Introduction to Algorithms 6.046J/18.401J

Size: px
Start display at page:

Download "Introduction to Algorithms 6.046J/18.401J"

Transcription

1 Introduction to Algorithms 6.046J/18.401J Menu for Today Show that Θ (n lg n) is the best possible running time for a sorting algorithm. Design an algorithm that sorts in linear time. Hint: maybe the models are different? Lecture 6 Prof. Manolis Kellis Introduction to Algorithms 2/26/2008 L5.2 Comparison sort All the sorting algorithms we have seen so far are comparison sorts: only use comparisons to determine the relative order of elements. E.g., insertion sort, merge sort, quicksort, heapsort. The best worst-case running time that we ve seen for comparison sorting is O(n lg n). Is O(n lg n) the best we can do? Decision trees can help us answer this question. Decision-tree example Sort a 1, a 2,, a n 123 1: Each internal node is labeled i:j for i, j {1, 2,, n}. The left subtree shows subsequent comparisons if a i a j. The right subtree shows subsequent comparisons if a i a j. Introduction to Algorithms 2/26/2008 L5.3 Introduction to Algorithms 2/26/2008 L5.4 Decision-tree example Sort a 1, a 2, a 3 = 9, 4, 6 : 123 1: Each internal node is labeled i:j for i, j {1, 2,, n}. The left subtree shows subsequent comparisons if a i a j. The right subtree shows subsequent comparisons if a i a j. Decision-tree example Sort a 1, a 2, a 3 = 9, 4, 6 : 123 1: Each internal node is labeled i:j for i, j {1, 2,, n}. The left subtree shows subsequent comparisons if a i a j. The right subtree shows subsequent comparisons if a i a j. Introduction to Algorithms 2/26/2008 L5.5 Introduction to Algorithms 2/26/2008 L5.6 1

2 Decision-tree example Sort a 1, a 2, a 3 = 9, 4, 6 : 123 1: Each internal node is labeled i:j for i, j {1, 2,, n}. The left subtree shows subsequent comparisons if a i a j. The right subtree shows subsequent comparisons if a i a j. Introduction to Algorithms 2/26/2008 L5.7 Decision-tree example Sort a 1, a 2, a 3 = 9, 4, 6 : 123 1: Each leaf contains a permutation π(1), π(2),, π(n) to indicate that the ordering a π(1) a π(2) L a π(n) has been established. Introduction to Algorithms 2/26/2008 L5.8 Decision-tree model A decision tree can model the execution of any comparison sort: One tree for each input size n. View the algorithm as splitting whenever it compares two elements. The tree contains the comparisons along all possible instruction traces. The running time of the algorithm = the length of the path taken. Worst-case running time = height of tree. Lower bound for decisiontree sorting Theorem. Any decision tree that can sort n elements must have height Ω(n lg n). Proof. The tree must contain n! leaves, since there are n! possible permutations. A height-h binary tree has 2 h leaves. Thus, n! 2 h. h lg(n!) (lg is mono. increasing) lg ((n/e) n ) (Stirling s formula) = n lg n n lg e = Ω(n lg n). Introduction to Algorithms 2/26/2008 L5.9 Introduction to Algorithms 2/26/2008 L5.10 Lower bound for comparison sorting Corollary. Merge sort is an asymptotically optimal comparison sorting algorithm. Sorting in linear time Counting sort: No comparisons between elements. : A[1.. n], where A[ j] {1, 2,, k}. Key assumption about input distribution: elements come from fixed range 1..k : B[1.. n], sorted Auxiliary storage: C[1.. k]. Key idea: use addressing array C to move elements from A directly into final B position. Introduction to Algorithms 2/26/2008 L5. Introduction to Algorithms 2/26/2008 L5.12 2

3 for 1 s for 3 s for 4 s Auxiliary count Introduction to Algorithms 2/26/2008 L5.13 Introduction to Algorithms 2/26/2008 L5.14 for 1 s for 3 s for 4 s Auxiliary count Introduction to Algorithms 2/26/2008 L Q: Why bother moving elements? Question: if I know the number of 1s, 2s, etc, why not fill out the output array directly? for 1 s for 3 s for 4 s Fill with 1s? Fill with 3s? Fill with 4s? Answer: Each element may have lots of additional associated information: 1,2.. are just keys to compare elements, but entire data structures must move! E.g.: sorting students by dormitory distance to class. Remember more than just distance or dorm name! Introduction to Algorithms 2/26/2008 L5.16 Auxiliary for 1 s for 3 s for 4 s 4 55 Auxiliary for 1 s for 3 s for 4 s Introduction to Algorithms 2/26/2008 L5.17 Introduction to Algorithms 2/26/2008 L5.18 3

4 Auxiliary for 1 s for 3 s for 4 s Auxiliary for 1 s for 3 s for 4 s Introduction to Algorithms 2/26/2008 L5.19 Introduction to Algorithms 2/26/2008 L5.20 Auxiliary a 0 b c for 1 s for 3 s for 4 s d 55 4 Auxiliary for 1 s for 3 s for 4 s Introduction to Algorithms 2/26/2008 L5.21 Introduction to Algorithms 2/26/2008 L5.22 Counting sort pseudocode Running the pseudocode Initialize C array For each value i First pass: count Post-process: s C[i] = {key i} Second pass: moving copy A[j] to B[.] update for i 1 to k do C[i] 0 for i 2 to k do C[i] C[i] + C[i 1] C: Introduction to Algorithms 2/26/2008 L5.23 Introduction to Algorithms 2/26/2008 L5.24 4

5 Loop 1 Loop 2 C: C: for i 1 to k do C[i] 0 Introduction to Algorithms 2/26/2008 L5.25 Introduction to Algorithms 2/26/2008 L5.26 Loop 2 Loop 2 C: C: 00 Introduction to Algorithms 2/26/2008 L5.27 Introduction to Algorithms 2/26/2008 L5.28 Loop 2 Loop 2 C: C: Introduction to Algorithms 2/26/2008 L5.29 Introduction to Algorithms 2/26/2008 L5.30 5

6 Loop 3 Loop 3 C: C: C': C': for i 2 to k do C[i] C[i] + C[i 1] C[i] = {key i} for i 2 to k do C[i] C[i] + C[i 1] C[i] = {key i} Introduction to Algorithms 2/26/2008 L5.31 Introduction to Algorithms 2/26/2008 L5.32 Loop 3 Loop 4 C: C: C': C': for i 2 to k do C[i] C[i] + C[i 1] C[i] = {key i} Introduction to Algorithms 2/26/2008 L5.33 Introduction to Algorithms 2/26/2008 L5.34 Loop 4 Loop 4 C: C: C': C': 44 Introduction to Algorithms 2/26/2008 L5.35 Introduction to Algorithms 2/26/2008 L5.36 6

7 Loop 4 Loop 4 C: 44 C: C': C': Introduction to Algorithms 2/26/2008 L5.37 Introduction to Algorithms 2/26/2008 L5.38 Analysis Θ(k) Θ(n) Θ(k) Θ(n) Θ(n + k) for i 1 to k do C[i] 0 for i 2 to k do C[i] C[i] + C[i 1] Introduction to Algorithms 2/26/2008 L5.39 Running time If k = O(n), then counting sort takes Θ(n) time. But, sorting takes Ω(n lg n) time! Where s the fallacy? Ω(n lg n) time is for comparison sorting. Counting sort is not a comparison sort. (not a single comparison between elmts occurs) Why not always use counting sort? Needs additional assumptions about input 1..k In general case, 1..k may be >> n (eg. 32-bit ints) Introduction to Algorithms 2/26/2008 L5.40 Google interview questions for presidential candidates During his presidential bid, senator Barack Obama is asked a question key to the election (Nov 14, 2007): Larry Schwimmer asks: What s the most efficient way to sort a million 32-bit integers? Without losing a heartbeat, Obama replies: I think the bubble sort would be the wrong way to go What Obama really meant was: Radix Sort, clearly Radix sort Origin: Herman Hollerith s card-sorting machine for the 1890 U.S. Census. (See Appendix.) Digit-by-digit sort. Hollerith s original (bad) idea: sort on most-significant digit first. Good idea: Sort on least-significant digit first with auxiliary stable sort. Introduction to Algorithms 2/26/2008 L5.41 Introduction to Algorithms 2/26/2008 L5.42 7

8 Stable sorting Operation of radix sort Counting sort is a stable sort: it preserves the input order among equal elements Exercise: What other sorts have this property? Introduction to Algorithms 2/26/2008 L5.43 Introduction to Algorithms 2/26/2008 L5.44 Correctness of radix sort Correctness of radix sort Induction on digit position Assume that the numbers are sorted by their low-order t 1digits. Sort on digit t Induction on digit position Assume that the numbers are sorted by their low-order t 1digits. Sort on digit t Two numbers that differ in digit t are correctly sorted. Introduction to Algorithms 2/26/2008 L5.45 Introduction to Algorithms 2/26/2008 L5.46 Correctness of radix sort Analysis of radix sort T(n,b) Induction on digit position Assume that the numbers are sorted by their low-order t 1digits. Sort on digit t Two numbers that differ in digit t are correctly sorted. Two numbers equal in digit t are put in the same order as the input correct order.() Sort n(e.g.10 6 ) integers of b(e.g.32) bits each. Interpreted as having b/r digits, each base-2 r. b-bit integer: r bits r bits r bits r bits r bits r bits d=b/r digits Assume counting sort is the auxiliary stable sort. How many passes should we make? Example: 32-bit word r = 8 b/r =4passes on base-2 8 digits. r = 16 b/r =2passes on base-2 16 digits. Key requirement: Introduction to Algorithms Stable sort subroutine! 2/26/2008 L5.47 Introduction to Algorithms 2/26/2008 L5.48 8

9 Analysis (continued) T ( n, b) = Θ b ( n + 2r ) r b/r passes b bits b/r passes Counting sort Θ(n + k). Range is (1..k = 1..2 r ). r bits Choose r to minimize T(n, b): Increase r to have fewer passes = b/r. Decrease r to have faster counting sort = 2 r. (If r >> lg n, the time grows exponentially). Introduction to Algorithms 2/26/2008 L5.49 Analysis: choosing optimal r T ( n, b) = Θ b ( n + 2r ) r Minimize T(n, b) by differentiating and setting to 0. Or, just observe that we don t want 2 r > n, and there s no harm asymptotically in choosing r as large as possible subject to this constraint. Choosing r = lg n implies T(n, b) = Θ(bn/lg n). For numbers in the range from 0 to n d 1, we have b = d lg n radix sort runs in Θ(dn) time. Introduction to Algorithms 2/26/2008 L5.50 Conclusions In practice, radix sort is fast for large inputs, as well as simple to code and maintain. Example (32-bit numbers): At most 3 passes when sorting 2000 numbers. Merge sort and quicksort do at least lg 2000 = passes. Potential downside: Radix sort displays little locality of reference, and thus a well-tuned quicksort may fare better on modern processors, which feature steep memory hierarchies. Introduction to Algorithms 2/26/2008 L5.51 Appendix: Punched-card technology Herman Hollerith ( ) Punched cards Hollerith s tabulating system Operation of the sorter Origin of radix sort Modern IBM card Web resources on punchedcard technology Return to last slide viewed. Introduction to Algorithms 2/26/2008 L5.52 Herman Hollerith ( ) The 1880 U.S. Census took almost 10 years to process. While a lecturer at MIT, Hollerith prototyped punched-card technology. His machines, including a card sorter, allowed the 1890 census total to be reported in 6 weeks. He founded the Tabulating Machine Company in 19, which merged with other companies in 1924 to form International Business Machines. Introduction to Algorithms 2/26/2008 L5.53 Punched cards Punched card = data record. Hole = value. Algorithm = machine + human operator. Replica of punch card from the 1900 U.S. census. [Howells 2000] Introduction to Algorithms 2/26/2008 L5.54 9

10 Hollerith s tabulating system Pantograph card punch Hand-press reader Dial counters Sorting box Figure from [Howells 2000]. Introduction to Algorithms 2/26/2008 L5.55 Operation of the sorter An operator inserts a card into the press. Pins on the press reach through the punched holes to make electrical contact with mercuryfilled cups beneath the card. Whenever a particular digit value is punched, the lid of the corresponding sorting bin lifts. The operator deposits the card Hollerith Tabulator, Pantograph, Press, and Sorter into the bin and closes the lid. When all cards have been processed, the front panel is opened, and the cards are collected in order, yielding one pass of a stable sort. Introduction to Algorithms 2/26/2008 L5.56 Origin of radix sort Hollerith s original 1889 patent alludes to a mostsignificant-digit-first radix sort: The most complicated combinations can readily be counted with comparatively few counters or relays by first assorting the cards according to the first items entering into the combinations, then reassorting each group according to the second item entering into the combination, and so on, and finally counting on a few counters the last item of the combination for each group of cards. Least-significant-digit-first radix sort seems to be a folk invention originated by machine operators. Modern IBM card One character per column. Produced by the WWW Virtual Punch- Card Server. So, that s why text windows have 80 columns! Introduction to Algorithms 2/26/2008 L5.57 Introduction to Algorithms 2/26/2008 L5.58 Web resources on punchedcard technology Doug Jones s punched card index Biography of Herman Hollerith The 1890 U.S. Census Early history of IBM Pictures of Hollerith s inventions Hollerith s patent application (borrowed from Gordon Bell s CyberMuseum) Introduction to Algorithms 2/26/2008 L

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 5 Prof. Erik Demaine How fast can we sort? All the sorting algorithms we have seen so far are comparison sorts: only use comparisons to determine

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J Lecture 6 Prof. Piotr Indyk Today: sorting Show that Θ (n lg n) is the best possible running time for a sorting algorithm. Design an algorithm that sorts in O(n)

More information

How fast can we sort? Sorting. Decision-tree example. Decision-tree example. CS 3343 Fall by Charles E. Leiserson; small changes by Carola

How fast can we sort? Sorting. Decision-tree example. Decision-tree example. CS 3343 Fall by Charles E. Leiserson; small changes by Carola CS 3343 Fall 2007 Sorting Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 3343 Analysis of Algorithms 1 How fast can we sort? All the sorting algorithms we have seen

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 8 Sorting in Linear Time Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 Sorting So Far

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS583-002) Amarda Shehu Fall 2017 Amarda Shehu Lecture: Analysis of Algorithms (CS583-002) Sorting in O(n lg n) Time: Heapsort 1 Outline of Today s Class Sorting in O(n

More information

Lower bound for comparison-based sorting

Lower bound for comparison-based sorting COMP3600/6466 Algorithms 2018 Lecture 8 1 Lower bound for comparison-based sorting Reading: Cormen et al, Section 8.1 and 8.2 Different sorting algorithms may have different running-time complexities.

More information

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once.

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once. Chapter 8. Sorting in Linear Time Types of Sort Algorithms The only operation that may be used to gain order information about a sequence is comparison of pairs of elements. Quick Sort -- comparison-based

More information

Sorting. CMPS 2200 Fall Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Sorting. CMPS 2200 Fall Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CMPS 2200 Fall 2014 Sorting Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk 11/11/14 CMPS 2200 Intro. to Algorithms 1 How fast can we sort? All the sorting algorithms

More information

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides Jana Kosecka Linear Time Sorting, Median, Order Statistics Many slides here are based on E. Demaine, D. Luebke slides Insertion sort: Easy to code Fast on small inputs (less than ~50 elements) Fast on

More information

Chapter 8 Sorting in Linear Time

Chapter 8 Sorting in Linear Time Chapter 8 Sorting in Linear Time The slides for this course are based on the course textbook: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 3rd edition, The MIT Press, McGraw-Hill,

More information

Sorting. Popular algorithms: Many algorithms for sorting in parallel also exist.

Sorting. Popular algorithms: Many algorithms for sorting in parallel also exist. Sorting Popular algorithms: Selection sort* Insertion sort* Bubble sort* Quick sort* Comb-sort Shell-sort Heap sort* Merge sort* Counting-sort Radix-sort Bucket-sort Tim-sort Many algorithms for sorting

More information

Algorithms Chapter 8 Sorting in Linear Time

Algorithms Chapter 8 Sorting in Linear Time Algorithms Chapter 8 Sorting in Linear Time Assistant Professor: Ching Chi Lin 林清池助理教授 chingchi.lin@gmail.com Department of Computer Science and Engineering National Taiwan Ocean University Outline Lower

More information

Chapter 8 Sort in Linear Time

Chapter 8 Sort in Linear Time Chapter 8 Sort in Linear Time We have so far discussed several sorting algorithms that sort a list of n numbers in O(nlog n) time. Both the space hungry merge sort and the structurely interesting heapsort

More information

Comparison Based Sorting Algorithms. Algorithms and Data Structures: Lower Bounds for Sorting. Comparison Based Sorting Algorithms

Comparison Based Sorting Algorithms. Algorithms and Data Structures: Lower Bounds for Sorting. Comparison Based Sorting Algorithms Comparison Based Sorting Algorithms Algorithms and Data Structures: Lower Bounds for Sorting Definition 1 A sorting algorithm is comparison based if comparisons A[i] < A[j], A[i] A[j], A[i] = A[j], A[i]

More information

Algorithms and Data Structures: Lower Bounds for Sorting. ADS: lect 7 slide 1

Algorithms and Data Structures: Lower Bounds for Sorting. ADS: lect 7 slide 1 Algorithms and Data Structures: Lower Bounds for Sorting ADS: lect 7 slide 1 ADS: lect 7 slide 2 Comparison Based Sorting Algorithms Definition 1 A sorting algorithm is comparison based if comparisons

More information

MA 252: Data Structures and Algorithms Lecture 9. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

MA 252: Data Structures and Algorithms Lecture 9. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati MA 252: Data Structures and Algorithms Lecture 9 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati More about quicksort We are lucky if

More information

Lower Bound on Comparison-based Sorting

Lower Bound on Comparison-based Sorting Lower Bound on Comparison-based Sorting Different sorting algorithms may have different time complexity, how to know whether the running time of an algorithm is best possible? We know of several sorting

More information

8 SortinginLinearTime

8 SortinginLinearTime 8 SortinginLinearTime We have now introduced several algorithms that can sort n numbers in O(n lg n) time. Merge sort and heapsort achieve this upper bound in the worst case; quicksort achieves it on average.

More information

The complexity of Sorting and sorting in linear-time. Median and Order Statistics. Chapter 8 and Chapter 9

The complexity of Sorting and sorting in linear-time. Median and Order Statistics. Chapter 8 and Chapter 9 Subject 6 Spring 2017 The complexity of Sorting and sorting in linear-time Median and Order Statistics Chapter 8 and Chapter 9 Disclaimer: These abbreviated notes DO NOT substitute the textbook for this

More information

CSE 326: Data Structures Lecture #16 Sorting Things Out. Unix Tutorial!!

CSE 326: Data Structures Lecture #16 Sorting Things Out. Unix Tutorial!! CSE 326: Data Structures Lecture #16 Sorting Things Out Bart Niswonger Summer Quarter 2001 Unix Tutorial!! Tuesday, July 31 st 10:50am, Sieg 322 Printing worksheet Shell different shell quotes : ' ` scripting,

More information

COT 6405 Introduction to Theory of Algorithms

COT 6405 Introduction to Theory of Algorithms COT 6405 Introduction to Theory of Algorithms Topic 10. Linear Time Sorting 10/5/2016 2 How fast can we sort? The sorting algorithms we learned so far Insertion Sort, Merge Sort, Heap Sort, and Quicksort

More information

How to Win Coding Competitions: Secrets of Champions. Week 3: Sorting and Search Algorithms Lecture 7: Lower bound. Stable sorting.

How to Win Coding Competitions: Secrets of Champions. Week 3: Sorting and Search Algorithms Lecture 7: Lower bound. Stable sorting. How to Win Coding Competitions: Secrets of Champions Week 3: Sorting and Search Algorithms Lecture 7: Lower bound. Stable sorting. Comparators Maxim Buzdalov Saint Petersburg 2016 Lower bound for comparison

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 5.1 Introduction You should all know a few ways of sorting in O(n log n)

More information

data structures and algorithms lecture 6

data structures and algorithms lecture 6 data structures and algorithms 2017 09 21 lecture 6 overview lower bound counting sort radix sort stacks queues material question we have seen for example insertion sort: worst-case in O(n 2 ) merge sort:

More information

Sorting, Part 1. Outline

Sorting, Part 1. Outline CSE 326: Data Structures Lecture 23 Spring Quarter 2001 Sorting, Part 1 David Kaplan davek@cs Outline Sorting: The Problem Space Sorting by Comparison Lower bound for comparison sorts Insertion Sort Heap

More information

Module 3: Sorting and Randomized Algorithms

Module 3: Sorting and Randomized Algorithms Module 3: Sorting and Randomized Algorithms CS 240 - Data Structures and Data Management Reza Dorrigiv, Daniel Roche School of Computer Science, University of Waterloo Winter 2010 Reza Dorrigiv, Daniel

More information

CSE 3101: Introduction to the Design and Analysis of Algorithms. Office hours: Wed 4-6 pm (CSEB 3043), or by appointment.

CSE 3101: Introduction to the Design and Analysis of Algorithms. Office hours: Wed 4-6 pm (CSEB 3043), or by appointment. CSE 3101: Introduction to the Design and Analysis of Algorithms Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875 Lectures: Tues, BC 215, 7 10 PM Office hours: Wed 4-6 pm (CSEB 3043), or by

More information

CS61B Lectures #28. Today: Lower bounds on sorting by comparison Distribution counting, radix sorts

CS61B Lectures #28. Today: Lower bounds on sorting by comparison Distribution counting, radix sorts CS61B Lectures #28 Today: Lower bounds on sorting by comparison Distribution counting, radix sorts Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9. Last modified: Tue Jul 5 19:49:54 2016 CS61B:

More information

CS : Data Structures

CS : Data Structures CS 600.226: Data Structures Michael Schatz Nov 30, 2016 Lecture 35: Topological Sorting Assignment 10: Due Monday Dec 5 @ 10pm Remember: javac Xlint:all & checkstyle *.java & JUnit Solutions should be

More information

EECS 2011M: Fundamentals of Data Structures

EECS 2011M: Fundamentals of Data Structures M: Fundamentals of Data Structures Instructor: Suprakash Datta Office : LAS 3043 Course page: http://www.eecs.yorku.ca/course/2011m Also on Moodle Note: Some slides in this lecture are adopted from James

More information

Other techniques for sorting exist, such as Linear Sorting which is not based on comparisons. Linear Sorting techniques include:

Other techniques for sorting exist, such as Linear Sorting which is not based on comparisons. Linear Sorting techniques include: Sorting in Linear Time Comparison Sorts O(nlgn), Ω(nlgn) for some input The best we can do for comparison sorts is Ω(nlgn). Other techniques for sorting exist, such as Linear Sorting which is not based

More information

Can we do faster? What is the theoretical best we can do?

Can we do faster? What is the theoretical best we can do? Non-Comparison Based Sorting How fast can we sort? 2 Insertion-Sort O( n ) Merge-Sort, Quicksort (expected), Heapsort : ( n lg n ) Can we do faster? What is the theoretical best we can do? So far we have

More information

1 Lower bound on runtime of comparison sorts

1 Lower bound on runtime of comparison sorts 1 Lower bound on runtime of comparison sorts So far we ve looked at several sorting algorithms insertion sort, merge sort, heapsort, and quicksort. Merge sort and heapsort run in worst-case O(n log n)

More information

CSE 326: Data Structures Sorting Conclusion

CSE 326: Data Structures Sorting Conclusion CSE 36: Data Structures Sorting Conclusion James Fogarty Spring 009 Administrivia Homework Due Homework Assigned Better be working on Project 3 (code due May 7) Sorting Recap Selection Sort Bubble Sort

More information

The Limits of Sorting Divide-and-Conquer Comparison Sorts II

The Limits of Sorting Divide-and-Conquer Comparison Sorts II The Limits of Sorting Divide-and-Conquer Comparison Sorts II CS 311 Data Structures and Algorithms Lecture Slides Monday, October 12, 2009 Glenn G. Chappell Department of Computer Science University of

More information

Introduction to Algorithms and Data Structures. Lecture 12: Sorting (3) Quick sort, complexity of sort algorithms, and counting sort

Introduction to Algorithms and Data Structures. Lecture 12: Sorting (3) Quick sort, complexity of sort algorithms, and counting sort Introduction to Algorithms and Data Structures Lecture 12: Sorting (3) Quick sort, complexity of sort algorithms, and counting sort Professor Ryuhei Uehara, School of Information Science, JAIST, Japan.

More information

Module 3: Sorting and Randomized Algorithms

Module 3: Sorting and Randomized Algorithms Module 3: Sorting and Randomized Algorithms CS 240 - Data Structures and Data Management Sajed Haque Veronika Irvine Taylor Smith Based on lecture notes by many previous cs240 instructors David R. Cheriton

More information

Module 3: Sorting and Randomized Algorithms. Selection vs. Sorting. Crucial Subroutines. CS Data Structures and Data Management

Module 3: Sorting and Randomized Algorithms. Selection vs. Sorting. Crucial Subroutines. CS Data Structures and Data Management Module 3: Sorting and Randomized Algorithms CS 240 - Data Structures and Data Management Sajed Haque Veronika Irvine Taylor Smith Based on lecture notes by many previous cs240 instructors David R. Cheriton

More information

CSE373: Data Structure & Algorithms Lecture 21: More Comparison Sorting. Aaron Bauer Winter 2014

CSE373: Data Structure & Algorithms Lecture 21: More Comparison Sorting. Aaron Bauer Winter 2014 CSE373: Data Structure & Algorithms Lecture 21: More Comparison Sorting Aaron Bauer Winter 2014 The main problem, stated carefully For now, assume we have n comparable elements in an array and we want

More information

Can we do faster? What is the theoretical best we can do?

Can we do faster? What is the theoretical best we can do? Non-Comparison Based Sorting How fast can we sort? 2 Insertion-Sort On ( ) Merge-Sort, Quicksort (expected), Heapsort : Θ( nlg n ) Can we do faster? What is the theoretical best we can do? So far we have

More information

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 6. The Master Theorem. Some More Examples...

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 6. The Master Theorem. Some More Examples... Taking Stock IE170: Algorithms in Systems Engineering: Lecture 6 Jeff Linderoth Last Time Divide-and-Conquer The Master-Theorem When the World Will End Department of Industrial and Systems Engineering

More information

CS61B Lectures # Purposes of Sorting. Some Definitions. Classifications. Sorting supports searching Binary search standard example

CS61B Lectures # Purposes of Sorting. Some Definitions. Classifications. Sorting supports searching Binary search standard example Announcements: CS6B Lectures #27 28 We ll be runningapreliminarytestingrun for Project #2 on Tuesday night. Today: Sorting algorithms: why? Insertion, Shell s, Heap, Merge sorts Quicksort Selection Distribution

More information

Data Structures and Algorithms Week 4

Data Structures and Algorithms Week 4 Data Structures and Algorithms Week. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Week Divide and conquer Merge

More information

Data Structures. Sorting. Haim Kaplan & Uri Zwick December 2013

Data Structures. Sorting. Haim Kaplan & Uri Zwick December 2013 Data Structures Sorting Haim Kaplan & Uri Zwick December 2013 1 Comparison based sorting key a 1 a 2 a n info Input: An array containing n items Keys belong to a totally ordered domain Two keys can be

More information

University of Waterloo CS240, Winter 2010 Assignment 2

University of Waterloo CS240, Winter 2010 Assignment 2 University of Waterloo CS240, Winter 2010 Assignment 2 Due Date: Wednesday, February 10, at 5:00pm Please read http://www.student.cs.uwaterloo.ca/~cs240/w10/guidelines.pdf for guidelines on submission.

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ Introduction Meta-notes These notes are intended for use by students in CS1501 at the University of Pittsburgh. They are provided free of charge and may not be

More information

CS/COE 1501 cs.pitt.edu/~bill/1501/ Introduction

CS/COE 1501 cs.pitt.edu/~bill/1501/ Introduction CS/COE 1501 cs.pitt.edu/~bill/1501/ Introduction Meta-notes These notes are intended for use by students in CS1501 at the University of Pittsburgh. They are provided free of charge and may not be sold

More information

II (Sorting and) Order Statistics

II (Sorting and) Order Statistics II (Sorting and) Order Statistics Heapsort Quicksort Sorting in Linear Time Medians and Order Statistics 8 Sorting in Linear Time The sorting algorithms introduced thus far are comparison sorts Any comparison

More information

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9)

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9) CPSC 311 Lecture Notes Sorting and Order Statistics (Chapters 6-9) Acknowledgement: These notes are compiled by Nancy Amato at Texas A&M University. Parts of these course notes are based on notes from

More information

Data Structures and Algorithms Chapter 4

Data Structures and Algorithms Chapter 4 Data Structures and Algorithms Chapter. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Chapter Divide and conquer

More information

Lecture 5: Sorting in Linear Time CSCI Algorithms I. Andrew Rosenberg

Lecture 5: Sorting in Linear Time CSCI Algorithms I. Andrew Rosenberg Lecture 5: Sorting in Linear Time CSCI 700 - Algorithms I Andrew Rosenberg Last Time Recurrence Relations Today Sorting in Linear Time Sorting Sorting Algorithms we ve seen so far Insertion Sort - Θ(n

More information

CSci 231 Final Review

CSci 231 Final Review CSci 231 Final Review Here is a list of topics for the final. Generally you are responsible for anything discussed in class (except topics that appear italicized), and anything appearing on the homeworks.

More information

lecture notes September 2, How to sort?

lecture notes September 2, How to sort? .30 lecture notes September 2, 203 How to sort? Lecturer: Michel Goemans The task of sorting. Setup Suppose we have n objects that we need to sort according to some ordering. These could be integers or

More information

Lower and Upper Bound Theory. Prof:Dr. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY

Lower and Upper Bound Theory. Prof:Dr. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY Lower and Upper Bound Theory Prof:Dr. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY 1 Lower and Upper Bound Theory How fast can we sort? Lower-Bound Theory can

More information

Data Structures and Algorithms. Roberto Sebastiani

Data Structures and Algorithms. Roberto Sebastiani Data Structures and Algorithms Roberto Sebastiani roberto.sebastiani@disi.unitn.it http://www.disi.unitn.it/~rseba - Week 0 - B.S. In Applied Computer Science Free University of Bozen/Bolzano academic

More information

CS 5321: Advanced Algorithms Sorting. Acknowledgement. Ali Ebnenasir Department of Computer Science Michigan Technological University

CS 5321: Advanced Algorithms Sorting. Acknowledgement. Ali Ebnenasir Department of Computer Science Michigan Technological University CS 5321: Advanced Algorithms Sorting Ali Ebnenasir Department of Computer Science Michigan Technological University Acknowledgement Eric Torng Moon Jung Chung Charles Ofria Nishit Chapter 22 Bill 23 Martin

More information

ECE608 - Chapter 8 answers

ECE608 - Chapter 8 answers ¼ À ÈÌ Ê ÈÊÇ Ä ÅË ½µ º½¹ ¾µ º¾¹ µ º ¹½ µ º ¹ µ º ¹ µ º ¹¾ µ ¹ µ ¹ ½ ECE608 - Chapter 8 answers (1) CLR 8.1-3 If the sort runs in linear time for m input permutations, then the height h of those paths of

More information

CS240 Fall Mike Lam, Professor. Quick Sort

CS240 Fall Mike Lam, Professor. Quick Sort ??!!!!! CS240 Fall 2015 Mike Lam, Professor Quick Sort Merge Sort Merge sort Sort sublists (divide & conquer) Merge sorted sublists (combine) All the "hard work" is done after recursing Hard to do "in-place"

More information

Introduction. e.g., the item could be an entire block of information about a student, while the search key might be only the student's name

Introduction. e.g., the item could be an entire block of information about a student, while the search key might be only the student's name Chapter 7 Sorting 2 Introduction sorting fundamental task in data management well-studied problem in computer science basic problem given an of items where each item contains a key, rearrange the items

More information

CS 303 Design and Analysis of Algorithms

CS 303 Design and Analysis of Algorithms Mid-term CS 303 Design and Analysis of Algorithms Review For Midterm Dong Xu (Based on class note of David Luebke) 12:55-1:55pm, Friday, March 19 Close book Bring your calculator 30% of your final score

More information

Next. 1. Covered basics of a simple design technique (Divideand-conquer) 2. Next, more sorting algorithms.

Next. 1. Covered basics of a simple design technique (Divideand-conquer) 2. Next, more sorting algorithms. Next 1. Covered basics of a simple design technique (Divideand-conquer) Ch. 2 of the text. 2. Next, more sorting algorithms. Sorting Switch from design paradigms to applications. Sorting and order statistics

More information

11/8/2016. Chapter 7 Sorting. Introduction. Introduction. Sorting Algorithms. Sorting. Sorting

11/8/2016. Chapter 7 Sorting. Introduction. Introduction. Sorting Algorithms. Sorting. Sorting Introduction Chapter 7 Sorting sorting fundamental task in data management well-studied problem in computer science basic problem given an array of items where each item contains a key, rearrange the items

More information

Theory and Algorithms Introduction: insertion sort, merge sort

Theory and Algorithms Introduction: insertion sort, merge sort Theory and Algorithms Introduction: insertion sort, merge sort Rafael Ramirez rafael@iua.upf.es Analysis of algorithms The theoretical study of computer-program performance and resource usage. What s also

More information

Computer Science 302 Spring 2007 Practice Final Examination: Part I

Computer Science 302 Spring 2007 Practice Final Examination: Part I Computer Science 302 Spring 2007 Practice Final Examination: Part I Name: This practice examination is much longer than the real final examination will be. If you can work all the problems here, you will

More information

DIVIDE AND CONQUER ALGORITHMS ANALYSIS WITH RECURRENCE EQUATIONS

DIVIDE AND CONQUER ALGORITHMS ANALYSIS WITH RECURRENCE EQUATIONS CHAPTER 11 SORTING ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO AND

More information

SORTING AND SELECTION

SORTING AND SELECTION 2 < > 1 4 8 6 = 9 CHAPTER 12 SORTING AND SELECTION ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

More information

Scan and Quicksort. 1 Scan. 1.1 Contraction CSE341T 09/20/2017. Lecture 7

Scan and Quicksort. 1 Scan. 1.1 Contraction CSE341T 09/20/2017. Lecture 7 CSE341T 09/20/2017 Lecture 7 Scan and Quicksort 1 Scan Scan is a very useful primitive for parallel programming. We will use it all the time in this class. First, lets start by thinking about what other

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Introduction to Algorithms 6.046J/18.401J Lecture 1 Prof. Piotr Indyk Analysis of algorithms The theoretical study of computer-program performance and resource usage. Also important: modularity maintainability

More information

Introduction to Algorithms 6.046J/18.401J/SMA5503

Introduction to Algorithms 6.046J/18.401J/SMA5503 Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson Welcome to Introduction to Algorithms, Fall 01 Handouts 1. Course Information. Calendar 3. Registration (MIT students

More information

COSC 311: ALGORITHMS HW1: SORTING

COSC 311: ALGORITHMS HW1: SORTING COSC 311: ALGORITHMS HW1: SORTIG Solutions 1) Theoretical predictions. Solution: On randomly ordered data, we expect the following ordering: Heapsort = Mergesort = Quicksort (deterministic or randomized)

More information

CPE702 Sorting Algorithms

CPE702 Sorting Algorithms CPE702 Sorting Algorithms Pruet Boonma pruet@eng.cmu.ac.th Department of Computer Engineering Faculty of Engineering, Chiang Mai University Based on materials from Tanenbaum s Distributed Systems In this

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Introduction to Algorithms 6.046J/18.401J LECTURE 1 Analysis of Algorithms Insertion sort Merge sort Prof. Charles E. Leiserson Course information 1. Staff. Prerequisites 3. Lectures 4. Recitations 5.

More information

CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting. Ruth Anderson Winter 2019

CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting. Ruth Anderson Winter 2019 CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting Ruth Anderson Winter 2019 Today Sorting Comparison sorting 2/08/2019 2 Introduction to sorting Stacks, queues, priority queues, and

More information

CSE 373: Data Structures and Algorithms

CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms Lecture 20: More Sorting Instructor: Lilian de Greef Quarter: Summer 2017 Today: More sorting algorithms! Merge sort analysis Quicksort Bucket sort Radix sort Divide

More information

Sorting Shabsi Walfish NYU - Fundamental Algorithms Summer 2006

Sorting Shabsi Walfish NYU - Fundamental Algorithms Summer 2006 Sorting The Sorting Problem Input is a sequence of n items (a 1, a 2,, a n ) The mapping we want is determined by a comparison operation, denoted by Output is a sequence (b 1, b 2,, b n ) such that: {

More information

The divide-and-conquer paradigm involves three steps at each level of the recursion: Divide the problem into a number of subproblems.

The divide-and-conquer paradigm involves three steps at each level of the recursion: Divide the problem into a number of subproblems. 2.3 Designing algorithms There are many ways to design algorithms. Insertion sort uses an incremental approach: having sorted the subarray A[1 j - 1], we insert the single element A[j] into its proper

More information

The divide and conquer strategy has three basic parts. For a given problem of size n,

The divide and conquer strategy has three basic parts. For a given problem of size n, 1 Divide & Conquer One strategy for designing efficient algorithms is the divide and conquer approach, which is also called, more simply, a recursive approach. The analysis of recursive algorithms often

More information

Shell s sort. CS61B Lecture #25. Sorting by Selection: Heapsort. Example of Shell s Sort

Shell s sort. CS61B Lecture #25. Sorting by Selection: Heapsort. Example of Shell s Sort CS6B Lecture #5 Today: Sorting, t. Standard methods Properties of standard methods Selection Readings for Today: DS(IJ), Chapter 8; Readings for Next Topic: Balanced searches, DS(IJ), Chapter ; Shell s

More information

Lecture 5: Running Time Evaluation

Lecture 5: Running Time Evaluation Lecture 5: Running Time Evaluation Worst-case and average-case performance Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 13 1 Time complexity 2 Time growth 3 Worst-case 4 Average-case

More information

Outline. Computer Science 331. Three Classical Algorithms. The Sorting Problem. Classical Sorting Algorithms. Mike Jacobson. Description Analysis

Outline. Computer Science 331. Three Classical Algorithms. The Sorting Problem. Classical Sorting Algorithms. Mike Jacobson. Description Analysis Outline Computer Science 331 Classical Sorting Algorithms Mike Jacobson Department of Computer Science University of Calgary Lecture #22 1 Introduction 2 3 4 5 Comparisons Mike Jacobson (University of

More information

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Acknowledgement The set of slides have use materials from the following resources Slides for textbook by Dr. Y.

More information

Lecture 5: Sorting Part A

Lecture 5: Sorting Part A Lecture 5: Sorting Part A Heapsort Running time O(n lg n), like merge sort Sorts in place (as insertion sort), only constant number of array elements are stored outside the input array at any time Combines

More information

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Acknowledgement. Outline

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Acknowledgement. Outline Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Acknowledgement The set of slides have use materials from the following resources Slides for textbook by Dr. Y.

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

CS:3330 (22c:31) Algorithms

CS:3330 (22c:31) Algorithms What s an Algorithm? CS:3330 (22c:31) Algorithms Introduction Computer Science is about problem solving using computers. Software is a solution to some problems. Algorithm is a design inside a software.

More information

CS302 Topic: Algorithm Analysis. Thursday, Sept. 22, 2005

CS302 Topic: Algorithm Analysis. Thursday, Sept. 22, 2005 CS302 Topic: Algorithm Analysis Thursday, Sept. 22, 2005 Announcements Lab 3 (Stock Charts with graphical objects) is due this Friday, Sept. 23!! Lab 4 now available (Stock Reports); due Friday, Oct. 7

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

COMP Data Structures

COMP Data Structures COMP 2140 - Data Structures Shahin Kamali Topic 5 - Sorting University of Manitoba Based on notes by S. Durocher. COMP 2140 - Data Structures 1 / 55 Overview Review: Insertion Sort Merge Sort Quicksort

More information

University of Waterloo CS240 Winter 2018 Assignment 2. Due Date: Wednesday, Jan. 31st (Part 1) resp. Feb. 7th (Part 2), at 5pm

University of Waterloo CS240 Winter 2018 Assignment 2. Due Date: Wednesday, Jan. 31st (Part 1) resp. Feb. 7th (Part 2), at 5pm University of Waterloo CS240 Winter 2018 Assignment 2 version: 2018-02-04 15:38 Due Date: Wednesday, Jan. 31st (Part 1) resp. Feb. 7th (Part 2), at 5pm Please read the guidelines on submissions: http://www.student.cs.uwaterloo.ca/~cs240/

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

Reading for this lecture (Goodrich and Tamassia):

Reading for this lecture (Goodrich and Tamassia): COMP26120: Algorithms and Imperative Programming Basic sorting algorithms Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Reading for this lecture (Goodrich and Tamassia): Secs. 8.1,

More information

CSC236 Week 5. Larry Zhang

CSC236 Week 5. Larry Zhang CSC236 Week 5 Larry Zhang 1 Logistics Test 1 after lecture Location : IB110 (Last names A-S), IB 150 (Last names T-Z) Length of test: 50 minutes If you do really well... 2 Recap We learned two types of

More information

input sort left half sort right half merge results Mergesort overview

input sort left half sort right half merge results Mergesort overview Algorithms OBT S DGWICK K VIN W AYN Two classic sorting algorithms: mergesort and quicksort Critical components in the world s computational infrastructure. Full scientific understanding of their properties

More information

CS2351 Data Structures. Lecture 5: Sorting in Linear Time

CS2351 Data Structures. Lecture 5: Sorting in Linear Time CS2351 Data Structures Lecture 5: Sorting in Linear Time 1 About this lecture Sorting algorithms we studied so far Insertion, Selection, Merge, Quicksort determine sorted order by comparison We will look

More information

CSE 373 MAY 24 TH ANALYSIS AND NON- COMPARISON SORTING

CSE 373 MAY 24 TH ANALYSIS AND NON- COMPARISON SORTING CSE 373 MAY 24 TH ANALYSIS AND NON- COMPARISON SORTING ASSORTED MINUTIAE HW6 Out Due next Wednesday ASSORTED MINUTIAE HW6 Out Due next Wednesday Only two late days allowed ASSORTED MINUTIAE HW6 Out Due

More information

Sorting. Riley Porter. CSE373: Data Structures & Algorithms 1

Sorting. Riley Porter. CSE373: Data Structures & Algorithms 1 Sorting Riley Porter 1 Introduction to Sorting Why study sorting? Good algorithm practice! Different sorting algorithms have different trade-offs No single best sort for all scenarios Knowing one way to

More information

1. Covered basics of a simple design technique (Divideand-conquer) 2. Next, more sorting algorithms.

1. Covered basics of a simple design technique (Divideand-conquer) 2. Next, more sorting algorithms. Next 1. Covered basics of a simple design technique (Divideand-conquer) Ch. 2 of the text. 2. Next, more sorting algorithms. Sorting Switch from design paradigms to applications. Sorting and order statistics

More information

Fast Sorting and Selection. A Lower Bound for Worst Case

Fast Sorting and Selection. A Lower Bound for Worst Case Lists and Iterators 0//06 Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 0 Fast Sorting and Selection USGS NEIC. Public domain government

More information

Question 7.11 Show how heapsort processes the input:

Question 7.11 Show how heapsort processes the input: Question 7.11 Show how heapsort processes the input: 142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 102. Solution. Step 1 Build the heap. 1.1 Place all the data into a complete binary tree in the

More information

Algorithms Lab 3. (a) What is the minimum number of elements in the heap, as a function of h?

Algorithms Lab 3. (a) What is the minimum number of elements in the heap, as a function of h? Algorithms Lab 3 Review Topics covered this week: heaps and heapsort quicksort In lab exercises (collaboration level: 0) The in-lab problems are meant to be be solved during the lab and to generate discussion

More information