Priority Queues. Priority Queue Specification. Priority Queue ADT. Implementation #1

Size: px
Start display at page:

Download "Priority Queues. Priority Queue Specification. Priority Queue ADT. Implementation #1"

Transcription

1 Priority Queues A Greedy Approximation Algorithm for Computing Shortest Superstrings Lecture 13 Riley 7.9, Cormen et al. parts of 11 Priority Queues A queue in which all items are assigned a priority by which they are ordered. First in line stands the item with the most extreme (highest or lowest) priority. (Not the item that has spent the longest time in the queue as is the case in ordinary queues). However, to solve ties, the time in the queue is used. The meaning of priority differs. Depends on the context; choose a suitable concrete definition! Lecture 13 - Tomas Johansson 2 Priority Queue ADT Priority Queue Specification Lecture 13 - Tomas Johansson 3 Lecture 13 - Tomas Johansson 4 Implementation #1 Use a list and add new items at the end. Items are somehow tagged with a priority. Could use pairs with the priority and the item. dequeue searches through the entire list. Time complexity of operations: When there are k items in the queue it takes O(1) time to insert (enqueue) new items. Good! O(k) time to dequeue. Bad.. Assume objects were entered in the order of A2, B3, C1, D1, E2, F3, G1, H3. Lecture 13 - Tomas Johansson 5 Lecture 13 - Tomas Johansson 6 1

2 Implementation #2 Use a list but keep it sorted at all time according to priority. enqueue searches through the list comparing priorities until the proper place for the new item has been found. dequeue takes out the first element of the list. Time complexity of operations: When there is k elements in the queue it takes O(k) time to insert (enqueue) new items. Bad.. O(1) time to dequeue. Good! Lecture 13 - Tomas Johansson 7 Assume objects were entered in the order of A2, B3, C1, D1, E2, F3, G1, H3. Lecture 13 - Tomas Johansson 8 Better implementations? If we insert (enqueue) n elements into a priority queue and then dequeue them this will take O(n 2 ) time regardless of whether implementation 1 or 2 is used. O(n 2 ) time is not very practical (see Problem 2 of Homework1..) Is it possible to improve this? YES! Use a tree structure called Heap. Heaps will be covered in a couple of lectures, but first what is a tree structure?! Lecture 13 - Tomas Johansson 9 A tree is a connected acyclic graph. A graph is a set of nodes and a set of arcs (or edges). An arc connects a pair of nodes to each other. Two nodes connected by an arc are adjacent. There is a path between any pair of nodes. A path is a sequence of nodes where each successive node (except for the first) is adjacent to its predecessor in the sequence. There are no cycles/loops in a tree. Lecture 13 - Tomas Johansson 10 Tree! Not a tree! (But a forest) Not a tree! The trees we will encounter are directed and rooted. Directed means that arcs are one-way only. Paths go in the direction of arcs. Rooted One of the nodes is the root of the tree. There is exactly one path from the root to another node. Nodes without outgoing arcs are called leafs. Lecture 13 - Tomas Johansson 11 Lecture 13 - Tomas Johansson 12 2

3 Rooted trees Lecture 13 - Tomas Johansson 13 Lecture 13 - Tomas Johansson 14 Some properties Nodes have at most one incoming arc. All nodes have one except for the root that has none. The number of arcs is always one less than the number of nodes. A tree becomes disconnected if an arc is removed. Binary In a binary tree each node is either a leaf or it has exactly two (2) outgoing arcs. Binary trees can be used to represent trees with other out-degrees: A B C A B C Lecture 13 - Tomas Johansson 15 Lecture 13 - Tomas Johansson 16 Some terminology Inheritance tree in UML Lecture 13 - Tomas Johansson 17 Lecture 13 - Tomas Johansson 18 3

4 =(1-2)*(3+4) Expression =1-2 =2-1 Heap A heap is a binary tree with the following properties: All levels are full, except for the lowest level when nodes are added from the left The greatest/smallest value in any subtree is stored in that subtree s root. Observation: The height of a heap is O(lg n) =(5+6) / (7 - ((8+9) * 3)) Lecture 13 - Tomas Johansson 19 Lecture 13 - Tomas Johansson 20 Priority Queue using heap Greedy algorithms Insertion as well as removing elements in a heap can be done in O(lg n) time. Inserting and removing n objects took O(n 2 ) time using a linked list, now it only takes O(n lg n) time! Greed, for the lack of a better word, is good! Greed is right! Greed works! -Gordon Gecko, Wall Street, Lecture 13 - Tomas Johansson 21 Lecture 13 - Tomas Johansson 22 Change-making problem Give change for the amount n with the least number of coins of the denomination d 1 >d 2 > >d m USA example: d 1 =25, d 2 =10, d 3 =5, d 4 =1 What is the solution for the problem instance of n=48? Strategy: Always use the largest possible coin! Greedy algorithm A greedy algorithm always makes the locally optimal choice hoping to achieve the globally optimal solution In USA, the greedy strategy works! Butwhatifd 1 =7, d 2 =5, d 3 =1, and n=11? Obviously, greed does not always work Lecture 13 - Tomas Johansson 23 Lecture 13 - Tomas Johansson 24 4

5 More on the change-making problem: What this country needs is an 18-cent piece Jeffrey Shallit, University of Waterloo, Abstract: We consider sets of coin denominations which permit change to be made using as few coins as possible, and explain why the United States should be using the 18-cent piece. but the greedy algorithm does not produce optimal results using the optimal denominations. Approximation algorithms Some problems become very difficult (wrt time/memory) as the input size grows Finding the optimal solution is not always feasible Approximation algorithms give the suboptimal solution, but they are faster/cheaper than finding the optimal solution Lecture 13 - Tomas Johansson 25 Lecture 13 - Tomas Johansson 26 A Greedy Approximation Algorithm for computing Shortest Superstrings The problem of computing the shortest (common) superstring: Given a set S of strings, find the shortest string that contains all the strings in S as sub-strings. Example: { ABB, CAB, ICA } has ICABB as its shortest superstring. Applications: Data compression and DNA sequencing. Lecture 13 - Tomas Johansson 27 Shortest Superstring Bad news: The problem is NP-hard. Means there are (probably) no fast solutions. One solution: Try all possible orderings of the input strings. For each ordering, place one string after another and have them overlap as much as possible. This gives us the shortest superstring for that particular ordering. Keep the shortest of all superstrings obtained; this is the overall shortest superstring. For n unique input strings there are n! orderings Lecture 13 - Tomas Johansson 28 Shortest Superstring Good news: There are fast algorithms that compute provably good approximations! Better than nothing A pretty good solution: A greedy algorithm(!) Let S be the set of input strings. Repeat the following as long as S has more than one element: Check which pair of strings s 1 and s 2 in S that overlap the most.» This is where the algorithm is greedy. Form one string s 3 from s 1 and s 2 by aligning them with maximum overlap. Remove s 1 and s 2 from S, and add s 3. Report the one string remaining in S as the result. Has been proved: The solution computed by the greedy algorithm is at most twice (2) as long as the optimal solution(!) Lecture 13 - Tomas Johansson 29 Implementation of greedy algorithm VectorPair -overlap:vector -all:vector +VectorPair(Vector v1, Vector v2) +VectorPair(Vector v) -align(vector v1, Vector v2):void +sizeoverlap():int +sizeall():int +overlapasvector():vector +allasvector():vector Lecture 13 - Tomas Johansson 30 5

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 9 Greedy Technique Copyright 2007 Pearson Addison-Wesley. All rights reserved. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 018 D/Q Greed SP s DP LP, Flow B&B, Backtrack Metaheuristics P, NP Design and Analysis of Algorithms Lecture 8: Greed Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Optimization

More information

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min Binary Search Trees FRIDAY ALGORITHMS Sorted Arrays Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min 6 10 11 17 2 0 6 Running Time O(1) O(lg n) O(1) O(1)

More information

Properties of a heap (represented by an array A)

Properties of a heap (represented by an array A) Chapter 6. HeapSort Sorting Problem Input: A sequence of n numbers < a1, a2,..., an > Output: A permutation (reordering) of the input sequence such that ' ' ' < a a a > 1 2... n HeapSort O(n lg n) worst

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Greedy Algorithms and Huffman Coding

Greedy Algorithms and Huffman Coding Greedy Algorithms and Huffman Coding Henry Z. Lo June 10, 2014 1 Greedy Algorithms 1.1 Change making problem Problem 1. You have quarters, dimes, nickels, and pennies. amount, n, provide the least number

More information

ECE 250 Algorithms and Data Structures

ECE 250 Algorithms and Data Structures ECE 250 Algorithms and Data Structures Sections 001 and 002 FINAL EXAMINATION Douglas Wilhelm Harder dwharder@uwaterloo.ca EIT 4018 x37023 2014-04-16T09:00P2H30M Rooms: PAC 7, 8 If you are writing a supplemental

More information

Programming Abstractions

Programming Abstractions Programming Abstractions C S 1 0 6 B Cynthia Lee Topics: Priority Queue Linked List implementation Sorted Unsorted Heap structure implementation TODAY S TOPICS NOT ON THE MIDTERM 2 Some priority queue

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

CS24 Week 8 Lecture 1

CS24 Week 8 Lecture 1 CS24 Week 8 Lecture 1 Kyle Dewey Overview Tree terminology Tree traversals Implementation (if time) Terminology Node The most basic component of a tree - the squares Edge The connections between nodes

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

2pt 0em. Computer Science & Engineering 423/823 Design and Analysis of Algorithms. Lecture 04 Minimum-Weight Spanning Trees (Chapter 23)

2pt 0em. Computer Science & Engineering 423/823 Design and Analysis of Algorithms. Lecture 04 Minimum-Weight Spanning Trees (Chapter 23) 2pt 0em Computer Science & Engineering 423/823 Design and of s Lecture 04 Minimum-Weight Spanning Trees (Chapter 23) Stephen Scott (Adapted from Vinodchandran N. Variyam) 1 / 18 Given a connected, undirected

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures CMPSC 465 LECTURES 11-12 Priority Queues and Heaps Adam Smith 1 Priority Queue ADT Dynamic set of pairs (key, data), called elements Supports operations: MakeNewPQ() Insert(S,x)

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Weighted Graphs and Greedy Algorithms

Weighted Graphs and Greedy Algorithms COMP 182 Algorithmic Thinking Weighted Graphs and Greedy Algorithms Luay Nakhleh Computer Science Rice University Reading Material Chapter 10, Section 6 Chapter 11, Sections 4, 5 Weighted Graphs In many

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

Priority Queues. Binary Heaps

Priority Queues. Binary Heaps Priority Queues An internet router receives data packets, and forwards them in the direction of their destination. When the line is busy, packets need to be queued. Some data packets have higher priority

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Heapsort. Heap data structure

Heapsort. Heap data structure Heapsort Heap data structure. Heap A (not garbage-collected storage) is a nearly complete binary tree.. Height of node = # of edges on a longest simple path from the node down to a leaf.. Height of heap

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Faculty of Science FINAL EXAMINATION COMP-250 A Introduction to Computer Science School of Computer Science, McGill University

Faculty of Science FINAL EXAMINATION COMP-250 A Introduction to Computer Science School of Computer Science, McGill University NAME: STUDENT NUMBER:. Faculty of Science FINAL EXAMINATION COMP-250 A Introduction to Computer Science School of Computer Science, McGill University Examimer: Prof. Mathieu Blanchette December 8 th 2005,

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Introduction and Overview

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Introduction and Overview Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Introduction and Overview Welcome to Analysis of Algorithms! What is an Algorithm? A possible definition: a step-by-step

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

CMSC 341 Lecture 14: Priority Queues, Heaps

CMSC 341 Lecture 14: Priority Queues, Heaps CMSC 341 Lecture 14: Priority Queues, Heaps Prof. John Park Based on slides from previous iterations of this course Today s Topics Priority Queues Abstract Data Type Implementations of Priority Queues:

More information

Minimum Spanning Trees Ch 23 Traversing graphs

Minimum Spanning Trees Ch 23 Traversing graphs Next: Graph Algorithms Graphs Ch 22 Graph representations adjacency list adjacency matrix Minimum Spanning Trees Ch 23 Traversing graphs Breadth-First Search Depth-First Search 11/30/17 CSE 3101 1 Graphs

More information

Solutions to relevant spring 2000 exam problems

Solutions to relevant spring 2000 exam problems Problem 2, exam Here s Prim s algorithm, modified slightly to use C syntax. MSTPrim (G, w, r): Q = V[G]; for (each u Q) { key[u] = ; key[r] = 0; π[r] = 0; while (Q not empty) { u = ExtractMin (Q); for

More information

Definition of a Heap. Heaps. Priority Queues. Example. Implementation using a heap. Heap ADT

Definition of a Heap. Heaps. Priority Queues. Example. Implementation using a heap. Heap ADT Heaps Definition of a heap What are they for: priority queues Insertion and deletion into heaps Implementation of heaps Heap sort Not to be confused with: heap as the portion of computer memory available

More information

CS350: Data Structures Heaps and Priority Queues

CS350: Data Structures Heaps and Priority Queues Heaps and Priority Queues James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Priority Queue An abstract data type of a queue that associates a priority

More information

CSE 421 Applications of DFS(?) Topological sort

CSE 421 Applications of DFS(?) Topological sort CSE 421 Applications of DFS(?) Topological sort Yin Tat Lee 1 Precedence Constraints In a directed graph, an edge (i, j) means task i must occur before task j. Applications Course prerequisite: course

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

BM267 - Introduction to Data Structures

BM267 - Introduction to Data Structures BM267 - Introduction to Data Structures 9. Heapsort Ankara University Computer Engineering Department Bulent Tugrul BLM 267 1 (Binary) Heap Structure The heap data structure is an array organized as a

More information

Graphs and Network Flows ISE 411. Lecture 7. Dr. Ted Ralphs

Graphs and Network Flows ISE 411. Lecture 7. Dr. Ted Ralphs Graphs and Network Flows ISE 411 Lecture 7 Dr. Ted Ralphs ISE 411 Lecture 7 1 References for Today s Lecture Required reading Chapter 20 References AMO Chapter 13 CLRS Chapter 23 ISE 411 Lecture 7 2 Minimum

More information

Fundamentals of Data Structure

Fundamentals of Data Structure Fundamentals of Data Structure Set-1 1. Which if the following is/are the levels of implementation of data structure A) Abstract level B) Application level C) Implementation level D) All of the above 2.

More information

Chapter 6 Heapsort 1

Chapter 6 Heapsort 1 Chapter 6 Heapsort 1 Introduce Heap About this lecture Shape Property and Heap Property Heap Operations Heapsort: Use Heap to Sort Fixing heap property for all nodes Use Array to represent Heap Introduce

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Module 2: Priority Queues

Module 2: Priority Queues Module 2: Priority Queues CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer

More information

Greedy Algorithms. At each step in the algorithm, one of several choices can be made.

Greedy Algorithms. At each step in the algorithm, one of several choices can be made. Greedy Algorithms At each step in the algorithm, one of several choices can be made. Greedy Strategy: make the choice that is the best at the moment. After making a choice, we are left with one subproblem

More information

We will go over the basic scenarios, in which it is appropriate to apply this technique, and a few concrete applications.

We will go over the basic scenarios, in which it is appropriate to apply this technique, and a few concrete applications. Chapter 16 The Greedy Method We have looked at the divide n conquer and dynamic programming techniques, and will now discuss another general technique, the greedy method, on designing algorithms. We will

More information

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes Greedy Algorithms CLRS Chapters 16.1 16.3 Introduction to greedy algorithms Activity-selection problem Design of data-compression (Huffman) codes (Minimum spanning tree problem) (Shortest-path problem)

More information

CSE373: Data Structures & Algorithms Lecture 28: Final review and class wrap-up. Nicki Dell Spring 2014

CSE373: Data Structures & Algorithms Lecture 28: Final review and class wrap-up. Nicki Dell Spring 2014 CSE373: Data Structures & Algorithms Lecture 28: Final review and class wrap-up Nicki Dell Spring 2014 Final Exam As also indicated on the web page: Next Tuesday, 2:30-4:20 in this room Cumulative but

More information

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19 CSE34T/CSE549T /05/04 Lecture 9 Treaps Binary Search Trees (BSTs) Search trees are tree-based data structures that can be used to store and search for items that satisfy a total order. There are many types

More information

Direct Addressing Hash table: Collision resolution how handle collisions Hash Functions:

Direct Addressing Hash table: Collision resolution how handle collisions Hash Functions: Direct Addressing - key is index into array => O(1) lookup Hash table: -hash function maps key to index in table -if universe of keys > # table entries then hash functions collision are guaranteed => need

More information

Module 2: Priority Queues

Module 2: Priority Queues Module 2: Priority Queues CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer

More information

Greedy Algorithms Part Three

Greedy Algorithms Part Three Greedy Algorithms Part Three Announcements Problem Set Four due right now. Due on Wednesday with a late day. Problem Set Five out, due Monday, August 5. Explore greedy algorithms, exchange arguments, greedy

More information

CSE 214 Computer Science II Heaps and Priority Queues

CSE 214 Computer Science II Heaps and Priority Queues CSE 214 Computer Science II Heaps and Priority Queues Spring 2018 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse214/sec02/ Introduction

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

Lecture Summary CSC 263H. August 5, 2016

Lecture Summary CSC 263H. August 5, 2016 Lecture Summary CSC 263H August 5, 2016 This document is a very brief overview of what we did in each lecture, it is by no means a replacement for attending lecture or doing the readings. 1. Week 1 2.

More information

CSE 100: GRAPH ALGORITHMS

CSE 100: GRAPH ALGORITHMS CSE 100: GRAPH ALGORITHMS Dijkstra s Algorithm: Questions Initialize the graph: Give all vertices a dist of INFINITY, set all done flags to false Start at s; give s dist = 0 and set prev field to -1 Enqueue

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 05 Minimum-Weight Spanning Trees (Chapter 23) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu Introduction

More information

EST Solutions. Ans 1(a): KMP Algorithm for Preprocessing: KMP Algorithm for Searching:

EST Solutions. Ans 1(a): KMP Algorithm for Preprocessing: KMP Algorithm for Searching: EST Solutions Ans 1(a): KMP Algorithm for Preprocessing: KMP Algorithm for Searching: Ans 1(b): A priority queue is a data structure for maintaining a set S of elements, each with an associated value called

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 10: Search and Heaps MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Search and Heaps 2 Linear Search Binary Search Introduction to trees Priority Queues Heaps Linear Search

More information

9. Heap : Priority Queue

9. Heap : Priority Queue 9. Heap : Priority Queue Where We Are? Array Linked list Stack Queue Tree Binary Tree Heap Binary Search Tree Priority Queue Queue Queue operation is based on the order of arrivals of elements FIFO(First-In

More information

Heap sort. Carlos Moreno uwaterloo.ca EIT

Heap sort. Carlos Moreno uwaterloo.ca EIT Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 http://xkcd.com/835/ https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Last time, on ECE-250... Talked

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

Priority Queues and Binary Heaps

Priority Queues and Binary Heaps Yufei Tao ITEE University of Queensland In this lecture, we will learn our first tree data structure called the binary heap which serves as an implementation of the priority queue. Priority Queue A priority

More information

Week 5. 1 Analysing BFS. 2 Depth-first search. 3 Analysing DFS. 4 Dags and topological sorting. 5 Detecting cycles. CS 270 Algorithms.

Week 5. 1 Analysing BFS. 2 Depth-first search. 3 Analysing DFS. 4 Dags and topological sorting. 5 Detecting cycles. CS 270 Algorithms. 1 2 Week 5 3 4 5 General remarks We finish, by analysing it. Then we consider the second main graph- algorithm, depth-first (). And we consider one application of, of graphs. Reading from CLRS for week

More information

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29 Lecture 13 Connectedness in graphs Spanning trees in graphs Finding a minimal spanning tree Time costs of graph problems and NP-completeness Finding a minimal spanning tree: Prim s and Kruskal s algorithms

More information

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Lecture 5 Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Reading: Randomized Search Trees by Aragon & Seidel, Algorithmica 1996, http://sims.berkeley.edu/~aragon/pubs/rst96.pdf;

More information

Chapter 9. Priority Queue

Chapter 9. Priority Queue Chapter 9 Priority Queues, Heaps, Graphs Spring 2015 1 Priority Queue Priority Queue An ADT in which only the item with the highest priority can be accessed 2Spring 2015 Priority Depends on the Application

More information

TU/e Algorithms (2IL15) Lecture 2. Algorithms (2IL15) Lecture 2 THE GREEDY METHOD

TU/e Algorithms (2IL15) Lecture 2. Algorithms (2IL15) Lecture 2 THE GREEDY METHOD Algorithms (2IL15) Lecture 2 THE GREEDY METHOD x y v w 1 Optimization problems for each instance there are (possibly) multiple valid solutions goal is to find an optimal solution minimization problem:

More information

Minimum Spanning Trees My T. UF

Minimum Spanning Trees My T. UF Introduction to Algorithms Minimum Spanning Trees @ UF Problem Find a low cost network connecting a set of locations Any pair of locations are connected There is no cycle Some applications: Communication

More information

Heap sort. Carlos Moreno uwaterloo.ca EIT

Heap sort. Carlos Moreno uwaterloo.ca EIT Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 http://xkcd.com/835/ https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Last time, on ECE-250... Talked

More information

Binary Trees. Directed, Rooted Tree. Terminology. Trees. Binary Trees. Possible Implementation 4/18/2013

Binary Trees. Directed, Rooted Tree. Terminology. Trees. Binary Trees. Possible Implementation 4/18/2013 Directed, Rooted Tree Binary Trees Chapter 5 CPTR 318 Every non-empty directed, rooted tree has A unique element called root One or more elements called leaves Every element except root has a unique parent

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures (Search) Trees Ulf Leser Source: whmsoft.net/ Ulf Leser: Alg&DS, Summer semester 2011 2 Content of this Lecture Trees Search Trees Short Analysis Ulf Leser: Alg&DS, Summer

More information

Cpt S 223 Course Overview. Cpt S 223, Fall 2007 Copyright: Washington State University

Cpt S 223 Course Overview. Cpt S 223, Fall 2007 Copyright: Washington State University Cpt S 223 Course Overview 1 Course Goals Learn about new/advanced data structures Be able to make design choices on the suitable data structure for different application/problem needs Analyze (objectively)

More information

CSE2331/5331. Topic 6: Binary Search Tree. Data structure Operations CSE 2331/5331

CSE2331/5331. Topic 6: Binary Search Tree. Data structure Operations CSE 2331/5331 CSE2331/5331 Topic 6: Binary Search Tree Data structure Operations Set Operations Maximum Extract-Max Insert Increase-key We can use priority queue (implemented by heap) Search Delete Successor Predecessor

More information

Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington

Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington 1 Trees Trees are a natural data structure for representing specific data. Family trees. Organizational

More information

Programming and Data Structures Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras

Programming and Data Structures Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras Programming and Data Structures Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 13 Merging using Queue ADT and Queue types In the

More information

1 Interlude: Is keeping the data sorted worth it? 2 Tree Heap and Priority queue

1 Interlude: Is keeping the data sorted worth it? 2 Tree Heap and Priority queue TIE-0106 1 1 Interlude: Is keeping the data sorted worth it? When a sorted range is needed, one idea that comes to mind is to keep the data stored in the sorted order as more data comes into the structure

More information

Analysis of Algorithms

Analysis of Algorithms Algorithm An algorithm is a procedure or formula for solving a problem, based on conducting a sequence of specified actions. A computer program can be viewed as an elaborate algorithm. In mathematics and

More information

CS 270 Algorithms. Oliver Kullmann. Analysing BFS. Depth-first search. Analysing DFS. Dags and topological sorting.

CS 270 Algorithms. Oliver Kullmann. Analysing BFS. Depth-first search. Analysing DFS. Dags and topological sorting. General remarks Week 5 2 We finish, by analysing it. Then we consider the second main graph- algorithm, depth-first (). And we consider one application of, of graphs. Reading from CLRS for week 5 Chapter

More information

Analysis of Algorithms - Greedy algorithms -

Analysis of Algorithms - Greedy algorithms - Analysis of Algorithms - Greedy algorithms - Andreas Ermedahl MRTC (Mälardalens Real-Time Reseach Center) andreas.ermedahl@mdh.se Autumn 2003 Greedy Algorithms Another paradigm for designing algorithms

More information

CSE 332: Data Structures & Parallelism Lecture 3: Priority Queues. Ruth Anderson Winter 2019

CSE 332: Data Structures & Parallelism Lecture 3: Priority Queues. Ruth Anderson Winter 2019 CSE 332: Data Structures & Parallelism Lecture 3: Priority Queues Ruth Anderson Winter 201 Today Finish up Intro to Asymptotic Analysis New ADT! Priority Queues 1/11/201 2 Scenario What is the difference

More information

Lecture 3. Recurrences / Heapsort

Lecture 3. Recurrences / Heapsort Lecture 3. Recurrences / Heapsort T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright

More information

Graph. Vertex. edge. Directed Graph. Undirected Graph

Graph. Vertex. edge. Directed Graph. Undirected Graph Module : Graphs Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Graph Graph is a data structure that is a collection

More information

Learning Goals. CS221: Algorithms and Data Structures Lecture #3 Mind Your Priority Queues. Today s Outline. Back to Queues. Priority Queue ADT

Learning Goals. CS221: Algorithms and Data Structures Lecture #3 Mind Your Priority Queues. Today s Outline. Back to Queues. Priority Queue ADT CS: Algorithms and Data Structures Lecture # Mind Your Priority Queues Steve Wolfman 0W Learning Goals Provide examples of appropriate applications for priority queues. Describe efficient implementations

More information

CS 240 Data Structures and Data Management. Module 2: Priority Queues

CS 240 Data Structures and Data Management. Module 2: Priority Queues CS 240 Data Structures and Data Management Module 2: Priority Queues A. Biniaz A. Jamshidpey É. Schost Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer Science,

More information

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees Computer Science 0 Data Structures Siena College Fall 08 Topic Notes: Trees We ve spent a lot of time looking at a variety of structures where there is a natural linear ordering of the elements in arrays,

More information

10/31/18. About A6, Prelim 2. Spanning Trees, greedy algorithms. Facts about trees. Undirected trees

10/31/18. About A6, Prelim 2. Spanning Trees, greedy algorithms. Facts about trees. Undirected trees //8 About A, Prelim Spanning Trees, greedy algorithms Lecture CS Fall 8 Prelim : Thursday, November. Visit exams page of course website and read carefully to find out when you take it (: or 7:) and what

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

Spanning Trees, greedy algorithms. Lecture 20 CS2110 Fall 2018

Spanning Trees, greedy algorithms. Lecture 20 CS2110 Fall 2018 1 Spanning Trees, greedy algorithms Lecture 20 CS2110 Fall 2018 1 About A6, Prelim 2 Prelim 2: Thursday, 15 November. Visit exams page of course website and read carefully to find out when you take it

More information

and 6.855J February 6, Data Structures

and 6.855J February 6, Data Structures 15.08 and 6.855J February 6, 003 Data Structures 1 Overview of this Lecture A very fast overview of some data structures that we will be using this semester lists, sets, stacks, queues, networks, trees

More information

February 24, :52 World Scientific Book - 9in x 6in soltys alg. Chapter 3. Greedy Algorithms

February 24, :52 World Scientific Book - 9in x 6in soltys alg. Chapter 3. Greedy Algorithms Chapter 3 Greedy Algorithms Greedy algorithms are algorithms prone to instant gratification. Without looking too far ahead, at each step they make a locally optimum choice, with the hope that it will lead

More information

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm Spanning Trees 1 Spanning Trees the minimum spanning tree problem three greedy algorithms analysis of the algorithms 2 The Union-Find Data Structure managing an evolving set of connected components implementing

More information

ECE 242 Data Structures and Algorithms. Heaps I. Lecture 22. Prof. Eric Polizzi

ECE 242 Data Structures and Algorithms.  Heaps I. Lecture 22. Prof. Eric Polizzi ECE 242 Data Structures and Algorithms http://www.ecs.umass.edu/~polizzi/teaching/ece242/ Heaps I Lecture 22 Prof. Eric Polizzi Motivations Review of priority queue Input F E D B A Output Input Data structure

More information

Next. 1. Covered basics of a simple design technique (Divideand-conquer) 2. Next, more sorting algorithms.

Next. 1. Covered basics of a simple design technique (Divideand-conquer) 2. Next, more sorting algorithms. Next 1. Covered basics of a simple design technique (Divideand-conquer) Ch. 2 of the text. 2. Next, more sorting algorithms. Sorting Switch from design paradigms to applications. Sorting and order statistics

More information

Greedy Approach: Intro

Greedy Approach: Intro Greedy Approach: Intro Applies to optimization problems only Problem solving consists of a series of actions/steps Each action must be 1. Feasible 2. Locally optimal 3. Irrevocable Motivation: If always

More information

Lower bound for comparison-based sorting

Lower bound for comparison-based sorting COMP3600/6466 Algorithms 2018 Lecture 8 1 Lower bound for comparison-based sorting Reading: Cormen et al, Section 8.1 and 8.2 Different sorting algorithms may have different running-time complexities.

More information

Lecture 5: Sorting Part A

Lecture 5: Sorting Part A Lecture 5: Sorting Part A Heapsort Running time O(n lg n), like merge sort Sorts in place (as insertion sort), only constant number of array elements are stored outside the input array at any time Combines

More information

CS 240 Data Structures and Data Management. Module 2: Priority Queues

CS 240 Data Structures and Data Management. Module 2: Priority Queues CS 240 Data Structures and Data Management Module 2: Priority Queues A. Biniaz A. Jamshidpey É. Schost Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer Science,

More information

CSC 421: Algorithm Design & Analysis. Spring 2015

CSC 421: Algorithm Design & Analysis. Spring 2015 CSC 421: Algorithm Design & Analysis Spring 2015 Greedy algorithms greedy algorithms examples: optimal change, job scheduling Prim's algorithm (minimal spanning tree) Dijkstra's algorithm (shortest path)

More information

Greedy Algorithms. Alexandra Stefan

Greedy Algorithms. Alexandra Stefan Greedy Algorithms Alexandra Stefan 1 Greedy Method for Optimization Problems Greedy: take the action that is best now (out of the current options) it may cause you to miss the optimal solution You build

More information

Administration CSE 326: Data Structures

Administration CSE 326: Data Structures Administration SE : Data Structures Priority Queues and inary Heaps Due tonight: Project Released today: Project, phase A Due Wednesday: Homework Released Wednesday: Homework ary has office hours tomorrow

More information

( ) + n. ( ) = n "1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1

( ) + n. ( ) = n 1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1 CSE 0 Name Test Summer 00 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose you are sorting millions of keys that consist of three decimal

More information

Department of Computer Science and Technology

Department of Computer Science and Technology UNIT : Stack & Queue Short Questions 1 1 1 1 1 1 1 1 20) 2 What is the difference between Data and Information? Define Data, Information, and Data Structure. List the primitive data structure. List the

More information

CSE100. Advanced Data Structures. Lecture 8. (Based on Paul Kube course materials)

CSE100. Advanced Data Structures. Lecture 8. (Based on Paul Kube course materials) CSE100 Advanced Data Structures Lecture 8 (Based on Paul Kube course materials) CSE 100 Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs

More information

CSCI2100B Data Structures Heaps

CSCI2100B Data Structures Heaps CSCI2100B Data Structures Heaps Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction In some applications,

More information