christos Faloutsos, Dave Nagle Carnegie Mellon University Outline Motivation Freeblock Scheduling Scheduling Trade-Offs Performance Details Applications Related

More information

Multithreaded Architectures and The Sort Benchmark. Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University

Multithreaded Architectures and The Sort Benchmark. Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University Multithreaded Architectures and The Sort Benchmark Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University About our Sort Benchmark Based on the benchmark proposed in A measure

More information

CS122A: Introduction to Data Management. Lecture #14: Indexing. Instructor: Chen Li

CS122A: Introduction to Data Management. Lecture #14: Indexing. Instructor: Chen Li CS122A: Introduction to Data Management Lecture #14: Indexing Instructor: Chen Li 1 Indexing in MySQL (w/innodb) CREATE [UNIQUE FULLTEXT SPATIAL] INDEX index_name [index_type] ON tbl_name (index_col_name,...)

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Chapter 9 CSE 4411: Database Management Systems 1 Disks and Files DBMS stores information on ( 'hard ') disks. This has major implications for DBMS design! READ: transfer

More information

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications Last Class Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#12: External Sorting (R&G, Ch13) Static Hashing Extendible Hashing Linear Hashing Hashing

More information

Memory management units

Memory management units Memory management units Memory management unit (MMU) translates addresses: CPU logical address memory management unit physical address main memory Computers as Components 1 Access time comparison Media

More information

Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming. Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009

Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming. Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009 Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009 Agenda Introduction Memory Hierarchy Design CPU Speed vs.

More information

CSE 544: Principles of Database Systems

CSE 544: Principles of Database Systems CSE 544: Principles of Database Systems Anatomy of a DBMS, Parallel Databases 1 Announcements Lecture on Thursday, May 2nd: Moved to 9am-10:30am, CSE 403 Paper reviews: Anatomy paper was due yesterday;

More information

L9: Storage Manager Physical Data Organization

L9: Storage Manager Physical Data Organization L9: Storage Manager Physical Data Organization Disks and files Record and file organization Indexing Tree-based index: B+-tree Hash-based index c.f. Fig 1.3 in [RG] and Fig 2.3 in [EN] Functional Components

More information

Main-Memory Databases 1 / 25

Main-Memory Databases 1 / 25 1 / 25 Motivation Hardware trends Huge main memory capacity with complex access characteristics (Caches, NUMA) Many-core CPUs SIMD support in CPUs New CPU features (HTM) Also: Graphic cards, FPGAs, low

More information

Disks & Files. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Disks & Files. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Disks & Files Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke DBMS Architecture Query Parser Query Rewriter Query Optimizer Query Executor Lock Manager for Concurrency Access

More information

H2O: A Hands-free Adaptive Store

H2O: A Hands-free Adaptive Store H2O: A Hands-free Adaptive Store Ioannis Alagiannis Stratos Idreos Anastasia Ailamaki Ecole Polytechnique Fédérale de Lausanne {ioannis.alagiannis, anastasia.ailamaki}@epfl.ch Harvard University stratos@seas.harvard.edu

More information

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350):

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): Motivation for The Memory Hierarchy: { CPU/Memory Performance Gap The Principle Of Locality Cache $$$$$ Cache Basics:

More information

Principles of Data Management. Lecture #2 (Storing Data: Disks and Files)

Principles of Data Management. Lecture #2 (Storing Data: Disks and Files) Principles of Data Management Lecture #2 (Storing Data: Disks and Files) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Topics v Today

More information

Query Processing: A Systems View. Announcements (March 1) Physical (execution) plan. CPS 216 Advanced Database Systems

Query Processing: A Systems View. Announcements (March 1) Physical (execution) plan. CPS 216 Advanced Database Systems Query Processing: A Systems View CPS 216 Advanced Database Systems Announcements (March 1) 2 Reading assignment due Wednesday Buffer management Homework #2 due this Thursday Course project proposal due

More information

EE 4683/5683: COMPUTER ARCHITECTURE

EE 4683/5683: COMPUTER ARCHITECTURE EE 4683/5683: COMPUTER ARCHITECTURE Lecture 6A: Cache Design Avinash Kodi, kodi@ohioedu Agenda 2 Review: Memory Hierarchy Review: Cache Organization Direct-mapped Set- Associative Fully-Associative 1 Major

More information

Memory Management! How the hardware and OS give application pgms:" The illusion of a large contiguous address space" Protection against each other"

Memory Management! How the hardware and OS give application pgms: The illusion of a large contiguous address space Protection against each other Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Spatial and temporal locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware

More information

PS2 out today. Lab 2 out today. Lab 1 due today - how was it?

PS2 out today. Lab 2 out today. Lab 1 due today - how was it? 6.830 Lecture 7 9/25/2017 PS2 out today. Lab 2 out today. Lab 1 due today - how was it? Project Teams Due Wednesday Those of you who don't have groups -- send us email, or hand in a sheet with just your

More information

Cache Memories /18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, Today s Instructor: Phil Gibbons

Cache Memories /18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, Today s Instructor: Phil Gibbons Cache Memories 15-213/18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, 2017 Today s Instructor: Phil Gibbons 1 Today Cache memory organization and operation Performance impact

More information

Object-Based Storage Model for Object-Oriented Database*

Object-Based Storage Model for Object-Oriented Database* Object-Based Storage Model for Object-Oriented Database* Zhongmin Li 1 and Zhanwu Yu 2, ** 1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,

More information

Overview of Data Exploration Techniques. Stratos Idreos, Olga Papaemmanouil, Surajit Chaudhuri

Overview of Data Exploration Techniques. Stratos Idreos, Olga Papaemmanouil, Surajit Chaudhuri Overview of Data Exploration Techniques Stratos Idreos, Olga Papaemmanouil, Surajit Chaudhuri data exploration not always sure what we are looking for (until we find it) data has always been big volume

More information

Memory Management! Goals of this Lecture!

Memory Management! Goals of this Lecture! Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Why it works: locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware and

More information