[Prof. Rupesh G Vaishnav] Page 1

Size: px
Start display at page:

Download "[Prof. Rupesh G Vaishnav] Page 1"

Transcription

1 Q-1 Explain DNS (Domain Name System) in detail with example. OR Explain : DNS and its advantages DNS is an internet service that translates domain names into IP addresses. Because domain names are alphabetic, they're easier to remember. The Internet however, is really based on IP addresses. Every time you use a domain name, therefore, a DNS service must translate the name into the corresponding IP address. For example, the domain name might translate to The DNS system is, in fact, its own network. If one DNS server doesn't know how to translate a particular domain name, it asks another one, and so on, until the correct IP address is returned. DNS is the invention of a hierarchical, domain-based naming scheme and a distributed database system for implementing this naming scheme. The DNS Name Space The Internet is divided into over 200 top-level domains, where each domain covers many hosts. Each domain is partitioned into subdomains, and these are further partitioned, and so on. All these domains can be represented by a tree, as shown in Figure. Figure: A portion of the Internet domain name space The leaves of the tree represent domains that have no subdomains (but do contain machines, of course). A leaf domain may contain a single host, or it may represent a company and contain thousands of hosts. The top-level domains come in two flavors: generic and countries. Each domain is named by the path upward from it to the (unnamed) root. The components are separated by periods (pronounced ''dot''). Thus, the engineering department at Sun Microsystems might be eng.sun.com., rather than a UNIXstyle name such as /com/sun/eng. Notice that this hierarchical naming means that eng.sun.com. does not conflict with a potential use of eng in eng.yale.edu., which might be used by the Yale English department. Domain names can be either absolute or relative. An absolute domain name always ends with a period (e.g., eng.sun.com.), whereas a relative one does not. Relative names have to be interpreted in some context to uniquely determine their true meaning. In both cases, a named domain refers to a specific node in the tree and all the nodes under it. Domain names are case insensitive, so edu, Edu, and EDU mean the same thing. Component names can be up to 63 characters long, and full path names must not exceed 255 [Prof. Rupesh G Vaishnav] Page 1

2 characters. Each domain controls how it allocates the domains under it. For example, Japan has domains ac.jp and co.jp that mirror edu and com. The Netherlands does not make this distinction and puts all organizations directly under nl. Thus, all three of the following are university computer science departments: 1. cs.yale.edu (Yale University, in the United States) 2. cs.vu.nl (Vrije Universities, in The Netherlands) 3. cs.keio.ac.jp (Keio University, in Japan) Q-2 What is a resource record? How it is useful for DNS? Every domain, whether it is a single host or a top-level domain, can have a set of resource records associated with it. For a single host, the most common resource record is just its IP address, but many other kinds of resource records also exist. When a resolver gives a domain name to DNS, what it gets back are the resource records associated with that name. Thus, the primary function of DNS is to map domain names onto resource records. A resource record is a five-tuple. Although they are encoded in binary for efficiency, in most expositions, resource records are presented as ASCII text, one line per resource record. The format we will use is as follows: Domain_name Time_to_live Class Type Value The Domain_name tells the domain to which this record applies. Normally, many records exist for each domain and each copy of the database holds information about multiple domains. This field is thus the primary search key used to satisfy queries. The order of the records in the database is not significant. The Time_to_live field gives an indication of how stable the record is. The third field of every resource record is the Class. For Internet information, it is always IN. For non-internet information, other codes can be used, but in practice, these are rarely seen. The Type field tells what kind of record this is. Type SOA A MX NS CNAME PTR Meaning The SOA record specifies that this server is authoritative for this zone. An authoritative server is the best source for data within a zone. The SOA record contains general information about the zone and reloads rules for secondary servers. There can be only one SOA record per zone. The A record specifies the IP address of this host. A record is used to resolve a query for the IP address of a specific domain name. The MX record defines a mail exchanger host for mail sent to this domain. These records are used by SMTP (Simple Mail Transfer Protocol) to locate hosts that will process or forward mail for this domain, along with preference values for each mail exchanger host. Each mail exchanger host must have a corresponding host address (A) records in a valid zone. The NS record specifies an authoritative name server for this host. The CNAME record specifies the actual domain name of this object. When DNS queries an aliased name and finds a CNAME record pointing to the canonical name, it then queries that canonical domain name. The PTR record specifies the domain name of a host for which you want a PTR record defined. PTR records allow a host name lookup, given an IP address. [Prof. Rupesh G Vaishnav] Page 2

3 HINFO TXT The HINFO record specifies general information about a host machine. The TXT record specifies multiple strings of text, up to 255 characters long each, to be associated with a domain name. TXT records may be used along with responsible person (RP) records to provide information about who is responsible for a zone. Q-3 systems contain which two subsystems? Write the five basic functions provided by system and explain SMTP protocol. Electronic mail, most commonly referred to as or is a method of exchanging digital messages from an author to one or more recipients. An Internet message consists of three components, the message envelope, the message header, and the message body. The message header contains control information, including, minimally, an originator's address and one or more recipient addresses. Usually descriptive information is also added, such as a subject header field and a message submission date/time stamp. They normally consist of two subsystems: the user agents, which allow people to read and send e- mail, and the message transfer agents, which move the messages from the source to the destination. The user agents are local programs that provide a command based, menu-based, or graphical method for interacting with the system. The message transfer agents are typically system daemons, that is, processes that run in the background. Five basic functions of Composition refers to the process of creating messages and answers. Transfer refers to moving messages from the originator to the recipient. Reporting has to do with telling the originator about the message delivery status. Displaying incoming messages is needed so people can read their . Disposition is the final step and concerns what the recipient does with the message after receiving it. Possibilities include throwing it away before reading, throwing it away after reading, saving it, and so SMTP - The Simple Mail Transfer Protocol It is an Internet standard for electronic mail ( ) transmission across Internet Protocol (IP) networks. SMTP is specified for outgoing mail transport and uses TCP port 25. While electronic mail servers and other mail transfer agents use SMTP to send and receive mail messages User-level client mail applications typically only use SMTP for sending messages to a mail server for relaying. For receiving messages, client applications usually use either the Post Office Protocol (POP) or the Internet Message Access Protocol (IMAP) to access their mail box accounts on a mail server. [Prof. Rupesh G Vaishnav] Page 3

4 Mail processing model is submitted by a mail client (MUA, mail user agent) to a mail server (MSA, mail submission agent) using SMTP on TCP port 587. From there, the MSA delivers the mail to its mail transfer agent (MTA, mail transfer agent). Often, these two agents are just different instances of the same software launched with different options on the same machine. Local processing can be done either on a single machine, or split among various appliances. In the former case, involved processes can share files In the latter case, SMTP is used to transfer the message internally, with each host configured to use the next appliance as a smart host. Q-4 Write short note on POP3 and MIME. MIME (Multi-Purpose Internet Extension) The problems include sending and receiving Messages in languages with accents (e.g., French and German). 2. Messages in non-latin alphabets (e.g., Hebrew and Russian). 3. Messages in languages without alphabets (e.g., Chinese and Japanese). 4. Messages not containing text at all (e.g., audio or images). MIME defines five new message headers, as shown in table. The first of these simply tells the user agent receiving the message that it is dealing with a MIME message, and which version of MIME it uses. Any message not containing a MIME-Version: header is assumed to be an English plaintext message and is processed as such. [Prof. Rupesh G Vaishnav] Page 4

5 Table: headers added by MIME The Content-Description: header is an ASCII string telling what is in the message. This header is needed so the recipient will know whether it is worth decoding and reading the message. If the string says: ''Photo of Barbara's hamster'' and the person getting the message is not a big hamster fan, the message will probably be discarded rather than decoded into a high-resolution color photograph. The Content-Id: header identifies the content. It uses the same format as the standard Message-Id: header. The Content-Transfer-Encoding: tells how the body is wrapped for transmission through a network that may object to most characters other than letters, numbers, and punctuation marks. POP3 (Post Office Protocol Version 3) Figure: (a) Sending and reading mail when the receiver has a permanent Internet connection and the user agent runs on the same machine as the message transfer agent. (b) Reading when the receiver has a dial-up connection to an ISP. POP3 begins when the user starts the mail reader. The mail reader calls up the ISP (unless there is already a connection) and establishes a TCP connection with the message transfer agent at port 110. Once the connection has been established, the POP3 protocol goes through three states in sequence: Authorization. Transactions. Update. The authorization state deals with having the user log in. The transaction state deals with the user collecting the s and marking them for deletion from the mailbox. The update state actually causes the s to be deleted. [Prof. Rupesh G Vaishnav] Page 5

6 This behavior can be observed by typing something like: telnet mail.isp.com 110 Where mail.isp.com represents the DNS name of your ISP's mail server. Telnet establishes a TCP connection to port 110, on which the POP3 server listens. Upon accepting the TCP connection, the server sends an ASCII message announcing that it is present. Usually, it begins with +OK followed by a comment. Q-5 Explain the architectural overview of the WWW (world wide web). Figure: Architecture of World Wide Web From the users point of view, the Web consists of a vast, worldwide collection of content in the form of Web pages, often just called pages for short. Each page may contain links to other pages anywhere in the world. Users can follow a link by clicking on it, which then takes them to the page pointed to. This process can be repeated indefinitely. The idea of having one page point to another, now called hypertext. Pages are generally viewed with a program called a browser. Some parts of the page are associated with links to other pages. A piece of text, icon, and image, and so on associated with another page is called a hyperlink. Each page is fetched by sending a request to one or more servers, which respond with the contents of the page. The request-response protocol for fetching pages is a simple text-based protocol that runs over TCP, just as was the case for SMTP. It is called HTTP (HyperText Transfer Protocol). The content may simply be a document that is read off a disk or the result of a database query and program execution. The page is a static page if it is a document that is the same every time it is displayed. In contrast, if it was generated on demand by a program or contains a program it is a dynamic page. The Client Side Each page is assigned a URL (Uniform Resource Locator) that effectively serves as the page s worldwide name. [Prof. Rupesh G Vaishnav] Page 6

7 URLs have three parts: the protocol (also known as the scheme), the DNS name of the machine on which the page is located, and the path uniquely indicating the specific page (a file to read or program to run on the machine). In the general case, the path has a hierarchical name that models a file directory structure. However, the interpretation of the path is up to the server; it may or may not reflect the actual directory structure. As an example, the URL of the page shown in Fig. is When a user clicks on a hyperlink, the browser carries out a series of steps in order to fetch the page pointed to. Let us trace the steps that occur when our example link is selected: 1. The browser determines the URL (by seeing what was selected). 2. The browser asks DNS for the IP address of the server 3. DNS replies with The browser makes a TCP connection to on port 80, the well-known port for the HTTP protocol. 5. It sends over an HTTP request asking for the page /index.html. 6. The server sends the page as an HTTP response, for example, by sending the file /index.html. 7. If the page includes URLs that are needed for display, the browser fetches the other URLs using the same process. In this case, the URLs include multiple embedded images also fetched from an embedded video from youtube.com, and a script from googleanalytics.com. 8. The browser displays the page /index.html as it appears in Fig. 9. The TCP connections are released if there are no other requests to the same servers for a short period. MIME Types When a server returns a page, it also returns some additional information about the page. This information includes the MIME type of the page. Pages of type text/html are just displayed directly, as are pages in a few other built-in types. If the MIME type is not one of the built-in ones, the browser consults its table of MIME types to determine how to display the page. This table associates MIME types with viewers. The Server Side The server performs in its main loop are: 1. Accept a TCP connection from a client (a browser). 2. Get the path to the page, which is the name of the file requested. 3. Get the file (from disk). 4. Send the contents of the file to the client. 5. Release the TCP connection. Q-6 Describe the built in HTTP request methods. The standard web transfer protocol is Hyper Text Transfer Protocol (HTTP). The HTTP protocol consists of two fairly distinct items: The set of requests from browsers to servers and the set of responses going back the other way. All the newer versions of HTTP support two kinds of requests: Simple requests and full requests. A simple request is just a single GET line naming the page desired, without the protocol version. The response is just the raw page with no headers, no MIME, and no encoding. The page will be returned with no indication of its content type. This mechanism is needed for backward compatibility. Its use will decline as browsers and servers based on full requests become standard. Full requests are indicated by the presence of the protocol version on the GET request line. Requests may consist of multiple lines, followed by a blank line to indicate the end of the request. [Prof. Rupesh G Vaishnav] Page 7

8 The first line of a full request contains the command (of which GET is but one of the possibilities), the page desired, and the protocol/version. Although HTTP was designed for use in the web, it has been intentionally made more general than necessary with an eye to future object-oriented applications. For this reason, the first word on the full request line is simply the name of the method (command) to be executed on the web page (or general object). The built-in methods are listed below. When accessing general objects, additional object-specific methods may also be available. Method Description GET Read a Web page HEAD Read a Web page s header POST Append to a Web page PUT Store a Web page DELETE Remote the Web page TRACE Echo the incoming request CONNECT/LINK Connect through a proxy UNLINK Breaks an existing connection between two resources OPTIONS Query options for a page Table: The built-in HTTP request methods The GET method requests the server to send the page (by which we mean object, in the most general case), suitably encoded in MIME. However, if the GET request is followed by an If-Modified-Since header, the server only sends the data if it has been modified since the data supplied. Using this mechanism, a browser that is asked to display a cached page can conditionally ask for it from the server, giving the modification time associated with the page. The HEAD method just asks for the message header, without the actual page. This method can be used to get a page's time of last modification, to collect information for indexing purposes, or just to test a URL for validity. Conditional HEAD request do not exist. The PUT method is the reverse of GET: Instead of reading the page, it writes the page. This method makes it possible to build a collection of web pages on a remote server. The body of the request contains the page. Somewhat similar to PUT is the POST method. It too bears a URL, but instead of replacing the existing data, the new data is "appended" to it in some generalized sense. DELETE does what you might expect; it removes the page. As with PUT authentication and permission play a major role here. There is no guarantee that DELETE succeeds, since even if the remote HTTP server is willing to delete the page, the underlying file may have a mode that forbids the HTTP server from modifying or removing it. The LINK and UNLINK methods allow connections to be established between existing pages or other resources. [Prof. Rupesh G Vaishnav] Page 8

Chapter 7 (Week 13) The Application Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr.

Chapter 7 (Week 13) The Application Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr. Chapter 7 (Week 13) The Application Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP. 579-611 1 PREVIOUS LAYERS THE PURPOSE OF THE PHYSICAL LAYER IS TO TRANSPORT A RAW BIT STREAM FROM ONE

More information

Computer Network 1 1

Computer Network 1 1 Computer Network 1 1 Chapter 10: Application Layer Advanced Principal Concepts Samples and Techniques Foundation Summary Question and Answer 2 Outline Application Layer There is a need for support protocols,

More information

Outline. EEC-484/584 Computer Networks. Slow Start Algorithm. Internet Congestion Control Algorithm

Outline. EEC-484/584 Computer Networks. Slow Start Algorithm. Internet Congestion Control Algorithm EEC-484/584 Computer Networks Lecture 19 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline TCP slow start and congestion avoidance The

More information

The Application Layer

The Application Layer The Application Layer Subject Name: Fundamentals of Networking (FON) Subject Code: 640001 Domain Name System, Electronic Mail 21-Apr-12 Having finished all the preliminaries, we now come to the layer where

More information

CCNA Exploration1 Chapter 3: Application Layer Functionality and Protocols

CCNA Exploration1 Chapter 3: Application Layer Functionality and Protocols CCNA Exploration1 Chapter 3: Application Layer Functionality and Protocols LOCAL CISCO ACADEMY ELSYS TU INSTRUCTOR: STELA STEFANOVA 1 Objectives Functions of the three upper OSI model layers, network services

More information

Chapter 7. The Application Layer. DNS The Domain Name System. DNS Resource Records. The DNS Name Space Resource Records Name Servers

Chapter 7. The Application Layer. DNS The Domain Name System. DNS Resource Records. The DNS Name Space Resource Records Name Servers DNS The Domain Name System Chapter 7 The Application Layer The DNS Name Space Resource Records Name Servers The DNS Name Space DNS Resource Records A portion of the Internet domain name space. (1) MX:

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 20 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

Electronic Mail (SMTP)

Electronic Mail (SMTP) Electronic Mail (SMTP) Nowadays email is more popular than the paper letters called snail-mails. It is a form of network communication. Some of the other forms of network communication being voice-over-internet,

More information

OSI Model. Hybrid Model. Software outside the operating system Software inside the operating system. Only Internet addresses used

OSI Model. Hybrid Model. Software outside the operating system Software inside the operating system. Only Internet addresses used Chapter 8 What happens at the Application Layer? Domain Name System (DNS) Electronic Mail World Wide Web Hypertext Transfer Protocol (http) Internet Application - Multimedia Content Delivery OSI Model

More information

System: Basic Functionality

System: Basic Functionality E-mail System: Basic Functionality E-mail systems support five basic functions: Composition: Creating messages Transfer: Moving messages from the originator to the recipient E-mail transfer is a connection-oriented

More information

Electronic Mail. Electronic Mailboxes

Electronic Mail. Electronic Mailboxes Electronic Mail E-mail belongs to the Application Layer Has been around since the early 80 s Enables new forms of interaction Fast Automatic processing (sorting, reply) Can carry other content Electronic

More information

APPLICATION LAYER APPLICATION LAYER : DNS, HTTP, , SMTP, Telnet, FTP, Security-PGP-SSH.

APPLICATION LAYER APPLICATION LAYER : DNS, HTTP,  , SMTP, Telnet, FTP, Security-PGP-SSH. APPLICATION LAYER : DNS, HTTP, E-mail, SMTP, Telnet, FTP, Security-PGP-SSH. To identify an entity, the Internet used the IP address, which uniquely identifies the connection of a host to the Internet.

More information

Chapter 10: Application Layer CCENT Routing and Switching Introduction to Networks v6.0

Chapter 10: Application Layer CCENT Routing and Switching Introduction to Networks v6.0 Chapter 10: Application Layer CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 10 Chapter 10 - Sections & Objectives 10.1 Application Layer Protocols Explain the operation of the application

More information

New Topic: Naming. Differences in naming in distributed and non-distributed systems. How to name mobile entities?

New Topic: Naming. Differences in naming in distributed and non-distributed systems. How to name mobile entities? New Topic: Naming Names are used to share resources, uniquely identify entities and refer to locations Need to map from name to the entity it refers to E.g., Browser access to www.cnn.com Use name resolution

More information

CCNA Exploration Network Fundamentals. Chapter 03 Application Functionality and Protocols

CCNA Exploration Network Fundamentals. Chapter 03 Application Functionality and Protocols CCNA Exploration Network Fundamentals Chapter 03 Application Functionality and Protocols Updated: 27/04/2008 1 3.1 Applications: The Interface Between Human and Networks Applications provide the means

More information

Traditional Internet Applications

Traditional Internet Applications Traditional Internet Applications Asst. Prof. Chaiporn Jaikaeo, Ph.D. chaiporn.j@ku.ac.th http://www.cpe.ku.ac.th/~cpj Computer Engineering Department Kasetsart University, Bangkok, Thailand Adapted from

More information

2. Introduction to Internet Applications

2. Introduction to Internet Applications 2. Introduction to Internet Applications 1. Representation and Transfer 2. Web Protocols 3. Some Other Application Layer Protocols 4. Uniform Resource Identifiers (URIs) 5. Uniform Resource Locators (URLs)

More information

Computing Parable. New Topic: Naming

Computing Parable. New Topic: Naming Computing Parable The Cow Courtesy: S. Keshav Lecture 10, page 1 New Topic: Naming Names are used to share resources, uniquely identify entities and refer to locations Need to map from name to the entity

More information

Today: Naming. Example: File Names

Today: Naming. Example: File Names Today: Naming Names are used to share resources, uniquely identify entities and refer to locations Need to map from name to the entity it refers to E.g., Browser access to www.cnn.com Use name resolution

More information

FTP,HTTP. By Nidhi Jindal

FTP,HTTP. By Nidhi Jindal APPLICATION LAYER: SMTP, POP, IMAP, FTP,HTTP By Nidhi Jindal. MESSAGE TRANSFER AGENT: SMTP The actual mail transfer requires message transfer agents (MTAs). The protocol that defines the MTA client and

More information

Application Layer: OSI and TCP/IP Models

Application Layer: OSI and TCP/IP Models Application Layer Application Layer: OSI and TCP/IP Models The communication process between two communicating nodes is actually a communication process between two applications on these devices. Service

More information

Chapter 10: Application Layer

Chapter 10: Application Layer Chapter 10: Application Layer Application, Session and Presentation Presentation and Session Layers Session layer Functions, creates, and maintains dialogs between source and destination applications Handles

More information

Chapter 4. Internet Applications

Chapter 4. Internet Applications Chapter 4 Internet Application Protocols 1 Internet Applications! Domain Name System! Electronic mail! Remote login! File transfer! World Wide Web! All use client-server model 2 Names! Internet communication

More information

Electronic Mail

Electronic Mail Email Electronic Mail Electronic mail paradigm Most heavily used application on any network Electronic version of paper-based office memo Quick, low-overhead written communication Dates back to time-sharing

More information

DNS and HTTP. A High-Level Overview of how the Internet works

DNS and HTTP. A High-Level Overview of how the Internet works DNS and HTTP A High-Level Overview of how the Internet works Adam Portier Fall 2017 How do I Google? Smaller problems you need to solve 1. Where is Google? 2. How do I access the Google webpage? 3. How

More information

Motivation For Networking. Information access Interaction among cooperative application programs Resource sharing

Motivation For Networking. Information access Interaction among cooperative application programs Resource sharing Motivation For Networking Information access Interaction among cooperative application programs Resource sharing CS422 -- PART 1 13 2003 Practical Results E-mail File transfer/access Web browsing Remote

More information

Oversimplified DNS. ... or, even a rocket scientist can understand DNS. Step 1 - Verify WHOIS information

Oversimplified DNS. ... or, even a rocket scientist can understand DNS. Step 1 - Verify WHOIS information Oversimplified DNS... or, even a rocket scientist can understand DNS Step 1 - Verify WHOIS information GOALS: Make sure that WHOIS reports every name server you have, and doesn't report any that aren't

More information

WEB TECHNOLOGIES CHAPTER 1

WEB TECHNOLOGIES CHAPTER 1 WEB TECHNOLOGIES CHAPTER 1 WEB ESSENTIALS: CLIENTS, SERVERS, AND COMMUNICATION Modified by Ahmed Sallam Based on original slides by Jeffrey C. Jackson THE INTERNET Technical origin: ARPANET (late 1960

More information

New Topic: Naming. Approaches

New Topic: Naming. Approaches New Topic: Naming Names are used to share resources, uniquely identify entities and refer to locations Need to map from name to the entity it refers to E.g., Browser access to www.cnn.com Use name resolution

More information

Distributed Naming. EECS 591 Farnam Jahanian University of Michigan. Reading List

Distributed Naming. EECS 591 Farnam Jahanian University of Michigan. Reading List Distributed Naming EECS 591 Farnam Jahanian University of Michigan Reading List Tanenbaum Chapter 4.1-4.2, 4.3(optional) Any problem in computer science can be solved with another layer of indirection

More information

Internet Architecture

Internet Architecture Internet Architecture Lecture 10: How Email Work Assistant Teacher Samraa Adnan Al-Asadi 1 How Email Works Electronic mail, or email, might be the most heavily used feature of the Internet. You can use

More information

Computer Networking: Applications George Blankenship. Applications George Blankenship 1

Computer Networking: Applications George Blankenship. Applications George Blankenship 1 CSCI 232 Computer Networking: Applications i George Blankenship Applications George Blankenship 1 TCP/IP Applications The user of TCP/IP transport (TCP/UDP) is an application, the top level lof the TCP/IP

More information

Lecture 25. Tuesday, November 21 CS 475 Networks - Lecture 25 1

Lecture 25. Tuesday, November 21 CS 475 Networks - Lecture 25 1 Lecture 25 Reminders: Homework 7 due today. Homework 8 posted. Due at the beginning of the last day of class for final exam review. Programming Project 6 posted. Final project worth double. Due by 4:30pm,

More information

Protocol Classification

Protocol Classification DNS and DHCP TCP/IP Suite Suite of protocols (not just TCP and IP) Main protocols TCP and UDP at the Transport Layer, and IP at the Network Layer Other protocols ICMP, ARP, Telnet, Ftp, HTTP, SMTP, SNMP

More information

Electronic Mail Paradigm

Electronic Mail Paradigm Electronic Mail Paradigm E-mail uses the client-server model. E-mail was designed as an electronic extension of the old paper office memo. - A quick and easy means of low-overhead written communication.

More information

Electronic Mail. Three Components: SMTP SMTP. SMTP mail server. 1. User Agents. 2. Mail Servers. 3. SMTP protocol

Electronic Mail. Three Components: SMTP SMTP. SMTP mail server. 1. User Agents. 2. Mail Servers. 3. SMTP protocol SMTP Electronic Mail Three Components: 1. User Agents a.k.a. mail reader e.g., gmail, Outlook, yahoo 2. Mail Servers mailbox contains incoming messages for user message queue of outgoing (to be sent) mail

More information

A DNS Tutorial

A DNS Tutorial http://ntrg.cs.tcd.ie/undergrad/4ba2/multicast/ Copyright Table of Contents What is a DNS?... 3 Why do we need a DNS?... 3 Why do computers prefer addresses based on numbers?... 3 What is a Domain Name,

More information

Objective. Application Layer Functionality and Protocols. CCNA Exploration 4.0 Network Fundamentals Chapter 03. Universitas Dian Nuswantoro

Objective. Application Layer Functionality and Protocols. CCNA Exploration 4.0 Network Fundamentals Chapter 03. Universitas Dian Nuswantoro CCNA Exploration 4.0 Network Fundamentals Chapter 03 Application Layer Functionality and Protocols Universitas Dian Nuswantoro 1 Objective In this chapter, you will learn to: Describe how the functions

More information

Mail agents. Introduction to Internet Mail. Message format (1) Message format (2)

Mail agents. Introduction to Internet Mail. Message format (1) Message format (2) Introduction to Internet Mail Noah Sematimba Based on Materials by Philip Hazel. Mail agents MUA = Mail User Agent Interacts directly with the end user Pine, MH, Elm, mutt, mail, Eudora, Marcel, Mailstrom,

More information

Application Level Protocols

Application Level Protocols Application Level Protocols 2 Application Level Protocols Applications handle different kinds of content e.g.. e-mail, web pages, voice Different types of content require different kinds of protocols Application

More information

Unit 28 Website Production ASSIGNMENT 1

Unit 28 Website Production ASSIGNMENT 1 Unit 28 Website Production ASSIGNMENT 1 Last week Learning outcomes History HTML skeleton Annotated diagram of a WAN Servers, routers, client PC, browser, Server OS Switch, packet Architecture ISP Web

More information

Internet Architecture. Web Programming - 2 (Ref: Chapter 2) IP Software. IP Addressing. TCP/IP Basics. Client Server Basics. URL and MIME Types HTTP

Internet Architecture. Web Programming - 2 (Ref: Chapter 2) IP Software. IP Addressing. TCP/IP Basics. Client Server Basics. URL and MIME Types HTTP Web Programming - 2 (Ref: Chapter 2) TCP/IP Basics Internet Architecture Client Server Basics URL and MIME Types HTTP Routers interconnect the network TCP/IP software provides illusion of a single network

More information

Networking Revision. TCP/IP Protocol Stack & OSI reference model. Basic Protocols. TCP/IP Model ANTHONY KAO NETWORKING FINAL EXAM SPRING 2014 REVISION

Networking Revision. TCP/IP Protocol Stack & OSI reference model. Basic Protocols. TCP/IP Model ANTHONY KAO NETWORKING FINAL EXAM SPRING 2014 REVISION Networking Revision TCP/IP Protocol Stack & OSI reference model Basic Protocols TCP/IP Model 1 OSI (Open Systems Interconnection) Model main purpose to aid in clearer understanding of the functions and

More information

is still the most used Internet app. According to some studies around 85% of Internet users still use for communication.

is still the most used Internet app. According to some studies around 85% of Internet users still use  for communication. 1 E-mail is still the most used Internet app. According to some studies around 85% of Internet users still use e-mail for communication. Electronic mail is a method to exchange digital messages from a

More information

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University Computer Networks More on Standards & Protocols Quality of Service Week 10 College of Information Science and Engineering Ritsumeikan University Introduction to Protocols l A protocol is a set of rules

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport 1 Outline Introduction Name Space concepts Domain Name Space

More information

Information Network I: The Application Layer. Doudou Fall Internet Engineering Laboratory Nara Institute of Science and Technique

Information Network I: The Application Layer. Doudou Fall Internet Engineering Laboratory Nara Institute of Science and Technique Information Network I: The Application Layer Doudou Fall Internet Engineering Laboratory Nara Institute of Science and Technique Outline Domain Name System World Wide Web and HTTP Content Delivery Networks

More information

DNS Basics BUPT/QMUL

DNS Basics BUPT/QMUL DNS Basics BUPT/QMUL 2018-04-16 Related Information Basic function of DNS Host entry structure in Unix Two system calls for DNS database retrieving gethostbyname () gethostbyaddr () 2 Agenda Brief introduction

More information

FTP. Client Server Model. Kent State University Dept. of Computer Science. CS 4/55231 Internet Engineering. Server Models

FTP. Client Server Model. Kent State University Dept. of Computer Science. CS 4/55231 Internet Engineering. Server Models Client Server Model Client: Any program can be a client temporarily of a specific remote service. Generally it is invoked, controlled by user. It runs only one session. CS 4/55231 Internet Engineering

More information

Information Network Systems The application layer. Stephan Sigg

Information Network Systems The application layer. Stephan Sigg Information Network Systems The application layer Stephan Sigg Tokyo, November 15, 2012 Introduction 04.10.2012 Introduction to the internet 11.10.2012 The link layer 18.10.2012 The network layer 25.10.2012

More information

Introduction to Internet Mail. Philip Hazel. University of Cambridge Computing Service. Mail agents

Introduction to Internet Mail. Philip Hazel. University of Cambridge Computing Service. Mail agents Introduction to Internet Mail Philip Hazel University of Cambridge Computing Service MUA = Mail User Agent Mail agents Interacts directly with the end user Pine, MH, Elm, mutt, mail, Eudora, Mulberry,

More information

ECE 435 Network Engineering Lecture 7

ECE 435 Network Engineering Lecture 7 ECE 435 Network Engineering Lecture 7 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 25 September 2018 HW#3 was Posted Announcements 1 HW#2 Review C code will be discussed next

More information

Naming. Naming entities

Naming. Naming entities Naming Naming entities Locating mobile entities Removing unreferenced entities 1 Name: Just a string Naming entities used to denote entity in a system Identifier: Uniquely refers to an entity Each entity

More information

Produced by. Mobile Application Development. Higher Diploma in Science in Computer Science. Eamonn de Leastar

Produced by. Mobile Application Development. Higher Diploma in Science in Computer Science. Eamonn de Leastar Mobile Application Development Higher Diploma in Science in Computer Science Produced by Eamonn de Leastar (edeleastar@wit.ie) Department of Computing, Maths & Physics Waterford Institute of Technology

More information

Web Mechanisms. Draft: 2/23/13 6:54 PM 2013 Christopher Vickery

Web Mechanisms. Draft: 2/23/13 6:54 PM 2013 Christopher Vickery Web Mechanisms Draft: 2/23/13 6:54 PM 2013 Christopher Vickery Introduction While it is perfectly possible to create web sites that work without knowing any of their underlying mechanisms, web developers

More information

DNS Management with Blue Cat Networks at PSU

DNS Management with Blue Cat Networks at PSU DNS Management with Blue Cat Networks at PSU Network and System Administrators at Penn State can make their own DNS changes, live, using the Blue Cat Proteus web-based interface. Proteus will be used by

More information

CMPE 151: Network Administration. Servers

CMPE 151: Network Administration. Servers CMPE 151: Network Administration Servers Announcements Unix shell+emacs tutorial. Basic Servers Telnet/Finger FTP Web SSH NNTP Let s look at the underlying protocols. Client-Server Model Request Response

More information

3. WWW and HTTP. Fig.3.1 Architecture of WWW

3. WWW and HTTP. Fig.3.1 Architecture of WWW 3. WWW and HTTP The World Wide Web (WWW) is a repository of information linked together from points all over the world. The WWW has a unique combination of flexibility, portability, and user-friendly features

More information

Applications & Application-Layer Protocols: (SMTP) and DNS

Applications & Application-Layer Protocols:  (SMTP) and DNS CS 312 Internet Concepts Applications & Application-Layer Protocols: E (SMTP) and DNS Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs312-f11

More information

CHAPTER 22 DISTRIBUTED APPLICATIONS ANSWERS TO QUESTIONS ANSWERS TO PROBLEMS

CHAPTER 22 DISTRIBUTED APPLICATIONS ANSWERS TO QUESTIONS ANSWERS TO PROBLEMS CHAPTER 22 DISTRIBUTED APPLICATIONS ANSWERS TO QUESTIONS 22.1 RFC 821 defines SMTP which is the protocol for exchanging email messages. RFC 822 describes the format of those messages. 22.2 The Simple Mail

More information

Linux Network Administration

Linux Network Administration Linux Network Administration Objective Describe the organization of the namespace Define the top-level subdomains of the Describe the process of converting IP addresses into names Define the concept of

More information

EECS 122: Introduction to Computer Networks DNS and WWW. Internet Names & Addresses

EECS 122: Introduction to Computer Networks DNS and WWW. Internet Names & Addresses EECS 122: Introduction to Computer Networks DNS and WWW Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776 Internet

More information

COSC 2206 Internet Tools. The HTTP Protocol

COSC 2206 Internet Tools. The HTTP Protocol COSC 2206 Internet Tools The HTTP Protocol http://www.w3.org/protocols/ What is TCP/IP? TCP: Transmission Control Protocol IP: Internet Protocol These network protocols provide a standard method for sending

More information

Naming. Chapter 4. Naming (1) Name resolution allows a process to access a named entity. A naming system is necessary.

Naming. Chapter 4. Naming (1) Name resolution allows a process to access a named entity. A naming system is necessary. Naming Chapter 4 Naming (1) Name resolution allows a process to access a named entity. A naming system is necessary. In a distributed system the naming system is distributed. Naming (2) In a distributed

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 8. Internet Applications Internet Applications Overview Domain Name Service (DNS) Electronic Mail File Transfer Protocol (FTP) WWW and HTTP Content

More information

Internet Content Distribution

Internet Content Distribution Internet Content Distribution Chapter 1: Introduction Jussi Kangasharju Chapter Outline Introduction into content distribution Basic concepts TCP DNS HTTP Outline of the rest of the course Kangasharju:

More information

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1 Networking Basics EC512 Spring 2015 2/15/2015 EC512 - Prof. Thomas Skinner 1 Protocols Protocols are required in order to allow information to be extracted from the stream of bits flowing from one point

More information

Electronic Mail. Prof. Indranil Sen Gupta. Professor, Dept. of Computer Science & Engineering Indian Institute of Technology Kharagpur

Electronic Mail. Prof. Indranil Sen Gupta. Professor, Dept. of Computer Science & Engineering Indian Institute of Technology Kharagpur Electronic Mail Prof. Indranil Sen Gupta Professor, Dept. of Computer Science & Engineering Indian Institute of Technology Kharagpur 1 Introduction Most heavily used application on the Internet. Simple

More information

How to Add Domains and DNS Records

How to Add Domains and DNS Records Configure the Barracuda NextGen X-Series Firewall to be the authoritative DNS server for your domains or subdomains to take advantage of Split DNS or dead link detection. Step 1. Make the X-Series Firewall

More information

Network Applications Principles of Network Applications

Network Applications Principles of Network Applications Network Applications Principles of Network Applications A Network application is an application running on one host and provides communication to another application running on a different host. At the

More information

Computer Networking. Chapter #1. Dr. Abdulrhaman Alameer

Computer Networking. Chapter #1. Dr. Abdulrhaman Alameer Computer Networking Chapter #1 Dr. Abdulrhaman Alameer What is Computer Network? It is a collection of computers and devices interconnected by communications channels that facilitate communications among

More information

Ciphermail Webmail Messenger Administration Guide

Ciphermail Webmail Messenger Administration Guide CIPHERMAIL EMAIL ENCRYPTION Ciphermail Webmail Messenger Administration Guide October 27, 2017, Rev: 8630 Copyright 2013-2017, ciphermail.com. CONTENTS CONTENTS Contents 1 Introduction 4 2 Admin login

More information

WWW: the http protocol

WWW: the http protocol Internet apps: their protocols and transport protocols Application e-mail remote terminal access Web file transfer streaming multimedia remote file Internet telephony Application layer protocol smtp [RFC

More information

Computer Engineering II Solution to Exercise Sheet Chapter 4

Computer Engineering II Solution to Exercise Sheet Chapter 4 Distributed Computing FS 2018 Prof. R. Wattenhofer Computer Engineering II Solution to Exercise Sheet Chapter 4 1 Quiz Questions a) A user provides his login credentials. The server then returns a cookie

More information

Introduction to Network. Topics

Introduction to Network. Topics Introduction to Network Security Chapter 7 Transport Layer Protocols 1 TCP Layer Topics Responsible for reliable end-to-end transfer of application data. TCP vulnerabilities UDP UDP vulnerabilities DNS

More information

Networking Fundamentals: IP, DNS, URL, MIME

Networking Fundamentals: IP, DNS, URL, MIME Networking Fundamentals: IP, DNS, URL, MIME Computer Science and Engineering College of Engineering The Ohio State University Lecture 10 Internet Protocol (IP) Addresses A unique 32-bit number Assigned

More information

DNS and SMTP. James Walden CIT 485: Advanced Cybersecurity. James WaldenCIT 485: Advanced Cybersecurity DNS and SMTP 1 / 31

DNS and SMTP. James Walden CIT 485: Advanced Cybersecurity. James WaldenCIT 485: Advanced Cybersecurity DNS and SMTP 1 / 31 DNS and SMTP James Walden CIT 485: Advanced Cybersecurity James WaldenCIT 485: Advanced Cybersecurity DNS and SMTP 1 / 31 Table of contents 1. DNS 2. DNS Protocol Packets 3. DNS Caching 4. DNS Cache Poisoning

More information

Project 2 Implementing a Simple HTTP Web Proxy

Project 2 Implementing a Simple HTTP Web Proxy Project 2 Implementing a Simple HTTP Web Proxy Overview: CPSC 460 students are allowed to form a group of up to 3 students. CPSC 560 students each must take it as an individual project. This project aims

More information

Fig (1) sending and receiving s

Fig (1) sending and receiving  s Electronic Mail Protocols (SMTP, POP, IMAP) It is important to (1) distinguish the user interface (i.e., your mail reader) from the underlying message transfer protocols (such as SMTP, POP or IMAP), and

More information

CCNA R&S: Introduction to Networks. Chapter 10: The Application Layer

CCNA R&S: Introduction to Networks. Chapter 10: The Application Layer CCNA R&S: Introduction to Networks Chapter 10: The Application Layer Frank Schneemann 10.0.1.1 Introduction 10.0.1.2 Activity - Application Investigation 10.1.1.1 OSI and TCP/IP Models Revisited The application

More information

The Application Layer: & SMTP

The Application Layer:  & SMTP The Application Layer: email & SMTP Smith College, CSC 249 Feb 1, 2018 4-1 Chapter 2: Application layer q 2.1 Principles of network applications q 2.2 Web and HTTP q 2.3 FTP q 2.4 Electronic Mail v SMTP,

More information

Project 2 Group Project Implementing a Simple HTTP Web Proxy

Project 2 Group Project Implementing a Simple HTTP Web Proxy Project 2 Group Project Implementing a Simple HTTP Web Proxy Overview: This is a group project. CPSC 460 students are allowed to form a group of 3-4 students (It is ok if you want to take it as an individual

More information

CS4/MSc Computer Networking. Lecture 3: The Application Layer

CS4/MSc Computer Networking. Lecture 3: The Application Layer CS4/MSc Computer Networking Lecture 3: The Application Layer Computer Networking, Copyright University of Edinburgh 2005 Network Applications Examine a popular network application: Web Client-server architecture

More information

Chapter 2. Application Layer

Chapter 2. Application Layer Chapter 2 Application Layer 2.1. 2-1 INTRODUCTION - The application layer provides services to the user - Communication is provided using a logical connection means that the two application layers assume

More information

FTP. Mail. File Transfer Protocol (FTP) FTP commands, responses. Electronic Mail. TDTS06: Computer Networks

FTP. Mail. File Transfer Protocol (FTP) FTP commands, responses. Electronic Mail. TDTS06: Computer Networks TDTS0: Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se FTP Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides

More information

Lecture 3. HTTP v1.0 application layer protocol. into details. HTTP 1.0: RFC 1945, T. Berners-Lee HTTP 1.1: RFC 2068, 2616

Lecture 3. HTTP v1.0 application layer protocol. into details. HTTP 1.0: RFC 1945, T. Berners-Lee HTTP 1.1: RFC 2068, 2616 Lecture 3. HTTP v1.0 application layer protocol into details HTTP 1.0: RFC 1945, T. Berners-Lee Lee,, R. Fielding, H. Frystyk, may 1996 HTTP 1.1: RFC 2068, 2616 Ascii protocol uses plain text case sensitive

More information

Configuring DNS. Finding Feature Information

Configuring DNS. Finding Feature Information The Domain Name System (DNS) is a distributed database in which you can map hostnames to IP addresses through the DNS protocol from a DNS server. Each unique IP address can have an associated hostname.

More information

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers 2007, Jae-sul Lee. All rights reserved. 1 Agenda 11.1 TCP/IP Transport Layer 11.2 The Application Layer What does the TCP/IP transport layer

More information

How to Configure the DNS Server

How to Configure the DNS Server Make the Barracuda Link Balancer an Authoritative DNS host and configure the DNS Server for inbound load balancing. Step 1. Enable Authoritative DNS Enable Authoritative DNS on the Barracuda Link Balancer

More information

Networking: Application Layer

Networking: Application Layer CS 4410 Operating Systems Networking: Application Layer Summer 2016 Cornell University 1 Today Two application-layer protocols: DNS HTTP Domain Name Service When a user wants to communicate with a remote

More information

How to Configure DNS Zones

How to Configure DNS Zones The Barracuda NG Firewall DNS configuration object contains two predefined zones: _template and '.' To be able to edit and specify DNS zones within the Barracuda NG Firewall DNS configuration, you must

More information

Domain Name Service. Product Description. Issue 03 Date HUAWEI TECHNOLOGIES CO., LTD.

Domain Name Service. Product Description. Issue 03 Date HUAWEI TECHNOLOGIES CO., LTD. Issue 03 Date 2018-08-15 HUAWEI TECHNOLOGIES CO., LTD. Copyright Huawei Technologies Co., Ltd. 2018. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any

More information

Session 2. Background. Lecture Objectives

Session 2. Background. Lecture Objectives Session 2 Background 1 Lecture Objectives Understand how an Internet resource is accessed Understand the high level structure of the Internet cloud Understand the high level structure of the TCP/IP protocols

More information

Outline NET 412 NETWORK SECURITY PROTOCOLS. Reference: Lecture 7: DNS Security 3/28/2016

Outline NET 412 NETWORK SECURITY PROTOCOLS. Reference:  Lecture 7: DNS Security 3/28/2016 Networks and Communication Department NET 412 NETWORK SECURITY PROTOCOLS Lecture 7: DNS Security 2 Outline Part I: DNS Overview of DNS DNS Components DNS Transactions Attack on DNS Part II: DNS Security

More information

Documentation for: MTA developers

Documentation for: MTA developers This document contains implementation guidelines for developers of MTA products/appliances willing to use Spamhaus products to block as much spam as possible. No reference is made to specific products.

More information

Parallelism. Master 1 International. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique

Parallelism. Master 1 International. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique Parallelism Master 1 International Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr Andrea G. B. Tettamanzi, 2014 1 Lecture 3 Part a Naming

More information

Domain Name System (DNS) DNS Fundamentals. Computers use IP addresses. Why do we need names? hosts.txt does not scale. The old solution: HOSTS.

Domain Name System (DNS) DNS Fundamentals. Computers use IP addresses. Why do we need names? hosts.txt does not scale. The old solution: HOSTS. Domain Name System (DNS) Computers use IP addresses. Why do we need names? Names are easier for people to remember DNS Fundamentals Computers may be moved between networks, in which case their IP address

More information

Special expressions, phrases, abbreviations and terms of Computer Networks

Special expressions, phrases, abbreviations and terms of Computer Networks access access point adapter Adderssing Realm ADSL (Asymmetrical Digital Subscriber Line) algorithm amplify amplitude analog antenna application architecture ARP (Address Resolution Protocol) AS (Autonomous

More information

Chapter 2: Application layer

Chapter 2: Application layer Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 Socket programming with TCP 2.8 Socket

More information

Systèmes Distribués. Master MIAGE 1. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique

Systèmes Distribués. Master MIAGE 1. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique Systèmes Distribués Master MIAGE 1 Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr Andrea G. B. Tettamanzi, 2017 1 CM - Séance 4 Naming (chapitre

More information