Planning: STRIPS and POP planners

Size: px
Start display at page:

Download "Planning: STRIPS and POP planners"

Transcription

1 S 57 Introduction to I Lecture 8 Planning: STRIPS and POP planners Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Representation of actions, situations, events Propositional and first order logic assume a static world Once something is true it cannot become false ut, the world is dynamic: What is true now may not be true tomorrow hanges in the world may be triggered by our activities Problems: How to represent the change in the FOL? How to represent actions we can use to change the world?

2 Planning Planning problem: find a sequence of actions that achieves some goal an instance of a search problem the state description is typically very complex and relies on a logic-based representation Methods for modeling and solving a planning problem: State space search Situation calculus based on FOL STRIPS state space search algorithm Partial-order planning algorithms Situation calculus Provides a framework for representing change, actions and for reasoning about them Situation calculus based on the first-order logic How does it represent time? Uses a situation variable that models new states of the world Example: Onx, How does it represent the change due to actions? effect and frame axioms What inference method it uses? Inference rules, Resolution refutation

3 Situation calculus. locks world example. On,Table, s 0 On,Table, s 0 On,Table, s 0 lear, s 0 lear, s 0 lear, s 0 leartable, s 0 Goal Find a state situation s, such that On,, On,, On,Table, locks world example. Effect axioms. Effect axioms: Moving x from y to z. MOVE x, z Effect of move changes on On relations On x, lear x, lear z, On x, z, DO MOVE x, z, On x, lear x, lear z, On x, DO MOVE x, z, Effect of move changes on lear relations On x, lear x, lear z, lear DO MOVE x, z, On x, lear x, lear z, z lear z, DO MOVE x, z,

4 locks world example. Frame axioms. Frame axioms. Represent things that remain unchanged after an action. On relations: On u, v, u x v y On u, v, DO MOVE x, z, lear relations: lear u, u z lear u, DO MOVE x, z, Planning in situation calculus Planning problem: find a sequence of actions that lead to a goal Planning in situation calculus is converted to the theorem proving problem Goal state: s On,, On,, On, Table, Possible inference approaches: Inference rule approach onversion to ST Plan solution is a byproduct of theorem proving. Example: blocks world

5 Planning in the blocks world. s0 s 0 = On On On 0 0 0, Table, s, Table, s, Table, s s lear, s0 lear, s0 lear, s 0 lear Table, s0 ction: MOVE, Table, s = DO MOVE, Table,, s0 On, Table, s lear, s On,, s On, Table, s lear, s On, Table, s lear, s lear Table, s Planning in the blocks world. s0 s s2 s = DO MOVE, Table,, s0 On, Table, s On,, s lear, s On, Table, s lear, s On, Table, s lear, s lear Table, s ction: MOVE, Table, s = 2 DO MOVE, Table,, s = DO MOVE, Table,, DO MOVE, Table,, s0,, s2 On, Table, s2 lear, s2,, s2 On, Table, s2 lear, s2, Table, s2 lear, s2 lear Table, s2 On On On

6 Planning in situation calculus. Planning problem: Find a sequence of actions that lead to a goal Is a special type of a search problem Planning in situation calculus is converted to theorem proving. Problems: Large search space Large number of axioms to be defined for one action ll unchanged properties/relations must be explicitly moved to the next situation Proof may not lead to the best shortest plan. Problems and Solutions omplex state description and local action effects: avoid the enumeration and inference of every state component, focus on changes only Many possible actions: pply actions that make progress towards the goal Understand what the effect of actions is and reason with the consequences Sequences of actions in the plan can be too long: Many goals consists of independent or nearly independent sub-goals llow goal decomposition & divide and conquer strategies

7 STRIPS planner Defines a restricted representation language as compared to the situation calculus dvantage: leads to more efficient planning algorithms. State-space search with structured representations of states, actions and goals ction representation avoids the frame problem STRIPS planning problem: much like a standard search problem STRIPS planner States: conjunction of literals, e.g. On,, On,Table, lear represent facts that are true at a specific point in time ctions operator: ction: Move x,z Preconditions: conjunctions of literals with variables Onx,y, learx, learz Effects. Two lists: dd list: Onx,z, leary Delete list: Onx,y, learz Everything else remains untouched is preserved

8 STRIPS planning Operator: Move x,z Preconditions: Onx,y, learx, learz dd list: Onx,z, leary Delete list: Onx,y, learz Move, Table, On, lear On, On, lear lear lear delete add unchanged On, On, On, lear lear lear STRIPS planning : onjunction of literals that are true Goals in STRIPS: goal is a partially specified state Is defined by a conjunction of ground literals No variables allowed in the description of the goal Example: On, On,

9 Search in STRIPS Objective: Find a sequence of operators a plan from the initial state to the state satisfying the goal Two approaches to build a plan: Forward state space search goal progression Start from what is known in the initial state and apply operators in the order they are applied ackward state space search goal regression Start from the description of the goal and identify actions that help to reach the goal Forward search goal progression Idea: Given a state s Unify the preconditions of some operator a with s dd and delete sentences from the add and delete list of an operator a from s to get a new state Move, Table, On, lear On, On, lear lear lear delete add unchanged On, On, On, lear lear lear

10 Forward search goal progression Use operators to generate new states to search heck new states whether they satisfy the goal Search tree: Move, Table, Move, Table, goal Move, Table, Move, Table, Forward search goal progression Use operators to generate new states to search heck new states whether they satisfy the goal Search tree: Move, Table, Move, Table, goal Move, Table, Heuristics? Move, Table,

11 ackward search goal regression Idea: Given a goal G Unify the add list of some operator a with a subset of G If the delete list of a does not remove elements of G, then the goal regresses to a new goal G that is obtained from G by: deleting add list of a adding preconditions of a New goal G On, lear lear On, On, Move, Table, precondition add Mapped from G Goal G On, On, On, ackward search goal regression Use operators to generate new goals heck whether the initial state satisfies the goal Search tree: Move, Table, Move, Table, goal Move,,

12 State-space search Forward and backward state-space planning approaches: Work with strictly linear sequences of actions Disadvantages: They cannot take advantage of the problem decompositions in which the goal we want to reach consists of a set of independent or nearly independent subgoals ction sequences cannot be built from the middle No mechanism to represent least commitment in terms of the action ordering Divide and conquer Divide and conquer strategy: divide the problem to a set of smaller sub-problems, solve each sub-problem independently combine the results to form the solution In planning we would like to satisfy a set of goals Divide and conquer in planning: Divide the planning goals along individual goals Solve find a plan for each of them independently ombine the plan solutions in the resulting plan Is it always safe to use divide and conquer? No. There can be interacting goals.

13 Sussman s anomaly. n example from the blocks world in which the divide and conquer fails due to interacting goals Goal On, On, Sussman s anomaly. ssume we want to satisfy On, first ut now we cannot satisfy On, without undoing On,

14 Sussman s anomaly. ssume we want to satisfy On, first ut now we cannot satisfy On, without undoing On, 2. ssume we want to satisfy On, first. ut now we cannot satisfy On, without undoing On,

CS 2750 Foundations of AI Lecture 17. Planning. Planning

CS 2750 Foundations of AI Lecture 17. Planning. Planning S 2750 Foundations of I Lecture 17 Planning Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Planning Planning problem: find a sequence of actions that achieves some goal an instance of a search

More information

CS 1571 Introduction to AI Lecture 17. Planning. CS 1571 Intro to AI. Planning

CS 1571 Introduction to AI Lecture 17. Planning. CS 1571 Intro to AI. Planning S 1571 Introduction to I Lecture 17 Planning Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square S 1571 Intro to I Planning Planning problem: find a sequence of actions that achieves some goal an instance

More information

Artificial Intelligence 2005/06

Artificial Intelligence 2005/06 Planning: STRIPS 74.419 rtificial Intelligence 2005/06 Planning: STRIPS STRIPS (Nils J. Nilsson) actions are specified by preconditions and effects stated as restricted FOPL formulae planning is search

More information

Planning. Chapter 11. Chapter Outline. Search vs. planning STRIPS operators Partial-order planning. Chapter 11 2

Planning. Chapter 11. Chapter Outline. Search vs. planning STRIPS operators Partial-order planning. Chapter 11 2 Planning hapter 11 hapter 11 1 Outline Search vs. planning STRIPS operators Partial-order planning hapter 11 2 Search vs. planning onsider the task get milk, bananas, and a cordless drill Standard search

More information

Planning. Chapter 11. Chapter 11 1

Planning. Chapter 11. Chapter 11 1 Planning hapter 11 hapter 11 1 Outline Search vs. planning STRIPS operators Partial-order planning hapter 11 2 Search vs. planning onsider the task get milk, bananas, and a cordless drill Standard search

More information

Search vs. planning. Planning. Search vs. planning contd. Outline

Search vs. planning. Planning. Search vs. planning contd. Outline Search vs. planning Planning onsider the task get milk, bananas, and a cordless drill Standard search algorithms seem to fail miserably: Go To Pet Store Talk to Parrot uy a Dog Go To School Go To lass

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013 Set 9: Planning Classical Planning Systems ICS 271 Fall 2013 Outline: Planning Classical Planning: Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning graphs Readings:

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 4: Reasoning, change and planning Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes

More information

Artificial Intelligence 2004 Planning: Situation Calculus

Artificial Intelligence 2004 Planning: Situation Calculus 74.419 Artificial Intelligence 2004 Planning: Situation Calculus Review STRIPS POP Hierarchical Planning Situation Calculus (John McCarthy) situations actions axioms Review Planning 1 STRIPS (Nils J. Nilsson)

More information

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14.

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14. Intelligent Agents State-Space Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 14. April 2016 U. Schmid (CogSys) Intelligent Agents last change: 14. April

More information

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017 based on Manuela M. Veloso lectures on PLNNING, EXEUTION ND LERNING ognitive Robotics 2016/2017 Planning:, ctions and Goal Representation Matteo Matteucci matteo.matteucci@polimi.it rtificial Intelligence

More information

cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning Partially ordered plans Representation

cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning Partially ordered plans Representation cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning today s topics: partial-order planning decision-theoretic planning The answer to the problem we ended the last lecture with is to use partial

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lecturer 7 - Planning Lecturer: Truong Tuan Anh HCMUT - CSE 1 Outline Planning problem State-space search Partial-order planning Planning graphs Planning with propositional logic

More information

Planning II. Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007

Planning II. Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007 Planning II Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007 Administration Your second to last Programming Assignment is up - start NOW, you don t have a lot of time The PRIZE:

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014 Set 9: Planning Classical Planning Systems ICS 271 Fall 2014 Planning environments Classical Planning: Outline: Planning Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning

More information

1 What is Planning? automatic programming. cis716-spring2004-parsons-lect17 2

1 What is Planning? automatic programming. cis716-spring2004-parsons-lect17 2 PLANNING 1 What is Planning? Key problem facing agent is deciding what to do. We want agents to be taskable: give them goals to achieve, have them decide for themselves how to achieve them. Basic idea

More information

Lecture Overview. CSE3309 Artificial Intelligence. The lottery paradox. The Bayesian claim. The lottery paradox. A Bayesian model of rationality

Lecture Overview. CSE3309 Artificial Intelligence. The lottery paradox. The Bayesian claim. The lottery paradox. A Bayesian model of rationality CSE3309 Lecture Overview The lottery paradox A Bayesian model of rationality Lecture 15 Planning Dr. Kevin Korb School of Computer Science and Software Eng. Building 75 (STRIP), Rm 117 korb@csse.monash.edu.au

More information

Planning. Introduction

Planning. Introduction Planning Introduction Planning vs. Problem-Solving Representation in Planning Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World Planning with State-Space Search Progression

More information

A deterministic action is a partial function from states to states. It is partial because not every action can be carried out in every state

A deterministic action is a partial function from states to states. It is partial because not every action can be carried out in every state CmSc310 Artificial Intelligence Classical Planning 1. Introduction Planning is about how an agent achieves its goals. To achieve anything but the simplest goals, an agent must reason about its future.

More information

cis32-ai lecture # 21 mon-24-apr-2006

cis32-ai lecture # 21 mon-24-apr-2006 cis32-ai lecture # 21 mon-24-apr-2006 today s topics: logic-based agents (see notes from last time) planning cis32-spring2006-sklar-lec21 1 What is Planning? Key problem facing agent is deciding what to

More information

Components of a Planning System

Components of a Planning System Planning Components of a Planning System In any general problem solving systems, elementary techniques to perform following functions are required Choose the best rule (based on heuristics) to be applied

More information

Planning. Outside Materials (see Materials page)

Planning. Outside Materials (see Materials page) Planning Outside Materials (see Materials page) What is Planning? Given: A way to describe the world An ini

More information

Sets and set operations

Sets and set operations CS 44 Discrete Mathematics for CS Lecture Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 3: Due today Homework 4: Due next week on Friday,

More information

Planning and Acting. CITS3001 Algorithms, Agents and Artificial Intelligence. 2018, Semester 2

Planning and Acting. CITS3001 Algorithms, Agents and Artificial Intelligence. 2018, Semester 2 Planning and Acting CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2018, Semester 2 Summary We

More information

Planning. Introduction

Planning. Introduction Introduction vs. Problem-Solving Representation in Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World with State-Space Search Progression Algorithms Regression Algorithms

More information

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques Lecture 17 of 41 Clausal (Conjunctive Normal) Form and Resolution Techniques Wednesday, 29 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Chapter 9,

More information

Informed (heuristic) search (cont). Constraint-satisfaction search.

Informed (heuristic) search (cont). Constraint-satisfaction search. CS 1571 Introduction to AI Lecture 5 Informed (heuristic) search (cont). Constraint-satisfaction search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Administration PS 1 due today Report before

More information

What is On / Off Policy?

What is On / Off Policy? What is On / Off Policy? Q learns how to perform optimally even when we are following a non-optimal policy In greedy, leaves no trace in Q SARSA is on-policy Learns the best policy given our systematic

More information

Planning in a Single Agent

Planning in a Single Agent What is Planning Planning in a Single gent Sattiraju Prabhakar Sources: Multi-agent Systems Michael Wooldridge I a modern approach, 2 nd Edition Stuart Russell and Peter Norvig Generate sequences of actions

More information

Planning. Some material taken from D. Lin, J-C Latombe

Planning. Some material taken from D. Lin, J-C Latombe RN, Chapter 11 Planning Some material taken from D. Lin, J-C Latombe 1 Logical Agents Reasoning [Ch 6] Propositional Logic [Ch 7] Predicate Calculus Representation [Ch 8] Inference [Ch 9] Implemented Systems

More information

CPS 270: Artificial Intelligence Planning

CPS 270: Artificial Intelligence   Planning CPS 270: Artificial Intelligence http://www.cs.duke.edu/courses/fall08/cps270/ Planning Instructor: Vincent Conitzer Planning We studied how to take actions in the world (search) We studied how to represent

More information

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent)

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Planning CPS 570 Ron Parr Some Actual Planning Applications Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Particularly important for space operations due to latency Also used

More information

Planning (Chapter 10)

Planning (Chapter 10) Planning (Chapter 10) http://en.wikipedia.org/wiki/rube_goldberg_machine Planning Example problem: I m at home and I need milk, bananas, and a drill. What do I do? How is planning different from regular

More information

Constraint satisfaction search

Constraint satisfaction search CS 70 Foundations of AI Lecture 6 Constraint satisfaction search Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Search problem A search problem: Search space (or state space): a set of objects among

More information

Acknowledgements. Outline

Acknowledgements. Outline Acknowledgements Heuristic Search for Planning Sheila McIlraith University of Toronto Fall 2010 Many of the slides used in today s lecture are modifications of slides developed by Malte Helmert, Bernhard

More information

Counting Pigeonhole principle

Counting Pigeonhole principle CS 44 Discrete Mathematics for CS Lecture 23 Counting Pigeonhole principle Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 7 is due today Homework 8 is out due on

More information

CMU-Q Lecture 6: Planning Graph GRAPHPLAN. Teacher: Gianni A. Di Caro

CMU-Q Lecture 6: Planning Graph GRAPHPLAN. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 6: Planning Graph GRAPHPLAN Teacher: Gianni A. Di Caro PLANNING GRAPHS Graph-based data structure representing a polynomial-size/time approximation of the exponential search tree Can

More information

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. CS 1571 Introduction to AI Lecture 8 Constraint satisfaction search. Combinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Objective:

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) Lesson 15 Inference in FOL - I 6.2.8 Resolution We have introduced the inference rule Modus Ponens. Now we introduce another inference rule

More information

Artificial Intelligence. Planning

Artificial Intelligence. Planning Artificial Intelligence Planning Planning Planning agent Similar to previous problem solving agents Constructs plans that achieve its goals, then executes them Differs in way it represents and searches

More information

Artificial Intelligence Planning

Artificial Intelligence Planning Artificial Intelligence Planning Instructor: Vincent Conitzer Planning We studied how to take actions in the world (search) We studied how to represent objects, relations, etc. (logic) Now we will combine

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. S 1571 Introduction to I Lecture 8 onstraint satisfaction search. ombinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square onstraint satisfaction problem (SP) Objective:

More information

Primitive goal based ideas

Primitive goal based ideas Primitive goal based ideas Once you have the gold, your goal is to get back home s Holding( Gold, s) GoalLocation([1,1], s) How to work out actions to achieve the goal? Inference: Lots more axioms. Explodes.

More information

Commitment Least you haven't decided where to go shopping. Or...suppose You can get milk at the convenience store, at the dairy, or at the supermarket

Commitment Least you haven't decided where to go shopping. Or...suppose You can get milk at the convenience store, at the dairy, or at the supermarket Planning as Search-based Problem Solving? Imagine a supermarket shopping scenario using search-based problem solving: Goal: buy milk and bananas Operator: buy Heuristic function: does = milk

More information

CogSysI Lecture 2: Basic Aspects of Action Planning p. 35

CogSysI Lecture 2: Basic Aspects of Action Planning p. 35 CogSysI Lecture 2: asic spects of ction Planning Intelligent gents WS 2004/2005 Part I: cting Goal-Oriented I.2 asic Definitions, Uninformed Search CogSysI Lecture 2: asic spects of ction Planning p. 35

More information

Planning. Search vs. planning STRIPS operators Partial-order planning. CS 561, Session 20 1

Planning. Search vs. planning STRIPS operators Partial-order planning. CS 561, Session 20 1 Planning Search vs. planning STRIPS operators Partial-order planning CS 561, Session 20 1 What we have so far Can TELL KB about new percepts about the world KB maintains model of the current world state

More information

Planning. Planning. What is Planning. Why not standard search?

Planning. Planning. What is Planning. Why not standard search? Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

Where are we? Informatics 2D Reasoning and Agents Semester 2, Planning with state-space search. Planning with state-space search

Where are we? Informatics 2D Reasoning and Agents Semester 2, Planning with state-space search. Planning with state-space search Informatics 2D Reasoning and Agents Semester 2, 2018 2019 Alex Lascarides alex@inf.ed.ac.uk Where are we? Last time... we defined the planning problem discussed problem with using search and logic in planning

More information

Resolution (14A) Young W. Lim 6/14/14

Resolution (14A) Young W. Lim 6/14/14 Copyright (c) 2013-2014. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free

More information

A MECHANIZATION OF TYPE THEORY. Gerard P. HUBT IRIA - LABORIA Rocquencourt FRANCE

A MECHANIZATION OF TYPE THEORY. Gerard P. HUBT IRIA - LABORIA Rocquencourt FRANCE Session 6 Logic: II Theorem Proving and A MECHANIZATION OF TYPE THEORY Gerard P. HUBT IRIA - LABORIA Rocquencourt FRANCE ABSTRACT A refutational system of logic for a language of order w ia presented.

More information

Heuristic Search for Planning

Heuristic Search for Planning Heuristic Search for Planning Sheila McIlraith University of Toronto Fall 2010 S. McIlraith Heuristic Search for Planning 1 / 50 Acknowledgements Many of the slides used in today s lecture are modifications

More information

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH Slide 3.1 3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 3.0 Introduction 3.1 Graph Theory 3.2 Strategies for State Space Search 3.3 Using the State Space to Represent Reasoning with the Predicate

More information

Planning (What to do next?) (What to do next?)

Planning (What to do next?) (What to do next?) Planning (What to do next?) (What to do next?) (What to do next?) (What to do next?) (What to do next?) (What to do next?) CSC3203 - AI in Games 2 Level 12: Planning YOUR MISSION learn about how to create

More information

Logical reasoning systems

Logical reasoning systems Logical reasoning systems Theorem provers and logic programming languages Production systems Frame systems and semantic networks Description logic systems CS 561, Session 19 1 Logical reasoning systems

More information

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214 Theorem proving PVS theorem prover Abhik Roychoudhury National University of Singapore Both specification and implementation can be formalized in a suitable logic. Proof rules for proving statements in

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 19 Tuesday, April 3, 2018 1 Introduction to axiomatic semantics The idea in axiomatic semantics is to give specifications

More information

An Annotated Language

An Annotated Language Hoare Logic An Annotated Language State and Semantics Expressions are interpreted as functions from states to the corresponding domain of interpretation Operators have the obvious interpretation Free of

More information

Knowledge Representation and Reasoning Logics for Artificial Intelligence

Knowledge Representation and Reasoning Logics for Artificial Intelligence Knowledge Representation and Reasoning Logics for Artificial Intelligence Stuart C. Shapiro Department of Computer Science and Engineering and Center for Cognitive Science University at Buffalo, The State

More information

Introduction to Planning COURSE: CS40002

Introduction to Planning COURSE: CS40002 1 Introduction to Planning COURSE: CS40002 Pallab Dasgupta Professor, Dept. of Computer Sc & Engg 2 Outline Planning versus Search Representation of planning problems Situation calculus STRIPS ADL Planning

More information

Declarative Programming. 2: theoretical backgrounds

Declarative Programming. 2: theoretical backgrounds Declarative Programming 2: theoretical backgrounds 1 Logic Systems: structure and meta-theoretical properties logic system syntax semantics proof theory defines which sentences are legal in the logical

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

Dipartimento di Elettronica Informazione e Bioingegneria. Cognitive Robotics. SATplan. Act1. Pre1. Fact. G. Gini Act2

Dipartimento di Elettronica Informazione e Bioingegneria. Cognitive Robotics. SATplan. Act1. Pre1. Fact. G. Gini Act2 Dipartimento di Elettronica Informazione e Bioingegneria Cognitive Robotics SATplan Pre1 Pre2 @ 2015 Act1 Act2 Fact why SAT (satisfability)? 2 Classical planning has been observed as a form of logical

More information

Hoare triples. Floyd-Hoare Logic, Separation Logic

Hoare triples. Floyd-Hoare Logic, Separation Logic Hoare triples Floyd-Hoare Logic, Separation Logic 1. Floyd-Hoare Logic 1969 Reasoning about control Hoare triples {A} p {B} a Hoare triple partial correctness: if the initial state satisfies assertion

More information

Classical Planning Problems: Representation Languages

Classical Planning Problems: Representation Languages jonas.kvarnstrom@liu.se 2017 Classical Planning Problems: Representation Languages History: 1959 3 The language of Artificial Intelligence was/is logic First-order, second-order, modal, 1959: General

More information

3. Knowledge Representation, Reasoning, and Planning

3. Knowledge Representation, Reasoning, and Planning 3. Knowledge Representation, Reasoning, and Planning 3.1 Common Sense Knowledge 3.2 Knowledge Representation Networks 3.3 Reasoning Propositional Logic Predicate Logic: PROLOG 3.4 Planning Planning vs.

More information

ICS 606. Intelligent Autonomous Agents 1

ICS 606. Intelligent Autonomous Agents 1 Intelligent utonomous gents ICS 606 / EE 606 Fall 2011 Nancy E. Reed nreed@hawaii.edu Lecture #4 Practical Reasoning gents Intentions Planning Means-ends reasoning The blocks world References Wooldridge

More information

Separation Logic: syntax, semantics and calculus

Separation Logic: syntax, semantics and calculus Separation Logic: syntax, semantics and calculus Syntax Semantics Calculus emp SL N/A FOL N/A = + Arithmetic N/A := ; while if then else [.] dispose(.) cons(.) State is a pair (Store,Heap) St(.) maps variables

More information

Efficient Two-Phase Data Reasoning for Description Logics

Efficient Two-Phase Data Reasoning for Description Logics Efficient Two-Phase Data Reasoning for Description Logics Abstract Description Logics are used more and more frequently for knowledge representation, creating an increasing demand for efficient automated

More information

Hoare Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré

Hoare Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré Hoare Logic COMP2600 Formal Methods for Software Engineering Rajeev Goré Australian National University Semester 2, 2016 (Slides courtesy of Ranald Clouston) COMP 2600 Hoare Logic 1 Australian Capital

More information

Markov Random Fields

Markov Random Fields 3750 Machine earning ecture 4 Markov Random ields Milos auskrecht milos@cs.pitt.edu 5329 ennott quare 3750 dvanced Machine earning Markov random fields Probabilistic models with symmetric dependences.

More information

Lecture 14: Lower Bounds for Tree Resolution

Lecture 14: Lower Bounds for Tree Resolution IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 14: Lower Bounds for Tree Resolution David Mix Barrington and Alexis Maciel August

More information

3. Knowledge Representation, Reasoning, and Planning

3. Knowledge Representation, Reasoning, and Planning 3. Knowledge Representation, Reasoning, and Planning 3.1 Common Sense Knowledge 3.2 Knowledge Representation Networks 3.3 Reasoning Propositional Logic Predicate Logic: PROLOG 3.4 Planning Introduction

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 9 Normal Forms In the last class we have seen some consequences and some equivalences,

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter 2.1-2.7 p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Ordering Problem Subgoals

Ordering Problem Subgoals Ordering Problem Subgoals Jie Cheng and Keki B. Irani Artificial Intelligence Laboratory Department of Electrical Engineering and Computer Science The University of Michigan, Ann Arbor, MI 48109-2122,

More information

An Evolution of Mathematical Tools

An Evolution of Mathematical Tools An Evolution of Mathematical Tools From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world.

More information

Plan Generation Classical Planning

Plan Generation Classical Planning Plan Generation Classical Planning Manuela Veloso Carnegie Mellon University School of Computer Science 15-887 Planning, Execution, and Learning Fall 2016 Outline What is a State and Goal What is an Action

More information

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence Knowledge Representation CS 486/686: Introduction to Artificial Intelligence 1 Outline Knowledge-based agents Logics in general Propositional Logic& Reasoning First Order Logic 2 Introduction So far we

More information

Automated Reasoning PROLOG and Automated Reasoning 13.4 Further Issues in Automated Reasoning 13.5 Epilogue and References 13.

Automated Reasoning PROLOG and Automated Reasoning 13.4 Further Issues in Automated Reasoning 13.5 Epilogue and References 13. 13 Automated Reasoning 13.0 Introduction to Weak Methods in Theorem Proving 13.1 The General Problem Solver and Difference Tables 13.2 Resolution Theorem Proving 13.3 PROLOG and Automated Reasoning 13.4

More information

Introduction to dependent types in Coq

Introduction to dependent types in Coq October 24, 2008 basic use of the Coq system In Coq, you can play with simple values and functions. The basic command is called Check, to verify if an expression is well-formed and learn what is its type.

More information

KI-Programmierung. Planning

KI-Programmierung. Planning KI-Programmierung Planning Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2007/2008 B. Beckert: KI-Programmierung p.1 Outline Search vs. planning STRIPS operators Partial-order planning The real

More information

Separation Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré. Australian National University Semester 2, 2016

Separation Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré. Australian National University Semester 2, 2016 Separation Logic COMP2600 Formal Methods for Software Engineering Rajeev Goré Australian National University Semester 2, 2016 COMP 2600 Separation Logic 1 Motivation: Reasoning About Pointers Recall this

More information

Planning Algorithms Properties Soundness

Planning Algorithms Properties Soundness Chapter MK:VI III. Planning Agent Systems Deductive Reasoning Agents Planning Language Planning Algorithms State-Space Planning Plan-Space Planning HTN Planning Complexity of Planning Problems Extensions

More information

CSE 473 Lecture 12 Chapter 8. First-Order Logic. CSE AI faculty

CSE 473 Lecture 12 Chapter 8. First-Order Logic. CSE AI faculty CSE 473 Lecture 12 Chapter 8 First-Order Logic CSE AI faculty What s on our menu today? First-Order Logic Definitions Universal and Existential Quantifiers Skolemization Unification 2 Propositional vs.

More information

Last time: Logic and Reasoning

Last time: Logic and Reasoning Last time: Logic and Reasoning Knowledge Base (KB): contains a set of sentences expressed using a knowledge representation language TELL: operator to add a sentence to the KB ASK: to query the KB Logics

More information

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic Principles of AI Planning June 8th, 2010 7. Planning as search: relaxed planning tasks Principles of AI Planning 7. Planning as search: relaxed planning tasks Malte Helmert and Bernhard Nebel 7.1 How to

More information

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic 3.4 Deduction and Evaluation: Tools 3.4.1 Conditional-Equational Logic The general definition of a formal specification from above was based on the existence of a precisely defined semantics for the syntax

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi is another way of showing that an argument is correct. Definitions: Literal: A variable or a negation of a variable is called a literal. Sum and Product: A disjunction of literals is called a sum and a

More information

Logic: TD as search, Datalog (variables)

Logic: TD as search, Datalog (variables) Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from Chpt 12) June, 8, 2017 CPSC 322, Lecture 23 Slide 1 Lecture Overview Recap Top

More information

What is AI? Knowledge-based systems in Bioinformatics, 1MB602, Definitions of AI. Acting humanly: Turing test. AI techniques. Intelligent agents

What is AI? Knowledge-based systems in Bioinformatics, 1MB602, Definitions of AI. Acting humanly: Turing test. AI techniques. Intelligent agents What is I? Knowledge-based systems in ioinformatics, 1M602, 2007 or rtificial Intelligence for ioinformatics making a machine behave in ways that would be called intelligent if a human were so behaving

More information

INF Kunstig intelligens. Agents That Plan. Roar Fjellheim. INF5390-AI-06 Agents That Plan 1

INF Kunstig intelligens. Agents That Plan. Roar Fjellheim. INF5390-AI-06 Agents That Plan 1 INF5390 - Kunstig intelligens Agents That Plan Roar Fjellheim INF5390-AI-06 Agents That Plan 1 Outline Planning agents Plan representation State-space search Planning graphs GRAPHPLAN algorithm Partial-order

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

== is a decent equivalence

== is a decent equivalence Table of standard equiences 30/57 372 TABLES FOR PART I Propositional Logic Lecture 2 (Chapter 7) September 9, 2016 Equiences for connectives Commutativity: Associativity: P Q == Q P, (P Q) R == P (Q R),

More information

Automated Planning & Artificial Intelligence

Automated Planning & Artificial Intelligence Automated Planning & Artificial Intelligence Uninformed and Informed search in state space Humbert Fiorino Humbert.Fiorino@imag.fr http://membres-lig.imag.fr/fiorino Laboratory of Informatics of Grenoble

More information

Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5

Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5 Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5 [talking head] Formal Methods of Software Engineering means the use of mathematics as an aid to writing programs. Before we can

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 37 Resolution Rules

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 37 Resolution Rules Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 37 Resolution Rules If some literals can be unified, the same algorithm should be able

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

6.034 Notes: Section 11.1

6.034 Notes: Section 11.1 6.034 Notes: Section 11.1 Slide 11.1.1 We've now spent a fair bit of time learning about the language of first-order logic and the mechanisms of automatic inference. And, we've also found that (a) it is

More information