Data Warehousing & Data Mining

Size: px
Start display at page:

Download "Data Warehousing & Data Mining"

Transcription

1 VTU Question Paper Solution Unit-1 1. What is data mining? Explain Data Mining and Knowledge Discovery? [June/July 2014][10marks] Simply stated, data mining refers to extracting or mining knowledge from large amounts of data. The term is actually a misnomer. Remember that the mining of gold from rocks or sand is referred to as gold mining rather than rock or sand mining. Thus, data mining should have been more appropriately named knowledge mining from data, which is unfortunately somewhat long. Knowledge mining, a shorter term, may not reflect the emphasis on mining from large amounts of data. Nevertheless, mining is a vivid term characterizing the process that finds a small set of precious nuggets from a great deal of raw material (Figure 1.3). Thus, such a misnomer that carries both data and mining became a popular choice. Many other terms carry a similar or slightly different meaning to data mining, such as knowledge mining from data, knowledge extraction, data/pattern analysis, data archaeology, and data dredging. Many people treat data mining as a synonym for another popularly used term, Knowledge Discovery from Data, or KDD. Alternatively, others view data mining as simply an evaluate the interestingness of resulting patterns. Such knowledge can include concept hierarchies, used to organize attributes or attribute values into different levels of abstraction. Knowledge such as user beliefs, which can be used to assess a pattern s interestingness based on its unexpectedness, may also be included. Other examples of domain knowledge are additional interestingness constraints or thresholds, and metadata (e.g., describing data from multiple heterogeneous sources). Dept of CSE, SJBIT Page 1

2 Data mining engine: This is essential to the data mining system and ideally consists of a set of functional modules for tasks such as characterization, association and correlation analysis, classification, prediction, cluster analysis, outlier analysis, and evolution analysis. Pattern evaluation module: This component typically employs interestingness measures and interacts with the data mining modules so as to focus the search toward interesting patterns. It may use interestingness thresholds to filter out discovered patterns. Alternatively, the pattern evaluation module may be integrated with the mining module, depending on the implementation of the data mining method used. For efficient data mining, it is highly recommended to push the evaluation of pattern interestingness as deep as possible into the mining process so as to confine the search to only the interesting patterns. User interface: This module communicates between users and the data mining system, allowing the user to interact with the system by specifying a data mining query or task, providing information to help focus the search, and performing exploratory data mining based on the intermediate data mining results. In addition, this component allows the user to browse database and data warehouse schemas or data structures, evaluate mined patterns, and visualize the patterns in different forms. 2. What is operational data store (ods)? Explain with neat diagram. [June/July 2014] [10marks] The major task of on-line operational database systems is to perform on-line transaction and query processing. These systems are called on-line transaction processing (OLTP) systems. They cover most of the day-to-day operations of an organization, such as purchasing, inventory, manufacturing, banking, payroll, registration, and accounting. Data warehouse systems, on the other hand, serve users or knowledge workers in the role of data analysis and decision making. Such systems can organize and present data in various formats in order to accommodate the diverse needs of the different users. These systems are known as online analytical processing (OLAP) systems. The major distinguishing features between OLTP and OLAP are summarized as follows: Users and system orientation: An OLTP system is customer-oriented and is used for transaction and query processing by clerks, clients, and information technology professionals. An OLAP system is market-oriented and is used for data analysis by knowledge workers, including managers, executives, and analysts. Data contents: An OLTP system manages current data that, typically, are too detailed to be easily used for decision making. An OLAP system manages large amounts of historical data, provides facilities for summarization and aggregation, and stores and manages information at different levels of granularity. These features make the data easier to use in informed decision making. Dept of CSE, SJBIT Page 2

3 Database design: An OLTP system usually adopts an entity-relationship (ER) data model and an application-oriented database design. An OLAP system typically adopts either a star or snowflake model and a subject oriented database design. View: An OLTP system focuses mainly on the current data within an enterprise or department, without referring to historical data or data in different organizations. In contrast, an OLAP system often spans multiple versions of a database schema, due to the evolutionary process of an organization. OLAP systems also deal with information that originates from different organizations, integrating information from many data stores. Because of their huge volume, OLAP data are stored on multiple storage media. Access patterns: The access patterns of an OLTP system consist mainly of short, atomic transactions. Such a system requires concurrency control and recovery mechanisms. 3. What is ETL? Explain the steps in ETL. [DEC 2013] [10marks] The data analysis task involves data integration, which combines data from multiple sources into a coherent data store, as in data warehousing. These sources may include multiple databases, data cubes, or flat files. There are a number of issues to consider during data integration. Schema integration and object matching can be tricky. How can equivalent real-world entities from multiple data sources be matched up? This is referred to as the entity identification problem. For example, how can the data analyst or the computer be sure that customer id in one database and cust number in another refer to the same attribute? Examples of metadata for each attribute include the name, meaning, data type, and range of values permitted for the attribute, and null rules for handling blank, zero, or null values. Such metadata can be used to help avoid errors in schema integration. The metadata may also be used to help transform the data (e.g., where data codes for pay type in one database may be H and S, and 1 and 2 in another). Hence, this step also relates to data cleaning, as described earlier. Redundancy is another important issue. An attribute (such as annual revenue, for instance) may be redundant if it can be derived from another attribute or set of attributes. Inconsistencies in attribute or dimension naming can also cause redundancies in the resulting data set. Some redundancies can be detected by correlation analysis. Given two attributes, such analysis can measure how strongly one attribute implies the other, based on the available data. For numerical attributes, we can evaluate the correlation between two attributes 4. What are the guide lines for implementing the data warehouse. [DEC 2013] [10marks] Data warehousing provides architectures and tools for business executives to systematically organize, understand, and use their data to make strategic decisions. Data warehouse systems are valuable tools in today s competitive, fast-evolving world. In the last several years, many firms have spent millions of dollars in building enterprise-wide data warehouses. Many people feel that with competition mounting in every industry, data warehousing is the latest must-have marketing weapon - a way to retain customers by learning more about their needs. Dept of CSE, SJBIT Page 3

4 Data warehouses have been defined in many ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data warehouse refers to a database that is maintained separately from an organization s operational databases. Data warehouse systems allow for the integration of a variety of application systems. They support information processing by providing a solid platform of consolidated historical data for analysis. According to William H. Inmon, a leading architect in the construction of data warehouse systems, A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management s decision making process. This short, but comprehensive definition presents the major features of a data warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile, distinguish data warehouses from other data repository systems, such as relational database systems, transaction processing systems, and file systems Dept of CSE, SJBIT Page 4

5 Unit-2 1. Explain four types of attributes by giving appropriate example? [June/July 2014] [10 marks] 2. Distinguish between OLTP and OLAP. [June/July 2014] ][10 marks] To facilitate efficient data accessing, most data warehouse systems support index structures and materialized views (using cuboids). General methods to select cuboids for materialization were discussed in the previous section. In this section, we examine how to index OLAP data by bitmap indexing and join indexing. The bitmap indexing method is popular in OLAP products because it allows quick searching in data cubes. The bitmap index is an alternative representation of the record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit vector, Bv, for each value v in the domain of the attribute. If the domain of a given attribute consists of n values, then n bits are needed for each entry in the bitmap index (i.e., there are n bit vectors). If the attribute has the value v for a given row in the data table, then the bit representing that value is set to 1 in the corresponding row of the bitmap index. All other bits for that row are set to 0. Dept of CSE, SJBIT Page 5

6 3. Explain the operation of data cube with suitable examples. [Dec 2013] [10 marks] Data warehouses contain huge volumes of data. OLAP servers demand that decision support queries be answered in the order of seconds. Therefore, it is crucial for data warehouse systems to support highly efficient cube computation techniques, access methods, and query processing techniques. In this section, we present an overview of methods for the efficient implementation of data warehouse systems. Efficient Computation of Data Cubes At the core of multidimensional data analysis is the efficient computation of aggregations across many sets of dimensions. In SQL terms, these aggregations are referred to as group -by s. Each group-by can be represented by a cuboid, where the set of group-by s forms a lattice of cuboids defining a data cube. In this section, we explore issues relating to the efficient computation of data cubes. The Compute Cube Operator and the Curse of Dimensionality One approach to cube computation extends SQL so as to include a compute cube operator. The compute cube operator computes aggregates over all subsets of the dimensions specified in the operation. This can require excessive storage space, especially for large numbers of dimensions. We start with an intuitive look at what is involved in the efficient computation of data cubes. Example: A data cube is a lattice of cuboids. Suppose that you would like to create a data cube for AllElectronics sales that contains the following: city, item, year, and sales in dollars. You would like to be able to analyze the data, with queries such as the following: Compute the sum of sales, grouping by city and item. Compute the sum of sales, grouping by city. Compute the sum of sales, grouping by item. 4. Write short note on [Dec 2013] [10 marks] i) ROLAP ii) MOLAP iii) DATACUBE iv) FASMI i) OLAP servers may use relational OLAP (ROLAP), or multidimensional OLAP (MOLAP), or hybrid OLAP (HOLAP). A ROLAP server uses an extended relational DBMS that maps OLAP operations on multidimensional data to standard relational operations. ii) A MOLAP server maps multidimensional data views directly to array structures. A HOLAP server combines ROLAP and MOLAP. For example, it may use ROLAP for historical data while maintaining frequently accessed data in a separate MOLAP store. iii) A multidimensional data model is typically used for the design of corporate data warehouses and departmental data marts. Such a model can adopt a star schema, snowflake schema, or fact constellation schema. The core of the multidimensional model is the data cube Dept of CSE, SJBIT Page 6

7 Unit-3 1. Explain motivating challenges that motivation Data Mining? [June/July 2014] [10marks] The motivation challenges that motivated Data mining are -: Scalability High Dimentionality Heterogeneous and complex data Data ownership and distribution Non-traditional Analysis 2. Discuss the Tasks of data minig with suitable examples. [June/July 2014] [10marks] Each user will have a data mining task in mind, that is, some form of data analysis that he or she would like to have performed. A data mining task can be specified in the form of a data mining query, which is input to the data mining system. A data mining query is defined in terms of data mining task primitives. These primitives allow the user to interactively communicate with the data mining system during discovery in order to direct the mining process, or examine the findings from different angles or depths. The data mining primitives specify the following. The set of task-relevant data to be mined: This specifies the portions of the database or the set of data in which the user is interested. This includes the database attributes or data warehouse dimensions of interest (referred to as the relevant attributes or dimensions). The kind of knowledge to be mined: This specifies the data mining functions to be performed, such as characterization, discrimination, association or correlation analysis, classification, prediction, clustering, outlier analysis, or evolution analysis. The background knowledge to be used in the discovery process: This knowledge about the domain to be mined is useful for guiding the knowledge discovery process and for evaluating the patterns found. Concept hierarchies are a popular form of background knowledge, which allow data to be mined at multiple levels of abstraction. The interestingness measures and thresholds for pattern evaluation: They may be used to guide the mining process or, after discovery, to evaluate the discovered patterns. Different kinds of knowledge may have different interestingness measures. For example, interestingness measures for association rules include support and confidence. Rules whose support and confidence values are below user-specified thresholds are considered uninteresting. The expected representation for visualizing the discovered patterns: This refers to the Form in which discovered patterns are to be displayed, which may include rules, tables, charts, graphs, decision trees, and cubes. A data mining query language can be designed to incorporate these primitives, allowing users to flexibly interact with data mining systems. Having a data mining query language provides a foundation on which user-friendly graphical interfaces can be built. Dept of CSE, SJBIT Page 7

8 3. Explain shortly any five data preprocessing approaches. [Dec 2013] [10marks] Imagine that you are a manager at AllElectronics and have been charged with analyzing the company s data with respect to the sales at your branch. You immediately set out to perform this task. You carefully inspect the company s database and data warehouse, identifying and selecting the attributes or dimensions to be included in your analysis, such as item, price, and units sold. Alas! You notice that several of the attributes for various tuples have no recorded value. For your analysis, you would like to include information as to whether each item purchased was advertised as on sale, yet you discover that this information has not been recorded. Furthermore, users of your database system have reported errors, unusual values, and inconsistencies in the data recorded for some transactions. In other words, the data you wish to analyze by data mining techniques are incomplete (lacking attribute values or certain attributes of interest, or containing only aggregate data), noisy (containing errors, or outlier values that deviate from the expected), and inconsistent (e.g., containing discrepancies in the department codes used to categorize items).welcome to the real world! Incomplete, noisy, and inconsistent data are commonplace properties of large real world databases and data warehouses. Incomplete data can occur for a number of reasons. Attributes of interest may not always be available, such as customer information for sales transaction data. Other data may not be included simply because it was not considered important at the time of entry. Relevant data may not be recorded due to a misunderstanding, or because of equipment malfunctions. Data that were inconsistent with other recorded data may have been deleted. Furthermore, the recording of the history or modifications to the data may have been overlooked. Missing data, particularly for tuples with missing values for some attributes, may need to be inferred. There are many possible reasons for noisy data (having incorrect attribute values). The data collection instruments used may be faulty. There may have been human or computer errors occurring at data entry. Errors in data transmission can also occur. There may be technology limitations, such as limited buffer size for coordinating synchronized data transfer and consumption. Incorrect data may also result from in consistencies in naming conventions or data codes used, or inconsistent formats for input fields, such as date. Duplicate tuples also require data cleaning. Data cleaning routines work to clean the data by filling in missing values, smoothing noisy data, identifying or removing outliers, and resolving inconsistencies. If users believe the data are dirty, they are unlikely to trust the results of any data mining that has been applied to it. Furthermore, dirty data can cause confusion for the mining procedure, resulting in unreliable output. Although most mining routines have some procedures for dealing with incomplete or noisy data, they are not always robust. Instead, they may concentrate on avoiding overfitting the data to the function being modeled. Therefore, a useful preprocessing step is to run your data through some data cleaning routines. Getting back to your task at AllElectronics, suppose that you would Dept of CSE, SJBIT Page 8

9 Unit-4 1. Explain Descriptive tasks in detail? [June/July 2014] [10marks] Data mining is an interdisciplinary field, the confluence of a set of disciplines, including database systems, statistics, machine learning, visualization, and information science. Moreover, depending on the data mining approach used, techniques from other disciplines may be applied, such as neural networks, fuzzy and/or rough set theory, knowledge representation, inductive logic programming, or high-performance computing. Depending on the kinds of data to be mined or on the given data mining application, the data mining system may also integrate techniques from spatial data analysis, information retrieval, pattern recognition, image analysis, signal processing, computer graphics, Web technology, economics, business, bioinformatics, or psychology. Because of the diversity of disciplines contributing to data mining, data mining research is expected to generate a large variety of data mining systems. Therefore, it is necessary to provide a clear classification of data mining systems, which may help potential users distinguish between such systems and identify those that best match their needs. Data mining systems can be categorized according to various criteria, as follows: 2. Develop the Apriori Algorithm for generating frequent itemset. [Dec 13] [10marks] Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association rules. The name of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent itemset properties, as we shall see following. Apriori employs an iterative approach known as a level-wise search, where k-itemsets are usedtoexplore (k+1)-itemsets. First, the setof frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and collecting those items that satisfy minimum support. The resulting set is denoted L1.Next, L1 is used to find L2, the set of frequent 2- itemsets, which is used to find L3, and so on, until no more frequent k-itemsets can be found. The finding of each Lk requires one full scan of the database. Dept of CSE, SJBIT Page 9

10 To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the Apriori property, presented below, is used to reduce the search space. We will first describe this property, and then show an example illustrating its use. Apriori property: All nonempty subsets of a frequent itemset must also be frequent. The Apriori property is based on the following observation. By definition, if an itemset I does not satisfy the minimum support threshold, min sup, then I is not frequent; that is, P(I) < min sup. If an item A is added to the itemset I, then the resulting itemset (i.e., I [A) cannot occur more frequently than I. Therefore, I [A is not frequent either; that is, P(I [A) < min sup. This property belongs to a special category of properties called antimonotone in the sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It is called antimonotone because the property is monotonic in the context of failing a test. How is the Apriori property used in the algorithm? To understand this, let us look at how k1 is used to find Lk for k _ 2. A two-step process is followed, consisting of join and prune actions. 1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk1 with itself. This set of candidates is denoted Ck. Let l1 and l2 be itemsets in Lk1. The notation li[j] refers to the jth item in li (e.g., l1[k2] refers to the second to the last item in l1). By convention, Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. For the (k1)-itemset, li, this means that the items are sorted such that li[1] < li[2] < : : : < li[k1]. The join, Lk1 on Lk1, is performed, where members of Lk1 are joinable if their first (k2) items are in common. That is, members l1 and l2 of Lk1 are joined if (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^: : :^(l1[k2] = l2[k2]) ^(l1[k1] < l2[k1]). The condition l1[k1] < l2[k1] simply ensures that no duplicates are generated. The resulting itemset formed by joining l1 and l2 is l1[1], l1[2], : : :, l1[k2], l1[k1], l2[k1]. 2. The prune step:ck is a superset of Lk, that is, its members may or may not be frequent, but all of the frequent k-itemsets are included inck.ascan of the database to determine the count of each candidate in Ck would result in the determination of Lk (i.e., all candidates having a count no less than the minimum support count are frequent by definition, and therefore belong to Lk). Ck, however, can be huge. 3. What is association analysis? [Dec 13] [10marks] What is keyword-based association analysis? Such analysis collects sets of keywords or terms that occur frequently together and then finds the association or correlation relationships among them. Like most of the analyses in text databases, association analysis first preprocesses the text data by parsing, stemming, removing stop words, and so on, and then evokes association mining algorithms. In a document database, each document can be viewed as a transaction, while a set of keywords in the document can be considered as a set of items in the transaction. That is, the database is in the format fdocument id;a set of keywordsg: Dept of CSE, SJBIT Page 10

11 The problem of keyword association mining in document databases is thereby mapped to item association mining in transaction databases, where many interesting methods have been developed. Notice that a set of frequently occurring consecutive or closely located keywords may form a term or a phrase. The association mining process can help detect compound associations, that is, domain-dependent terms or phrases, such as [Stanford, University] or [U.S., President, George W. Bush], or noncompound associations, such as [dollars, shares, exchange, total, commission, stake, securities].mining based on these associations is referred to as term-level association mining (as opposed to mining on individual words). Term recognition and termlevel association mining enjoy two advantages in text analysis: (1) terms and phrases are automatically tagged so there is no need for human effort in tagging documents; and (2) the number of meaningless results is greatly reduced, as is the execution time of the mining algorithms. With such term and phrase recognition, term-level mining can be evoked to find associations among a set of detected terms and keywords. Some users may like to find associations between pairs of keywords or terms from a given set of keywords or phrases, whereas others may wish to find the maximal set of terms occurring together. Therefore, based on user mining requirements, standard association mining or max-pattern mining algorithms may be evoked. Dept of CSE, SJBIT Page 11

12 Unit-5 1. Explain a.continious b.discrete c.asymmetric Attributes with example? [June/July 2014] [10marks] Discrete attribute has a finite or countably infinite set of values. Such attributes can be categorical or numeric. Discrete attributes are often represented by integer valyes.e.g. Zip code, counts etc. Continuous attribute is one whose values are real numbers. Continious attributes are typically represented as floating point variables. E.g. tempreture, height etc. For asymmetric attributes only presence- a non zero attribute value- is regarded as important. E.g. consider a data set where each object is a student & each attribute records whether or not a student took a particular course at university. For a specific student an attribute has a value of 1 if the student took the course and a value 0 otherwise. Because student took only a small fraction of all available courses, most of the value in such a data set would be 0.therefore it is more meaningful and more efficient to focus on non 0 values 2. Explain hunts algorithm and illustrate is working? [June/July 2014] [10marks] Data cleaning: This refers to the preprocessing of data in order to remove or reduce noise (by applying smoothing techniques, for example) and the treatment of missing values (e.g., by replacing a missing value with the most commonly occurring value for that attribute, or with the most probable value based on statistics). Although most classification algorithms have some mechanisms for handling noisy or missing data, this step can help reduce confusion during learning. Relevance analysis: Many of the attributes in the data may be redundant. Correlation analysis can be used to identify whether any two given attributes are statistically related. For example, a strong correlation between attributes A1 and A2 would suggest that one of the two could be removed from further analysis. A database may also contain irrelevant attributes. Attribute subset selection4 can be used in these cases to find a reduced set of attributes such that the resulting probability distribution of the data classes is as close as possible to the original distribution obtained using all attributes. Hence, relevance analysis, in the form of correlation analysis and attribute subset selection, can be used to detect attributes that do not contribute to the classification or prediction task. Including such attributes may otherwise slow down, and possibly mislead, the learning step. Dept of CSE, SJBIT Page 12

13 3. What is rule based classifier? Explain how a rule based classifier works. [Dec 13][7marks] Using IF-THEN Rules for Classification Rules are a good way of representing information or bits of knowledge. A rule-based classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an expression of the form IF condition THEN conclusion. An example is rule R1, R1: IF age = youth AND student = yes THEN buys computer = yes. The IF -part (or left-hand side) of a rule is known as the rule antecedent or precondition. The THEN -part (or right-hand side) is the rule consequent. In the rule antecedent, the condition consists of one or more attribute tests (such as age = youth, and student = yes) that are logically ANDed. The rule s consequent contains a class prediction (in this case, we are predicting whether a customer will buy a computer). R1 can also be written as R1: (age = youth) ^ (student = yes))(buys computer = yes). If the condition (that is, all of the attribute tests) in a rule antecedent holds true for a given tuple, we say that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule covers the tuple. A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class labeled data set,d, let ncovers be the number of tuples covered by R; ncorrect be the number of tuples correctly classified by R; and jdj be the number of tuples in D. We can define the coverage and accuracy of R as coverage(r) = ncovers jdj accuracy(r) = ncorrect ncovers That is, a rule s coverage is the percentage of tuples that are covered by the rule (i.e., whose attribute values hold true for the rule s antecedent). For a rule s accuracy, we look at the tuples that it covers and see what percentage of them the rule can correctly classify. 4. Write the algorithm for k-nearest neighbour classification. [Dec 13][3 marks] Data clustering is under vigorous development. Contributing areas of research include data mining, statistics, machine learning, spatial database technology, biology, and marketing. Owing to the huge amounts of data collected in databases, cluster analysis has recently become a highly active topic in data mining research. As a branch of statistics, cluster analysis has been extensively studied for many years, focusing mainly on distance-based cluster analysis. Cluster analysis tools based on k-means, k-medoids, and several other methods have also been built into many statistical analysis software packages or systems, such as S-Plus, SPSS, and SAS. In machine learning, clustering is an example of unsupervised learning. Unlike classification, clustering and unsupervised learning do not rely on predefined classes and class-labeled training examples. For this reason, clustering is a form of learning by observation, rather than learning by examples. In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes. Dept of CSE, SJBIT Page 13

14 Unit-6 1. Explain a. Origins of data mining b. Data Mining tasks in brief? [June/July 2014] [10marks] We have observed various types of databases and information repositories on which data mining can be performed. Let us now examine the kinds of data patterns that can be mined. Data mining functionalities are used to specify the kind of patterns to be found in data mining tasks. In general, data mining tasks can be classified into two categories: descriptive and predictive. Descriptive mining tasks characterize the general properties of the data in the database. Predictive mining tasks perform inference on the current data in order to make predictions. In some cases, users may have no idea regarding what kinds of patterns in their data may be interesting, and hence may like to search for several different kinds of patterns in parallel. Thus it is important to have a data mining system that can mine multiple kinds of patterns to accommodate different user expectations or applications. Furthermore, data mining systems should be able to discover patterns at various granularity (i.e., different levels of abstraction). Data mining systems should also allow users to specify hints to guide or focus the search for interesting patterns. Because some patterns may not hold for all of the data in the database, a measure of certainty or trustworthiness is usually associated with each discovered pattern. Data mining functionalities, and the kinds of patterns they can discover, are described below. Concept/Class Description: Characterization and Discrimination Data can be associated with classes or concepts. For example, in the AllElectronics store, classes of items for sale include computers and printers, and concepts of customers include bigspenders and budgetspenders. It can be useful to describe individual classes and concepts in summarized, concise, and yet precise terms. Such descriptions of a class or a concept are called class/concept descriptions. These descriptions can be derived via (1) data characterization, by summarizing the data of the class under study (often called the target class) in general terms, or (2) data discrimination, by comparison of the target class with one or a set of comparative classes (often called the contrasting classes), or (3) both data characterization and discrimination. Data characterization is a summarization of the general characteristics or features of a target class of data. The data corresponding to the user-specified class are typically collected by a database query. For example, to study the characteristics of software products whose sales increased by 10% in the last year, the data related to such products can be collected by executing an SQL query. Dept of CSE, SJBIT Page 14

15 2. What is bayes theorm? Show how is it used for classification.[june/july 2014] [10marks] 3. Discuss the methods for estimating predictive accuracy of classification method [Dec 13][7 marks] How can we use the above measures to obtain a reliable estimate of classifier accuracy (or predictor accuracy in terms of error)? Holdout, random subsampling, crossvalidation, and the Dept of CSE, SJBIT Page 15

16 bootstrap are common techniques for assessing accuracy based on accuracy increases the overall computation time, yet is useful for model selection. Holdout Method and Random Subsampling The holdout method is what we have alluded to so far in our discussions about accuracy. In this method, the given data are randomly partitioned into two independent sets, a training set and a test set. Typically, two-thirds of the data are allocated to the training set, and the remaining onethird is allocated to the test set. The training set is used to derive the model, whose accuracy is estimated with the test set. The estimate is pessimistic because only a portion of the initial data is used to derive the model. Random subsampling is a variation of the holdout method in which the holdout method is repeated k times. The overall accuracy estimate is taken as the average of the accuracies obtained from each iteration. (For prediction, we can take the average of the predictor error rates.) Cross-validation In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive subsets or folds, D1, D2, : : :, Dk, each of approximately equal size. Training and testing is performed k times. In iteration i, partition Di is reserved as the test set, and the remaining partitions are collectively used to train the model. That is, in the first iteration, subsets D2, : : :, Dk collectively serve as the training set in order to obtain a first model, which is tested on D1; the second iteration is trained on subsets D1, D3, : : :, Dk and tested on D2; and so on. Unlike the holdout and random subsampling methods above, here, each sample is used the same number of times for training and once for testing. For classification, the accuracy estimate is the overall number of correct classifications from the k iterations, divided by the total number of tuples in the initial data. For prediction, the error estimate can be computed as the total loss from the k iterations, divided by the total number of initial tuples. 4. What are the two approaches for extending the binary classifiers to extend to handle multi class problems. [Dec 13][7 marks] Supervised learning (classification) a. Supervision: The training data (observations, measurements, etc.) are accompanied by Dept of CSE, SJBIT Page 16

17 labels indicating the class of the observations b. New data is classified based on the training set n supervised learning (clustering) c. The class labels of training data is unknown d. Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data. Dept of CSE, SJBIT Page 17

18 Unit-7 1. Explain Predective tasks in detail by example? [June/July 2014] [10marks] 2. List and explain four distance measures to compute the distance between a pair of points and find out the distance between two objects represented by attribute. [June/July 2014] [10marks] Imagine that you are given a set of data objects for analysis where, unlike in classification, the class label of each object is not known. This is quite common in large databases, because assigning class labels to a large number of objects can be a very costly process. Clustering is the process of grouping the data into classes or clusters, so that objects within a cluster have high similarity in comparison to one another but are very dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often, distance measures are used. Clustering has its roots in many areas, including data mining, statistics, biology, and machine learning. Scalability:Many clustering algorithms work well on small data sets containing fewer than several hundred data objects; however, a large database may contain millions of objects. Clustering on a sample of a given large data set may lead to biased results. Highly scalable clustering algorithms are needed. Ability to deal with different types of attributes: Many algorithms are designed to cluster interval-based (numerical) data. However, applications may require clustering other types of data, such as binary, categorical (nominal), and ordinal data, or mixtures of these data types. Dept of CSE, SJBIT Page 18

19 Discovery of clusters with arbitrary shape: Many clustering algorithms determine clusters based on Euclidean or Manhattan distance measures. Algorithms based on such distance measures tend to find spherical clusters with similar size and density. However, a cluster could be of any shape. It is important to develop algorithms that can detect clusters of arbitrary shape. Minimal requirements for domain knowledge to determine input parameters: Many clustering algorithms require users to input certain parameters in cluster analysis (such as the number of desired clusters). The clustering results can be quite sensitive to input parameters. Parameters are often difficult to determine, especially for data sets containing high-dimensional objects. This not only burdens users, but it also makes the quality of clustering difficult to control. Ability to deal with noisy data:most real-world databases contain outliers or missing, unknown, or erroneous data. Some clustering algorithms are sensitive to such data and may lead to clusters of poor quality. Incremental clustering and insensitivity to the order of input records: Some clustering algorithms cannot incorporate newly inserted data (i.e., database updates) into existing clustering structures and, instead, must determine a new clustering from scratch. Some clustering algorithms are sensitive to the order of input data. That is, given a set of data objects, such an algorithm may return dramatically different clusterings depending on the order of presentation of the input objects. It is important to develop incremental clustering algorithms and algorithms that are insensitive to the order of input. High dimensionality: A database or a data warehouse can contain several dimensions or attributes. Many clustering algorithms are good at handling low-dimensional data, involving only two to three dimensions. Human eyes are good at judging the quality of clustering for up to three dimensions. Finding clusters of data objects in high dimensional space is challenging, especially considering that such data can be sparse and highly skewed. 2. Explain the cluster analysis methods briefly. [Dec 13][10 marks] Classification: Predicts categorical class labels Classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data Prediction: Models continuous-valued functions, i.e., predicts unknown or missing values Typical Applications Credit approval Target marketing Dept of CSE, SJBIT Page 19

20 Medical diagnosis Treatment effectiveness analysis Several methods for association-based classification ARCS: Quantitative association mining and clustering of association rules (Lent et al 97) It beats C4.5 in (mainly) scalability and also accuracy Associative classification: (Liu et al 98) It mines high support and high confidence rules in the form of cond_set => y, where y is a class label CAEP (Classification by aggregating emerging patterns) (Dong et al 99) Emerging patterns (EPs): the itemsets whose support increases significantly from one class to another Mine Eps based on minimum support and growth rate 3. What are the features of cluster analysis? [Dec 13][10marks] The process of grouping a set of physical or abstract objects into classes of similar objects is called clustering. A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters. A cluster of data objects can be treated collectively as one group and so may be considered as a form of data compression. Although classification is an effective means for distinguishing groups or classes of objects, it requires the often costly collection and labeling of a large set of training tuples or patterns, which the classifier uses to model each group. It is often more desirable to proceed in the reverse direction: First partition the set of data into groups based on data similarity (e.g., using clustering), and then assign labels to the relatively small number of groups. Additional advantages of such a clustering-based process are that it is adaptable to changes and helps single out useful features that distinguish different groups. Cluster analysis is an important human activity. By automated clustering, we can identify dense and sparse regions in object space and, therefore, discover overall distribution patterns and interesting correlations among data attributes. Cluster analysis has been widely used in numerous applications, including market research, pattern recognition, data analysis, and image processing. In business, clustering can help marketers discover distinct groups in their customer bases and characterize customer groups based on purchasing patterns. In biology, it can be used to derive plant and animal taxonomies, categorize genes with similar functionality, and gain insight into structures inherent in populations. Clustering may also help in the identification of areas of similar land use in an earth observation database and in the identification of groups of houses in a city according to house type, value, and geographic location, as well as the identification of groups of automobile insurance policy holders with a high average claim cost. It can also be used to help classify documents on the Web for information discovery. Dept of CSE, SJBIT Page 20

21 Clustering is also called data segmentation in some applications because clustering partitions large data sets into groups according to their similarity. Clustering can also be used for outlier detection, where outliers (values that are far away from any cluster) may be more interesting than common cases. Applications of outlier detection include the detection of credit card fraud and the monitoring of criminal activities in electronic commerce. For example, exceptional cases in credit card transactions, such as very expensive and frequent purchases, may be of interest as possible fraudulent activity. As a data mining function, cluster analysis can be used as a standalone tool to gain insight into the distribution of data, to observe the characteristics of each cluster, and to focus on a particular set of clusters for further analysis. Alternatively, it may serve as a preprocessing step for other algorithms, such as characterization, attribute subset selection, and classification, which would then operate on the detected clusters and the selected attributes or features. Data clustering is under vigorous development. Contributing areas of research include data mining, statistics, machine learning, spatial database technology, biology, and marketing. Owing to the huge amounts of data collected in databases, cluster analysis has recently become a highly active topic in data mining research. Dept of CSE, SJBIT Page 21

22 Unit-8 1. Explain a. Anamoly Detection.Give an Example? b. Data set. Give an example? [June/July 2014] [10marks] a). Anamoly Detection Anamoly detection is the task of identifying observations whose charachteristics are significantly different from the rest of the data. Such observations are known as anamoly or outliers. The goal of anamoly detection algorithm is to discover the real anomalies and avoid falsy labeling normal objects as anomalous. E.g. Credit Card Fraud detection. b). Data set Record Data Matrix Document Data Transaction Data Graph World Wide Web Molecular Structures Ordered Spatial Data Temporal Data Sequential Data 2. Explain the web content mining. [June/July 2014] [10marks] Web content mining is the mining, extraction and integration of useful data, information and knowledge from Web page content. The heterogeneity and the lack of structure that permeates much of the ever-expanding information sources on the World Wide Web, such as hypertext documents, makes automate discovery organization, and search an indexing tools of the internet and the world wide web such as Lycos Alta Vista, Web Crawler ALIWEB [6], MetaCrawler, and others provide some comfort to users, but they do not generally provide structural information nor categorize, filter, or interpret documents. In recent years these factors have prompted researchers to develop more intelligent tools for information retrieval, such as intelligent web agents, as well as to extend database and data mining techniques to provide a higher level of organization for semi-structured data available on the web. Dept of CSE, SJBIT Page 22

23 The agent based approach to web mining involves the development of sophisticated AI systems that can act autonomously or semi-autonomously on behalf of a particular user, to discover and organize web-based information. Web content mining is differentiated from two different points of view:[1] Information Retrieval View and Database View. R. Kosala et al.[2] summarized the research works done for unstructured data and semi-structured data from information retrieval view. It shows that most of the researches use bag of words, which is based on the statistics about single words in isolation, to represent unstructured text and take single word found in the training corpus as features. For the semi-structured data, all the works utilize the HTML structures inside the documents and some utilized the hyperlink structure between the documents for document representation. As for the database view, in order to have the better information management and querying on the web, the mining always tries to infer the structure of the web site to transform a web site to become a database. There are several ways to represent documents; vector space model is typically used. The documents constitute the whole vector space. If a term t occurs n(d, t) in document D, the t-th coordinate of D is n(d, t). When the length of the words in a document goes to D maxt n(d, t). This representation does not realize the importance of words in a document. To resolve this, tfidf (Term Frequency Times Inverse Document Frequency) is introduced. 3. Briefly describe the text mining. [Dec 13] [10marks] Most previous studies of data mining have focused on structured data, such as relational, transactional, and data warehouse data. However, in reality, a substantial portion of the available information is stored in text databases (or document databases), which consist of large collections of documents from various sources, such as news articles, research papers, books, digital libraries, messages, and Web pages. Text databases are rapidly growing due to the increasing amount of information available in electronic form, such as electronic publications, various kinds of electronic documents, , and the World Wide Web (which can also be viewed as a huge, interconnected, dynamic text database). Nowadays most of the information in government, industry, business, and other institutions are stored electronically, in the form of text databases. Data stored in most text databases are semistructured data in that they are neither completely unstructured nor completely structured. For example, a document may contain a few structured fields, such as title, authors, publication date, category, and so on, but also contain some largely unstructured text components, such as abstract and contents. There have been a great deal of studies on the modeling and implementation of semistructured data in recent database research. Moreover, information retrieval techniques, such as text indexing methods, have been developed to handle unstructured documents. Traditional information retrieval techniques become inadequate for the increasingly vast amounts of text data. Typically, only a small fraction of the many available documents will be relevant to a given individual Dept of CSE, SJBIT Page 23

A Novel Approach of Data Warehouse OLTP and OLAP Technology for Supporting Management prospective

A Novel Approach of Data Warehouse OLTP and OLAP Technology for Supporting Management prospective A Novel Approach of Data Warehouse OLTP and OLAP Technology for Supporting Management prospective B.Manivannan Research Scholar, Dept. Computer Science, Dravidian University, Kuppam, Andhra Pradesh, India

More information

Question Bank. 4) It is the source of information later delivered to data marts.

Question Bank. 4) It is the source of information later delivered to data marts. Question Bank Year: 2016-2017 Subject Dept: CS Semester: First Subject Name: Data Mining. Q1) What is data warehouse? ANS. A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile

More information

This tutorial has been prepared for computer science graduates to help them understand the basic-to-advanced concepts related to data mining.

This tutorial has been prepared for computer science graduates to help them understand the basic-to-advanced concepts related to data mining. About the Tutorial Data Mining is defined as the procedure of extracting information from huge sets of data. In other words, we can say that data mining is mining knowledge from data. The tutorial starts

More information

Table Of Contents: xix Foreword to Second Edition

Table Of Contents: xix Foreword to Second Edition Data Mining : Concepts and Techniques Table Of Contents: Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments xxxi About the Authors xxxv Chapter 1 Introduction 1 (38) 1.1 Why Data

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year / Semester: IV/VII CS1011-DATA

More information

DATA MINING AND WAREHOUSING

DATA MINING AND WAREHOUSING DATA MINING AND WAREHOUSING Qno Question Answer 1 Define data warehouse? Data warehouse is a subject oriented, integrated, time-variant, and nonvolatile collection of data that supports management's decision-making

More information

CHAPTER-26 Mining Text Databases

CHAPTER-26 Mining Text Databases CHAPTER-26 Mining Text Databases 26.1 Introduction 26.2 Text Data Analysis and Information Retrieval 26.3 Basle Measures for Text Retrieval 26.4 Keyword-Based and Similarity-Based Retrieval 26.5 Other

More information

Contents. Foreword to Second Edition. Acknowledgments About the Authors

Contents. Foreword to Second Edition. Acknowledgments About the Authors Contents Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments About the Authors xxxi xxxv Chapter 1 Introduction 1 1.1 Why Data Mining? 1 1.1.1 Moving toward the Information Age 1

More information

Data Preprocessing. Slides by: Shree Jaswal

Data Preprocessing. Slides by: Shree Jaswal Data Preprocessing Slides by: Shree Jaswal Topics to be covered Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data

More information

DATA WAREHOUING UNIT I

DATA WAREHOUING UNIT I BHARATHIDASAN ENGINEERING COLLEGE NATTRAMAPALLI DEPARTMENT OF COMPUTER SCIENCE SUB CODE & NAME: IT6702/DWDM DEPT: IT Staff Name : N.RAMESH DATA WAREHOUING UNIT I 1. Define data warehouse? NOV/DEC 2009

More information

This tutorial will help computer science graduates to understand the basic-to-advanced concepts related to data warehousing.

This tutorial will help computer science graduates to understand the basic-to-advanced concepts related to data warehousing. About the Tutorial A data warehouse is constructed by integrating data from multiple heterogeneous sources. It supports analytical reporting, structured and/or ad hoc queries and decision making. This

More information

CT75 DATA WAREHOUSING AND DATA MINING DEC 2015

CT75 DATA WAREHOUSING AND DATA MINING DEC 2015 Q.1 a. Briefly explain data granularity with the help of example Data Granularity: The single most important aspect and issue of the design of the data warehouse is the issue of granularity. It refers

More information

Database design View Access patterns Need for separate data warehouse:- A multidimensional data model:-

Database design View Access patterns Need for separate data warehouse:- A multidimensional data model:- UNIT III: Data Warehouse and OLAP Technology: An Overview : What Is a Data Warehouse? A Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, From Data Warehousing to

More information

Preprocessing Short Lecture Notes cse352. Professor Anita Wasilewska

Preprocessing Short Lecture Notes cse352. Professor Anita Wasilewska Preprocessing Short Lecture Notes cse352 Professor Anita Wasilewska Data Preprocessing Why preprocess the data? Data cleaning Data integration and transformation Data reduction Discretization and concept

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

GUJARAT TECHNOLOGICAL UNIVERSITY MASTER OF COMPUTER APPLICATIONS (MCA) Semester: IV

GUJARAT TECHNOLOGICAL UNIVERSITY MASTER OF COMPUTER APPLICATIONS (MCA) Semester: IV GUJARAT TECHNOLOGICAL UNIVERSITY MASTER OF COMPUTER APPLICATIONS (MCA) Semester: IV Subject Name: Elective I Data Warehousing & Data Mining (DWDM) Subject Code: 2640005 Learning Objectives: To understand

More information

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Data Preprocessing S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 INFORMATION TECHNOLOGY DEFINITIONS AND TERMINOLOGY Course Name : DATA WAREHOUSING AND DATA MINING Course Code : AIT006 Program

More information

CHAPTER 3 Implementation of Data warehouse in Data Mining

CHAPTER 3 Implementation of Data warehouse in Data Mining CHAPTER 3 Implementation of Data warehouse in Data Mining 3.1 Introduction to Data Warehousing A data warehouse is storage of convenient, consistent, complete and consolidated data, which is collected

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to JULY 2011 Afsaneh Yazdani What motivated? Wide availability of huge amounts of data and the imminent need for turning such data into useful information and knowledge What motivated? Data

More information

1. Inroduction to Data Mininig

1. Inroduction to Data Mininig 1. Inroduction to Data Mininig 1.1 Introduction Universe of Data Information Technology has grown in various directions in the recent years. One natural evolutionary path has been the development of the

More information

Data Mining. Data warehousing. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Data warehousing. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Data warehousing Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 22 Table of contents 1 Introduction 2 Data warehousing

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Data Preprocessing. Data Mining 1

Data Preprocessing. Data Mining 1 Data Preprocessing Today s real-world databases are highly susceptible to noisy, missing, and inconsistent data due to their typically huge size and their likely origin from multiple, heterogenous sources.

More information

DATA MINING TRANSACTION

DATA MINING TRANSACTION DATA MINING Data Mining is the process of extracting patterns from data. Data mining is seen as an increasingly important tool by modern business to transform data into an informational advantage. It is

More information

Data Warehousing. Ritham Vashisht, Sukhdeep Kaur and Shobti Saini

Data Warehousing. Ritham Vashisht, Sukhdeep Kaur and Shobti Saini Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 669-674 Research India Publications http://www.ripublication.com/aeee.htm Data Warehousing Ritham Vashisht,

More information

Summary of Last Chapter. Course Content. Chapter 3 Objectives. Chapter 3: Data Preprocessing. Dr. Osmar R. Zaïane. University of Alberta 4

Summary of Last Chapter. Course Content. Chapter 3 Objectives. Chapter 3: Data Preprocessing. Dr. Osmar R. Zaïane. University of Alberta 4 Principles of Knowledge Discovery in Data Fall 2004 Chapter 3: Data Preprocessing Dr. Osmar R. Zaïane University of Alberta Summary of Last Chapter What is a data warehouse and what is it for? What is

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

IT DATA WAREHOUSING AND DATA MINING UNIT-2 BUSINESS ANALYSIS

IT DATA WAREHOUSING AND DATA MINING UNIT-2 BUSINESS ANALYSIS PART A 1. What are production reporting tools? Give examples. (May/June 2013) Production reporting tools will let companies generate regular operational reports or support high-volume batch jobs. Such

More information

Data Mining. Data preprocessing. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Data preprocessing. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Data preprocessing Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 15 Table of contents 1 Introduction 2 Data preprocessing

More information

Data Mining. Data preprocessing. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Data preprocessing. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Data preprocessing Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 15 Table of contents 1 Introduction 2 Data preprocessing

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III & VI Section : CSE - 2 Subject Code : IT6702 Subject Name : Data warehousing

More information

CT75 (ALCCS) DATA WAREHOUSING AND DATA MINING JUN

CT75 (ALCCS) DATA WAREHOUSING AND DATA MINING JUN Q.1 a. Define a Data warehouse. Compare OLTP and OLAP systems. Data Warehouse: A data warehouse is a subject-oriented, integrated, time-variant, and 2 Non volatile collection of data in support of management

More information

An Indian Journal FULL PAPER. Trade Science Inc. Research on data mining clustering algorithm in cloud computing environments ABSTRACT KEYWORDS

An Indian Journal FULL PAPER. Trade Science Inc. Research on data mining clustering algorithm in cloud computing environments ABSTRACT KEYWORDS [Type text] [Type text] [Type text] ISSN : 0974-7435 Volume 10 Issue 17 BioTechnology 2014 An Indian Journal FULL PAPER BTAIJ, 10(17), 2014 [9562-9566] Research on data mining clustering algorithm in cloud

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 21 Table of contents 1 Introduction 2 Data mining

More information

Data warehouse architecture consists of the following interconnected layers:

Data warehouse architecture consists of the following interconnected layers: Architecture, in the Data warehousing world, is the concept and design of the data base and technologies that are used to load the data. A good architecture will enable scalability, high performance and

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 20 Table of contents 1 Introduction 2 Data mining

More information

Data Preprocessing Yudho Giri Sucahyo y, Ph.D , CISA

Data Preprocessing Yudho Giri Sucahyo y, Ph.D , CISA Obj ti Objectives Motivation: Why preprocess the Data? Data Preprocessing Techniques Data Cleaning Data Integration and Transformation Data Reduction Data Preprocessing Lecture 3/DMBI/IKI83403T/MTI/UI

More information

Chapter 3: Data Mining:

Chapter 3: Data Mining: Chapter 3: Data Mining: 3.1 What is Data Mining? Data Mining is the process of automatically discovering useful information in large repository. Why do we need Data mining? Conventional database systems

More information

Table of Contents. Rajesh Pandey Page 1

Table of Contents. Rajesh Pandey Page 1 Table of Contents Chapter 1: Introduction to Data Mining and Data Warehousing... 4 1.1 Review of Basic Concepts of Data Mining and Data Warehousing... 4 1.2 Data Mining... 5 1.2.1 Why Data Mining?... 5

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3. Chapter 3: Data Preprocessing. Major Tasks in Data Preprocessing

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3. Chapter 3: Data Preprocessing. Major Tasks in Data Preprocessing Data Mining: Concepts and Techniques (3 rd ed.) Chapter 3 1 Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks in Data Preprocessing Data Cleaning Data Integration Data

More information

Chapter 2 BACKGROUND OF WEB MINING

Chapter 2 BACKGROUND OF WEB MINING Chapter 2 BACKGROUND OF WEB MINING Overview 2.1. Introduction to Data Mining Data mining is an important and fast developing area in web mining where already a lot of research has been done. Recently,

More information

UNIT 2 Data Preprocessing

UNIT 2 Data Preprocessing UNIT 2 Data Preprocessing Lecture Topic ********************************************** Lecture 13 Why preprocess the data? Lecture 14 Lecture 15 Lecture 16 Lecture 17 Data cleaning Data integration and

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3 Data Mining: Concepts and Techniques (3 rd ed.) Chapter 3 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University 2011 Han, Kamber & Pei. All rights

More information

Data Mining & Data Warehouse

Data Mining & Data Warehouse Data Mining & Data Warehouse Associate Professor Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology (1) 2016 2017 1 Points to Cover Why Do We Need Data Warehouses?

More information

1. What are the nine decisions in the design of the data warehouse?

1. What are the nine decisions in the design of the data warehouse? 1. What are the nine decisions in the design of the data warehouse? 1. Choosing the process 2. Choosing the grain 3. Identifying and conforming the dimensions 4. Choosing the facts 5. Storing pre-calculations

More information

Data warehouses Decision support The multidimensional model OLAP queries

Data warehouses Decision support The multidimensional model OLAP queries Data warehouses Decision support The multidimensional model OLAP queries Traditional DBMSs are used by organizations for maintaining data to record day to day operations On-line Transaction Processing

More information

Data Mining and Analytics. Introduction

Data Mining and Analytics. Introduction Data Mining and Analytics Introduction Data Mining Data mining refers to extracting or mining knowledge from large amounts of data It is also termed as Knowledge Discovery from Data (KDD) Mostly, data

More information

Data Mining Concepts

Data Mining Concepts Data Mining Concepts Outline Data Mining Data Warehousing Knowledge Discovery in Databases (KDD) Goals of Data Mining and Knowledge Discovery Association Rules Additional Data Mining Algorithms Sequential

More information

CS377: Database Systems Data Warehouse and Data Mining. Li Xiong Department of Mathematics and Computer Science Emory University

CS377: Database Systems Data Warehouse and Data Mining. Li Xiong Department of Mathematics and Computer Science Emory University CS377: Database Systems Data Warehouse and Data Mining Li Xiong Department of Mathematics and Computer Science Emory University 1 1960s: Evolution of Database Technology Data collection, database creation,

More information

2. (a) Briefly discuss the forms of Data preprocessing with neat diagram. (b) Explain about concept hierarchy generation for categorical data.

2. (a) Briefly discuss the forms of Data preprocessing with neat diagram. (b) Explain about concept hierarchy generation for categorical data. Code No: M0502/R05 Set No. 1 1. (a) Explain data mining as a step in the process of knowledge discovery. (b) Differentiate operational database systems and data warehousing. [8+8] 2. (a) Briefly discuss

More information

Data Warehousing (1)

Data Warehousing (1) ICS 421 Spring 2010 Data Warehousing (1) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/18/2010 Lipyeow Lim -- University of Hawaii at Manoa 1 Motivation

More information

2 CONTENTS

2 CONTENTS Contents 5 Mining Frequent Patterns, Associations, and Correlations 3 5.1 Basic Concepts and a Road Map..................................... 3 5.1.1 Market Basket Analysis: A Motivating Example........................

More information

Lectures for the course: Data Warehousing and Data Mining (IT 60107)

Lectures for the course: Data Warehousing and Data Mining (IT 60107) Lectures for the course: Data Warehousing and Data Mining (IT 60107) Week 1 Lecture 1 21/07/2011 Introduction to the course Pre-requisite Expectations Evaluation Guideline Term Paper and Term Project Guideline

More information

Data Mining Course Overview

Data Mining Course Overview Data Mining Course Overview 1 Data Mining Overview Understanding Data Classification: Decision Trees and Bayesian classifiers, ANN, SVM Association Rules Mining: APriori, FP-growth Clustering: Hierarchical

More information

CMPUT 391 Database Management Systems. Data Mining. Textbook: Chapter (without 17.10)

CMPUT 391 Database Management Systems. Data Mining. Textbook: Chapter (without 17.10) CMPUT 391 Database Management Systems Data Mining Textbook: Chapter 17.7-17.11 (without 17.10) University of Alberta 1 Overview Motivation KDD and Data Mining Association Rules Clustering Classification

More information

Chapter 28. Outline. Definitions of Data Mining. Data Mining Concepts

Chapter 28. Outline. Definitions of Data Mining. Data Mining Concepts Chapter 28 Data Mining Concepts Outline Data Mining Data Warehousing Knowledge Discovery in Databases (KDD) Goals of Data Mining and Knowledge Discovery Association Rules Additional Data Mining Algorithms

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05321204 Set No. 1 1. (a) Draw and explain the architecture for on-line analytical mining. (b) Briefly discuss the data warehouse applications. [8+8] 2. Briefly discuss the role of data cube

More information

CS 521 Data Mining Techniques Instructor: Abdullah Mueen

CS 521 Data Mining Techniques Instructor: Abdullah Mueen CS 521 Data Mining Techniques Instructor: Abdullah Mueen LECTURE 2: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks

More information

Fig 1.2: Relationship between DW, ODS and OLTP Systems

Fig 1.2: Relationship between DW, ODS and OLTP Systems 1.4 DATA WAREHOUSES Data warehousing is a process for assembling and managing data from various sources for the purpose of gaining a single detailed view of an enterprise. Although there are several definitions

More information

Q1) Describe business intelligence system development phases? (6 marks)

Q1) Describe business intelligence system development phases? (6 marks) BUISINESS ANALYTICS AND INTELLIGENCE SOLVED QUESTIONS Q1) Describe business intelligence system development phases? (6 marks) The 4 phases of BI system development are as follow: Analysis phase Design

More information

Full file at

Full file at Chapter 2 Data Warehousing True-False Questions 1. A real-time, enterprise-level data warehouse combined with a strategy for its use in decision support can leverage data to provide massive financial benefits

More information

Data Preprocessing. Komate AMPHAWAN

Data Preprocessing. Komate AMPHAWAN Data Preprocessing Komate AMPHAWAN 1 Data cleaning (data cleansing) Attempt to fill in missing values, smooth out noise while identifying outliers, and correct inconsistencies in the data. 2 Missing value

More information

ISSN: [Saurkar* et al., 6(4): April, 2017] Impact Factor: 4.116

ISSN: [Saurkar* et al., 6(4): April, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AN OVERVIEW ON DIFFERENT CLUSTERING METHODS USED IN DATA MINING Anand V. Saurkar *, Shweta A. Gode * Department of Computer Science

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 05(b) : 23/10/2012 Data Mining: Concepts and Techniques (3 rd ed.) Chapter

More information

Cse634 DATA MINING TEST REVIEW. Professor Anita Wasilewska Computer Science Department Stony Brook University

Cse634 DATA MINING TEST REVIEW. Professor Anita Wasilewska Computer Science Department Stony Brook University Cse634 DATA MINING TEST REVIEW Professor Anita Wasilewska Computer Science Department Stony Brook University Preprocessing stage Preprocessing: includes all the operations that have to be performed before

More information

Winter Semester 2009/10 Free University of Bozen, Bolzano

Winter Semester 2009/10 Free University of Bozen, Bolzano Data Warehousing and Data Mining Winter Semester 2009/10 Free University of Bozen, Bolzano DW Lecturer: Johann Gamper gamper@inf.unibz.it DM Lecturer: Mouna Kacimi mouna.kacimi@unibz.it http://www.inf.unibz.it/dis/teaching/dwdm/index.html

More information

Introduction to Data Science

Introduction to Data Science UNIT I INTRODUCTION TO DATA SCIENCE Syllabus Introduction of Data Science Basic Data Analytics using R R Graphical User Interfaces Data Import and Export Attribute and Data Types Descriptive Statistics

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No. 01 Databases, Data warehouse Naeem Ahmed Email: naeemmahoto@gmail.com Department of Software Engineering Mehran Univeristy of Engineering and Technology Jamshoro

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Association Rules. Berlin Chen References:

Association Rules. Berlin Chen References: Association Rules Berlin Chen 2005 References: 1. Data Mining: Concepts, Models, Methods and Algorithms, Chapter 8 2. Data Mining: Concepts and Techniques, Chapter 6 Association Rules: Basic Concepts A

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

A Survey on Data Preprocessing Techniques for Bioinformatics and Web Usage Mining

A Survey on Data Preprocessing Techniques for Bioinformatics and Web Usage Mining Volume 117 No. 20 2017, 785-794 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A Survey on Data Preprocessing Techniques for Bioinformatics and Web

More information

An Overview of various methodologies used in Data set Preparation for Data mining Analysis

An Overview of various methodologies used in Data set Preparation for Data mining Analysis An Overview of various methodologies used in Data set Preparation for Data mining Analysis Arun P Kuttappan 1, P Saranya 2 1 M. E Student, Dept. of Computer Science and Engineering, Gnanamani College of

More information

Chapter 4 Data Mining A Short Introduction

Chapter 4 Data Mining A Short Introduction Chapter 4 Data Mining A Short Introduction Data Mining - 1 1 Today's Question 1. Data Mining Overview 2. Association Rule Mining 3. Clustering 4. Classification Data Mining - 2 2 1. Data Mining Overview

More information

1. Attempt any two of the following: 10 a. State and justify the characteristics of a Data Warehouse with suitable examples.

1. Attempt any two of the following: 10 a. State and justify the characteristics of a Data Warehouse with suitable examples. Instructions to the Examiners: 1. May the Examiners not look for exact words from the text book in the Answers. 2. May any valid example be accepted - example may or may not be from the text book 1. Attempt

More information

Lecture 18. Business Intelligence and Data Warehousing. 1:M Normalization. M:M Normalization 11/1/2017. Topics Covered

Lecture 18. Business Intelligence and Data Warehousing. 1:M Normalization. M:M Normalization 11/1/2017. Topics Covered Lecture 18 Business Intelligence and Data Warehousing BDIS 6.2 BSAD 141 Dave Novak Topics Covered Test # Review What is Business Intelligence? How can an organization be data rich and information poor?

More information

K236: Basis of Data Science

K236: Basis of Data Science Schedule of K236 K236: Basis of Data Science Lecture 6: Data Preprocessing Lecturer: Tu Bao Ho and Hieu Chi Dam TA: Moharasan Gandhimathi and Nuttapong Sanglerdsinlapachai 1. Introduction to data science

More information

UNIT -1 UNIT -II. Q. 4 Why is entity-relationship modeling technique not suitable for the data warehouse? How is dimensional modeling different?

UNIT -1 UNIT -II. Q. 4 Why is entity-relationship modeling technique not suitable for the data warehouse? How is dimensional modeling different? (Please write your Roll No. immediately) End-Term Examination Fourth Semester [MCA] MAY-JUNE 2006 Roll No. Paper Code: MCA-202 (ID -44202) Subject: Data Warehousing & Data Mining Note: Question no. 1 is

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

Yunfeng Zhang 1, Huan Wang 2, Jie Zhu 1 1 Computer Science & Engineering Department, North China Institute of Aerospace

Yunfeng Zhang 1, Huan Wang 2, Jie Zhu 1 1 Computer Science & Engineering Department, North China Institute of Aerospace [Type text] [Type text] [Type text] ISSN : 0974-7435 Volume 10 Issue 20 BioTechnology 2014 An Indian Journal FULL PAPER BTAIJ, 10(20), 2014 [12526-12531] Exploration on the data mining system construction

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No. 02 Data Processing, Data Mining Naeem Ahmed Email: naeemmahoto@gmail.com Department of Software Engineering Mehran Univeristy of Engineering and Technology

More information

UNIT -1 UNIT -II. Q. 4 Why is entity-relationship modeling technique not suitable for the data warehouse? How is dimensional modeling different?

UNIT -1 UNIT -II. Q. 4 Why is entity-relationship modeling technique not suitable for the data warehouse? How is dimensional modeling different? (Please write your Roll No. immediately) End-Term Examination Fourth Semester [MCA] MAY-JUNE 2006 Roll No. Paper Code: MCA-202 (ID -44202) Subject: Data Warehousing & Data Mining Time: 3 Hours Maximum

More information

Knowledge Modelling and Management. Part B (9)

Knowledge Modelling and Management. Part B (9) Knowledge Modelling and Management Part B (9) Yun-Heh Chen-Burger http://www.aiai.ed.ac.uk/~jessicac/project/kmm 1 A Brief Introduction to Business Intelligence 2 What is Business Intelligence? Business

More information

TECHNOLOGY BRIEF: CA ERWIN DATA PROFILER. Combining Data Profiling and Data Modeling for Better Data Quality

TECHNOLOGY BRIEF: CA ERWIN DATA PROFILER. Combining Data Profiling and Data Modeling for Better Data Quality TECHNOLOGY BRIEF: CA ERWIN DATA PROFILER Combining Data Profiling and Data Modeling for Better Data Quality Table of Contents Executive Summary SECTION 1: CHALLENGE 2 Reducing the Cost and Risk of Data

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

Web Data mining-a Research area in Web usage mining

Web Data mining-a Research area in Web usage mining IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 1 (Jul. - Aug. 2013), PP 22-26 Web Data mining-a Research area in Web usage mining 1 V.S.Thiyagarajan,

More information

IT6702 DATA WAREHOUSING AND DATA MINING TWO MARKS WITH ANSWER UNIT-1 DATA WAREHOUSING

IT6702 DATA WAREHOUSING AND DATA MINING TWO MARKS WITH ANSWER UNIT-1 DATA WAREHOUSING IT6702 DATA WAREHOUSING AND DATA MINING TWO MARKS WITH ANSWER UNIT-1 DATA WAREHOUSING 1. What are the uses of multifeature cubes? (Nov/Dec 2007) multifeature cubes, which compute complex queries involving

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Information Technology IT6702 Data Warehousing & Data Mining Anna University 2 & 16 Mark Questions & Answers Year / Semester: IV / VII Regulation:

More information

Management Information Systems MANAGING THE DIGITAL FIRM, 12 TH EDITION FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT

Management Information Systems MANAGING THE DIGITAL FIRM, 12 TH EDITION FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT MANAGING THE DIGITAL FIRM, 12 TH EDITION Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT VIDEO CASES Case 1: Maruti Suzuki Business Intelligence and Enterprise Databases

More information

UNIT 2. DATA PREPROCESSING AND ASSOCIATION RULES

UNIT 2. DATA PREPROCESSING AND ASSOCIATION RULES UNIT 2. DATA PREPROCESSING AND ASSOCIATION RULES Data Pre-processing-Data Cleaning, Integration, Transformation, Reduction, Discretization Concept Hierarchies-Concept Description: Data Generalization And

More information

Handout 12 Data Warehousing and Analytics.

Handout 12 Data Warehousing and Analytics. Handout 12 CS-605 Spring 17 Page 1 of 6 Handout 12 Data Warehousing and Analytics. Operational (aka transactional) system a system that is used to run a business in real time, based on current data; also

More information

REPORTING AND QUERY TOOLS AND APPLICATIONS

REPORTING AND QUERY TOOLS AND APPLICATIONS Tool Categories: REPORTING AND QUERY TOOLS AND APPLICATIONS There are five categories of decision support tools Reporting Managed query Executive information system OLAP Data Mining Reporting Tools Production

More information

CS614 - Data Warehousing - Midterm Papers Solved MCQ(S) (1 TO 22 Lectures)

CS614 - Data Warehousing - Midterm Papers Solved MCQ(S) (1 TO 22 Lectures) CS614- Data Warehousing Solved MCQ(S) From Midterm Papers (1 TO 22 Lectures) BY Arslan Arshad Nov 21,2016 BS110401050 BS110401050@vu.edu.pk Arslan.arshad01@gmail.com AKMP01 CS614 - Data Warehousing - Midterm

More information

CHAPTER-23 MINING COMPLEX TYPES OF DATA

CHAPTER-23 MINING COMPLEX TYPES OF DATA CHAPTER-23 MINING COMPLEX TYPES OF DATA 23.1 Introduction 23.2 Multidimensional Analysis and Descriptive Mining of Complex Data Objects 23.3 Generalization of Structured Data 23.4 Aggregation and Approximation

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Correlation Based Feature Selection with Irrelevant Feature Removal

Correlation Based Feature Selection with Irrelevant Feature Removal Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Overview. Introduction to Data Warehousing and Business Intelligence. BI Is Important. What is Business Intelligence (BI)?

Overview. Introduction to Data Warehousing and Business Intelligence. BI Is Important. What is Business Intelligence (BI)? Introduction to Data Warehousing and Business Intelligence Overview Why Business Intelligence? Data analysis problems Data Warehouse (DW) introduction A tour of the coming DW lectures DW Applications Loosely

More information