Interactive Computational Intelligence: A Framework and Applications

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Interactive Computational Intelligence: A Framework and Applications"

Transcription

1 1 Interactive Computational Intelligence: A Framework and Applications

2 Agenda Overview Methodology IGA Knowledge-based encoding Partial evaluation based on clustering Direct manipulation of evolution Applications Media retrieval Media design Concluding remarks 2

3 Overview Interactive Computational Intelligence Interaction/Evolution Human Computer Interface (Emotion) User Modeling AI (Soft Computing) (Efficiency) FL GA 3 NN

4 Interactive Evolutionary Computation (IEC) Overview Difficulty of optimization problem in interactive system Outputs must be subjectively evaluated (graphics or music) Definition Evolutionary computation that optimizes systems based on subjective human evaluation Fitness function is replaced by a human user Target system f(p1,p2,,pn) System output My goal is Interactive EC Subjective evaluation From Takagi (2001) 4

5 Overview Technical Problems in IEC Human fatigue problem Common to all human-machine interaction systems IEC Acceleration of EC convergence with a small population size and a few generation numbers Usually 10 or 20 search generations Limitation of the individuals simultaneously displayed on a monitor Limitation of the human capacity to memorize the timesequentially displayed individuals Requirement to minimize human fatigue I m tired 5

6 Overview Framework Direct Manipulation Media Retrieval & Design Media Retrieval & Design IEC IEC Partial Evaluation Domain Knowledge Conventional Proposed 6

7 Methodology Interactive Genetic Algorithm Initial Population GA Fitness Function IGA User Selection Crossover / Mutation Fitness Evaluation Population Reproduction 7

8 Methodology Knowledge-based Encoding New Search Space Effective encoding? Domain Knowledge Removing impractical solutions Using partially known information about the final solution Focusing on a specific search space Encoding in a modular manner Search Space 8

9 Partial Evaluation Based on Clustering Methodology Issues Clustering algorithm selection, indirect fitness allocation strategy 9

10 Methodology Direct Manipulation of Evolution It is very similar to the final solution but a bit different. IGA Direct Manipulation Proof of usefulness of the direct manipulation N-K Landscape 10

11 Applications Overview Humanized Media Retrieval & Design Media Retrieval Media Design Image Retrieval Video Retrieval Music Retrieval Fashion Design Flower Design Intrusion Pattern Design 11

12 Content-based Image Retrieval Applications: Image Retrieval Keywords-based method Much time and labor to construct indexes in a large databases Performance decrease when index constructor and user have different point of view Inherent difficulty to describe image as a keyword Content-based method Image contents as a set of features extracted from image Specifying queries using the features 12

13 Applications: Image Retrieval Motivation System for content-based image retrieval QBIC (IBM, 1993) QVE (Hirata and Kato, 1993) Chabot (Berkeley, 1994) Needs for image retrieval based on human intuition Difficult to get perfect expression by queries Lack of expression capability 13

14 System Structure Applications: Image Retrieval 14

15 Chromosome Construction Applications: Image Retrieval R G B Original image Transformed image Chromosome 15

16 Convergence Test Applications: Image Retrieval The case of gloomy image retrieval Initial population The 8th population 16

17 Applications: Image Retrieval Subjective Test by Sheffe s Method Confidence interval 95% 99% 17

18 Applications: Video Retrieval Motivation Evolution of computing technology (Huge computing storage, networking) Necessary for management of video data transfer, processing and retrieval Change of view point Query by keyword Query by content Difficult to represent human s semantic information Query by semantics Emotion-based retrieval 18

19 Hierarchical Structure of Video Applications: Video Retrieval 19

20 System Architecture Applications: Video Retrieval 20

21 Chromosome Construction Applications: Video Retrieval 21

22 System Interface Applications: Video Retrieval 22

23 User s Satisfaction Applications: Video Retrieval 23

24 Emotional Music Retrieval Applications: Music Retrieval Music information retrieval Immature field Query by singing Query by content Uploading pre-recording humming via web browser Typing the string to represent the melody contour Preprocessing Query by humming transforms user s humming into symbolized representation Conventional music retrieval system Fast and effective extraction of musical patterns and transformation of user s humming into systematic notes Problem : User cannot remember some parts of melody 24

25 Power Spectrum Analysis Applications: Music Retrieval 1/f )] log 10 [ ( f S Z a b a : classic b : jazz c : rock d : news channel c d ( log 10 f ) 25

26 System Architecture Applications: Music Retrieval 3Retrieved music IGA : Music Database 4 User evaluates the music retrieved 5 Generation of new offspring 1Query 2Retrieval of music by the query 26

27 Chromosome Construction Applications: Music Retrieval 27

28 Convergence Test Applications: Music Retrieval Distance m=0.5 c=0.5 2 m=0.2 c=0.5 3 m=0.5 c=0.2 4 m=0.2 c= generation 28

29 Convergence Test (2) Applications: Music Retrieval 29

30 Change of Consumer Economy Applications: Fashion Design Manufacturer Oriented Before the Industrial Revolution : Customers have few choices on buying their clothes After the Industrial Revolution : Customers can make their choices with very large variety Consumer Oriented Near Future : Customers can order and get clothes of their favorite design 30

31 Applications: Fashion Design Need for Interaction-based System Almost all consumers are non-professional at design To make designers contact all consumers is not effective Need for the design system that can be used by non-professionals 31

32 Applications: Fashion Design Fashion Design Definition To make a choice within various styles that clothes can take Three shape part of fashion design Silhouette Detail Trimming 32

33 System Architecture Applications: Fashion Design OpenGL Program Models of each part Combine Display Decode Interactive Genetic Algorithm GA operation Reproduce User Fitness 33

34 Knowledge-based Encoding Applications: Fashion Design A B C D E F Total 23 bits A : Neck and body style(34) B : Color(8) E : Skirt and waistline style(9) F : Color(8) C : Arm and sleeve style(11) D : Color(8) Search space size =34*8*11*8*9*8 =1,880,064 34

35 Direct Manipulation Interface Applications: Fashion Design 35

36 Applications: Fashion Design Fitness Changes for Each Encoding Scheme Average Fitness Knowledge-based Encoding Sequential Encoding Generation 36

37 Hypercube Analysis Applications: Fashion Design mutton 0111 pagoda No mapped design 1110 No mapped design mutton 0111 pagoda No mapped design No mapped design 0010 flare tucked 0010 flare tucked 0011 french 1011 no sleeves 0011 french DM 1011 no sleeves 0001 china melon No mapped design 1100 No mapped design 0001 china melon No mapped design 1100 No mapped design mandarin 1001 tight mandarin 1001 tight bishop 1000 poncho 0000 bishop 1000 poncho One-Mutant Neighbors using Genetic Operator Shortest Path Using DM Method 37

38 Applications: Flower Design Motivation Proposed Method Representation of knowledge-based genotype using the structure of real flower Automatic generation of creatures Process Directed graph: Define the genotype of flower structure IGA: Evaluation of created individuals and automatic creation Math Engine: Representation of phenotype Objective Creation of character morphology similar to reality Find optimal solution in small solution space using knowledgebased genotype representation such as directed graph Automatic creation of character using IGA 38

39 Applications: Flower Design Related Works Tree, flower and feather modeling L-System Box-based artificial characters (Karl Sims) evolution Graph model representation Golem Robotic form and controller evolution Graph-based data structure 39

40 Overall Procedure Applications: Flower Design Create initial edges between nodes Set dimension and color of each part Set parameters of parts and edges Create 3D world in simulation Create rigid parts in genotype Perform 3D rendering Evaluate fitness of each individual No Satisfied individual? Yes Selection Stop Crossover/Mutation Create individuals of next generation 40

41 Chromosome Construction Applications: Flower Design 41

42 Convergence Test Applications: Flower Design 10 Fitness value Generation Average fitness value Best fitness value 42

43 Analysis Using Sheffe s Method Applications: Flower Design 99% 95%

44 Motivation Applications: Intrusion Pattern Design Various intrusion detection system For evaluating, IDS uses known intrusions Possibility of having different patterns within identical intrusion type Difficult to detect transformed intrusions Problems For better evaluation, intrusion patterns are needed more Difficult to generate all possible proper intrusion patterns manually Automatic generation is needed 44

45 Motivation (2) Applications: Intrusion Pattern Design Evolutionary pattern generation Needs a variety of intrusion patterns It is possible to generate new patterns by combining primitives Generation of transformed intrusion patterns using simple genetic algorithm IGA-based intrusion pattern generation Difficult to estimate the fitness of patterns automatically Using interactive genetic algorithm for the estimation 45

46 Applications: Intrusion Pattern Design Method Intrusive behavior can be divided into 5 steps Proposed by DARPA Possible path of U2R attack TRANSPORT ENCODING EXECUTION ACTIONS CLEAN UP web download archive shell variables change file permissions editor octal character shell script display files remove files ftp simple encryption encrypted shell interaction delete files restore permissions mail character stuffing generate chaft output in bg transfer files edit audit logs floopy encoding delayted execution alter files 46

47 System Architecture Applications: Intrusion Pattern Design Known Intrusion Patterns Initial Population IGA GA Fitness Evaluation Intrusion Patterns Generate Audit Data Exploit Code 47

48 Concluding Remarks Humanized computing framework using IEC Knowledge-based encoding Partial evaluation based on clustering Direct manipulation of evolution Applications in media retrieval & design Image, video and music retrieval Fashion, flower and intrusion pattern design 48

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

Genetic programming. Lecture Genetic Programming. LISP as a GP language. LISP structure. S-expressions

Genetic programming. Lecture Genetic Programming. LISP as a GP language. LISP structure. S-expressions Genetic programming Lecture Genetic Programming CIS 412 Artificial Intelligence Umass, Dartmouth One of the central problems in computer science is how to make computers solve problems without being explicitly

More information

Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search

Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search Outline Genetic Algorithm Motivation Genetic algorithms An illustrative example Hypothesis space search Motivation Evolution is known to be a successful, robust method for adaptation within biological

More information

CS5401 FS2015 Exam 1 Key

CS5401 FS2015 Exam 1 Key CS5401 FS2015 Exam 1 Key This is a closed-book, closed-notes exam. The only items you are allowed to use are writing implements. Mark each sheet of paper you use with your name and the string cs5401fs2015

More information

An Application of Genetic Algorithm for Auto-body Panel Die-design Case Library Based on Grid

An Application of Genetic Algorithm for Auto-body Panel Die-design Case Library Based on Grid An Application of Genetic Algorithm for Auto-body Panel Die-design Case Library Based on Grid Demin Wang 2, Hong Zhu 1, and Xin Liu 2 1 College of Computer Science and Technology, Jilin University, Changchun

More information

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 201-205, May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 AN EVOLUTIONARY APPROACH

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Combinational Circuit Design Using Genetic Algorithms

Combinational Circuit Design Using Genetic Algorithms Combinational Circuit Design Using Genetic Algorithms Nithyananthan K Bannari Amman institute of technology M.E.Embedded systems, Anna University E-mail:nithyananthan.babu@gmail.com Abstract - In the paper

More information

JEvolution: Evolutionary Algorithms in Java

JEvolution: Evolutionary Algorithms in Java Computational Intelligence, Simulation, and Mathematical Models Group CISMM-21-2002 May 19, 2015 JEvolution: Evolutionary Algorithms in Java Technical Report JEvolution V0.98 Helmut A. Mayer helmut@cosy.sbg.ac.at

More information

Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

IDuFG: Introducing an Intrusion Detection using Hybrid Fuzzy Genetic Approach

IDuFG: Introducing an Intrusion Detection using Hybrid Fuzzy Genetic Approach International Journal of Network Security, Vol.17, No.6, PP.754-770, Nov. 2015 754 IDuFG: Introducing an Intrusion Detection using Hybrid Fuzzy Genetic Approach Ghazaleh Javadzadeh 1, Reza Azmi 2 (Corresponding

More information

4/22/2014. Genetic Algorithms. Diwakar Yagyasen Department of Computer Science BBDNITM. Introduction

4/22/2014. Genetic Algorithms. Diwakar Yagyasen Department of Computer Science BBDNITM. Introduction 4/22/24 s Diwakar Yagyasen Department of Computer Science BBDNITM Visit dylycknow.weebly.com for detail 2 The basic purpose of a genetic algorithm () is to mimic Nature s evolutionary approach The algorithm

More information

An Introduction to Evolutionary Algorithms

An Introduction to Evolutionary Algorithms An Introduction to Evolutionary Algorithms Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi http://users.jyu.fi/~kasindhy/

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

An Improved Genetic Algorithm based Fault tolerance Method for distributed wireless sensor networks.

An Improved Genetic Algorithm based Fault tolerance Method for distributed wireless sensor networks. An Improved Genetic Algorithm based Fault tolerance Method for distributed wireless sensor networks. Anagha Nanoti, Prof. R. K. Krishna M.Tech student in Department of Computer Science 1, Department of

More information

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM Anticipatory Versus Traditional Genetic Algorithm ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM ABSTRACT Irina Mocanu 1 Eugenia Kalisz 2 This paper evaluates the performances of a new type of genetic

More information

Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.

Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7. Chapter 7: Derivative-Free Optimization Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.5) Jyh-Shing Roger Jang et al.,

More information

Approach Using Genetic Algorithm for Intrusion Detection System

Approach Using Genetic Algorithm for Intrusion Detection System Approach Using Genetic Algorithm for Intrusion Detection System 544 Abhijeet Karve Government College of Engineering, Aurangabad, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra-

More information

Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?)

Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?) SKIP - May 2004 Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?) S. G. Hohmann, Electronic Vision(s), Kirchhoff Institut für Physik, Universität Heidelberg Hardware Neuronale Netzwerke

More information

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

More information

Grid-Based Genetic Algorithm Approach to Colour Image Segmentation

Grid-Based Genetic Algorithm Approach to Colour Image Segmentation Grid-Based Genetic Algorithm Approach to Colour Image Segmentation Marco Gallotta Keri Woods Supervised by Audrey Mbogho Image Segmentation Identifying and extracting distinct, homogeneous regions from

More information

Time Complexity Analysis of the Genetic Algorithm Clustering Method

Time Complexity Analysis of the Genetic Algorithm Clustering Method Time Complexity Analysis of the Genetic Algorithm Clustering Method Z. M. NOPIAH, M. I. KHAIRIR, S. ABDULLAH, M. N. BAHARIN, and A. ARIFIN Department of Mechanical and Materials Engineering Universiti

More information

Using Genetic Algorithms to Improve Pattern Classification Performance

Using Genetic Algorithms to Improve Pattern Classification Performance Using Genetic Algorithms to Improve Pattern Classification Performance Eric I. Chang and Richard P. Lippmann Lincoln Laboratory, MIT Lexington, MA 021739108 Abstract Genetic algorithms were used to select

More information

Artificial Intelligence Application (Genetic Algorithm)

Artificial Intelligence Application (Genetic Algorithm) Babylon University College of Information Technology Software Department Artificial Intelligence Application (Genetic Algorithm) By Dr. Asaad Sabah Hadi 2014-2015 EVOLUTIONARY ALGORITHM The main idea about

More information

Path Planning Optimization Using Genetic Algorithm A Literature Review

Path Planning Optimization Using Genetic Algorithm A Literature Review International Journal of Computational Engineering Research Vol, 03 Issue, 4 Path Planning Optimization Using Genetic Algorithm A Literature Review 1, Er. Waghoo Parvez, 2, Er. Sonal Dhar 1, (Department

More information

Planning and Search. Genetic algorithms. Genetic algorithms 1

Planning and Search. Genetic algorithms. Genetic algorithms 1 Planning and Search Genetic algorithms Genetic algorithms 1 Outline Genetic algorithms Representing states (individuals, or chromosomes) Genetic operations (mutation, crossover) Example Genetic algorithms

More information

A Taxonomic Bit-Manipulation Approach to Genetic Problem Solving

A Taxonomic Bit-Manipulation Approach to Genetic Problem Solving A Taxonomic Bit-Manipulation Approach to Genetic Problem Solving Dr. Goldie Gabrani 1, Siddharth Wighe 2, Saurabh Bhardwaj 3 1: HOD, Delhi College of Engineering, ggabrani@yahoo.co.in 2: Student, Delhi

More information

IMPROVING A GREEDY DNA MOTIF SEARCH USING A MULTIPLE GENOMIC SELF-ADAPTATING GENETIC ALGORITHM

IMPROVING A GREEDY DNA MOTIF SEARCH USING A MULTIPLE GENOMIC SELF-ADAPTATING GENETIC ALGORITHM Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 4th, 2007 IMPROVING A GREEDY DNA MOTIF SEARCH USING A MULTIPLE GENOMIC SELF-ADAPTATING GENETIC ALGORITHM Michael L. Gargano, mgargano@pace.edu

More information

A New Crossover Technique for Cartesian Genetic Programming

A New Crossover Technique for Cartesian Genetic Programming A New Crossover Technique for Cartesian Genetic Programming Genetic Programming Track Janet Clegg Intelligent Systems Group, Department of Electronics University of York, Heslington York,YODD,UK jc@ohm.york.ac.uk

More information

Internal vs. External Parameters in Fitness Functions

Internal vs. External Parameters in Fitness Functions Internal vs. External Parameters in Fitness Functions Pedro A. Diaz-Gomez Computing & Technology Department Cameron University Lawton, Oklahoma 73505, USA pdiaz-go@cameron.edu Dean F. Hougen School of

More information

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Sucharith Vanguri 1, Travis W. Hill 2, Allen G. Greenwood 1 1 Department of Industrial Engineering 260 McCain

More information

CHAPTER 4 FEATURE SELECTION USING GENETIC ALGORITHM

CHAPTER 4 FEATURE SELECTION USING GENETIC ALGORITHM CHAPTER 4 FEATURE SELECTION USING GENETIC ALGORITHM In this research work, Genetic Algorithm method is used for feature selection. The following section explains how Genetic Algorithm is used for feature

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

More information

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Chapter 5 A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Graph Matching has attracted the exploration of applying new computing paradigms because of the large number of applications

More information

Derivative-Free Optimization

Derivative-Free Optimization Derivative-Free Optimization Chapter 7 from Jang Outline Simulated Annealing (SA) Downhill simplex search Random search Genetic algorithms (GA) 2 The Big Picture Model space Adaptive networks Neural networks

More information

JHPCSN: Volume 4, Number 1, 2012, pp. 1-7

JHPCSN: Volume 4, Number 1, 2012, pp. 1-7 JHPCSN: Volume 4, Number 1, 2012, pp. 1-7 QUERY OPTIMIZATION BY GENETIC ALGORITHM P. K. Butey 1, Shweta Meshram 2 & R. L. Sonolikar 3 1 Kamala Nehru Mahavidhyalay, Nagpur. 2 Prof. Priyadarshini Institute

More information

Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm

Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm Shinn-Ying Ho *, Chia-Cheng Liu, Soundy Liu, and Jun-Wen Jou Department of Information Engineering, Feng Chia University,

More information

ADAPTATION METHODS IN CASE-BASED REASONING

ADAPTATION METHODS IN CASE-BASED REASONING ADAPTATION METHODS IN CASE-BASED REASONING Mikó Balázs 1, Szegh Imre 2, Kutrovácz Lajos 3 1. PhD Student, 2. PhD, Assosiate Professor, 3. Mechanical Engineer Technical University of Budapest, Department

More information

CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM

CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM 1 CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM John R. Koza Computer Science Department Stanford University Stanford, California 94305 USA E-MAIL: Koza@Sunburn.Stanford.Edu

More information

A Genetic Algorithm for Mid-Air Target Interception

A Genetic Algorithm for Mid-Air Target Interception olume 14 No.1, January 011 A Genetic Algorithm for Mid-Air Target Interception Irfan Younas HITEC University Taxila cantt. Pakistan Atif Aqeel PMAS-AAUR Rawalpindi Pakistan ABSTRACT This paper presents

More information

Optimization of heterogeneous Bin packing using adaptive genetic algorithm

Optimization of heterogeneous Bin packing using adaptive genetic algorithm IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Optimization of heterogeneous Bin packing using adaptive genetic algorithm To cite this article: R Sridhar et al 2017 IOP Conf.

More information

Figure 1: Workflow of object-based classification

Figure 1: Workflow of object-based classification Technical Specifications Object Analyst Object Analyst is an add-on package for Geomatica that provides tools for segmentation, classification, and feature extraction. Object Analyst includes an all-in-one

More information

^ Springer. Computational Intelligence. A Methodological Introduction. Rudolf Kruse Christian Borgelt. Matthias Steinbrecher Pascal Held

^ Springer. Computational Intelligence. A Methodological Introduction. Rudolf Kruse Christian Borgelt. Matthias Steinbrecher Pascal Held Rudolf Kruse Christian Borgelt Frank Klawonn Christian Moewes Matthias Steinbrecher Pascal Held Computational Intelligence A Methodological Introduction ^ Springer Contents 1 Introduction 1 1.1 Intelligent

More information

Constructing an Optimisation Phase Using Grammatical Evolution. Brad Alexander and Michael Gratton

Constructing an Optimisation Phase Using Grammatical Evolution. Brad Alexander and Michael Gratton Constructing an Optimisation Phase Using Grammatical Evolution Brad Alexander and Michael Gratton Outline Problem Experimental Aim Ingredients Experimental Setup Experimental Results Conclusions/Future

More information

TIMETABLE SCHEDULING USING GENETIC ALGORITHM

TIMETABLE SCHEDULING USING GENETIC ALGORITHM Journal homepage: www.mjret.in TIMETABLE SCHEDULING USING GENETIC ALGORITHM Prof. R.V. Dagade 1, Sayyad Shaha Hassan 2, Pratik Devhare 3, Srujan Khilari 4, Swapnil Sarda 5 Computer Department Marathwada

More information

Topics. Introduction. Hardware and Software. Main Memory. The CPU. Introduction to Computers and Programming

Topics. Introduction. Hardware and Software. Main Memory. The CPU. Introduction to Computers and Programming Topics C H A P T E R 1 Introduction to Computers and Programming Introduction Hardware and Software How Computers Store Data Using Python Introduction Computers can be programmed Designed to do any job

More information

Structural Topology Optimization Using Genetic Algorithms

Structural Topology Optimization Using Genetic Algorithms , July 3-5, 2013, London, U.K. Structural Topology Optimization Using Genetic Algorithms T.Y. Chen and Y.H. Chiou Abstract Topology optimization has been widely used in industrial designs. One problem

More information

A THREAD BUILDING BLOCKS BASED PARALLEL GENETIC ALGORITHM

A THREAD BUILDING BLOCKS BASED PARALLEL GENETIC ALGORITHM www.arpapress.com/volumes/vol31issue1/ijrras_31_1_01.pdf A THREAD BUILDING BLOCKS BASED PARALLEL GENETIC ALGORITHM Erkan Bostanci *, Yilmaz Ar & Sevgi Yigit-Sert SAAT Laboratory, Computer Engineering Department,

More information

GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL

GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL 3 rd Research/Expert Conference with International Participations QUALITY 2003, Zenica, B&H, 13 and 14 November, 2003 GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL Miha Kovacic, Miran Brezocnik

More information

Another Case Study: Genetic Algorithms

Another Case Study: Genetic Algorithms Chapter 4 Another Case Study: Genetic Algorithms Genetic Algorithms The section on Genetic Algorithms (GA) appears here because it is closely related to the problem of unsupervised learning. Much of what

More information

Towards Automatic Recognition of Fonts using Genetic Approach

Towards Automatic Recognition of Fonts using Genetic Approach Towards Automatic Recognition of Fonts using Genetic Approach M. SARFRAZ Department of Information and Computer Science King Fahd University of Petroleum and Minerals KFUPM # 1510, Dhahran 31261, Saudi

More information

Design Space Exploration

Design Space Exploration Design Space Exploration SS 2012 Jun.-Prof. Dr. Christian Plessl Custom Computing University of Paderborn Version 1.1.0 2012-06-15 Overview motivation for design space exploration design space exploration

More information

Computer Systems Colloquium (EE380) Wednesday, 4:15-5:30PM 5:30PM in Gates B01

Computer Systems Colloquium (EE380) Wednesday, 4:15-5:30PM 5:30PM in Gates B01 Adapting Systems by Evolving Hardware Computer Systems Colloquium (EE380) Wednesday, 4:15-5:30PM 5:30PM in Gates B01 Jim Torresen Group Department of Informatics University of Oslo, Norway E-mail: jimtoer@ifi.uio.no

More information

Complex Geometric Primitive Extraction on Graphics Processing Unit

Complex Geometric Primitive Extraction on Graphics Processing Unit Complex Geometric Primitive Extraction on Graphics Processing Unit Mert Değirmenci Department of Computer Engineering, Middle East Technical University, Turkey mert.degirmenci@ceng.metu.edu.tr ABSTRACT

More information

Genetic Algorithm for Finding Shortest Path in a Network

Genetic Algorithm for Finding Shortest Path in a Network Intern. J. Fuzzy Mathematical Archive Vol. 2, 2013, 43-48 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 26 August 2013 www.researchmathsci.org International Journal of Genetic Algorithm for Finding

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Bhakti V. Gavali 1, Prof. Vivekanand Reddy 2 1 Department of Computer Science and Engineering, Visvesvaraya Technological

More information

Genetic Algorithms: Setting Parmeters and Incorporating Constraints OUTLINE OF TOPICS: 1. Setting GA parameters. 2. Constraint Handling (two methods)

Genetic Algorithms: Setting Parmeters and Incorporating Constraints OUTLINE OF TOPICS: 1. Setting GA parameters. 2. Constraint Handling (two methods) Genetic Algorithms: Setting Parmeters and Incorporating Constraints OUTLINE OF TOPICS: 1. Setting GA parameters general guidelines for binary coded GA (some can be extended to real valued GA) estimating

More information

Delivers cost savings, high definition display, and supercharged sharing

Delivers cost savings, high definition display, and supercharged sharing TM OpenText TM Exceed TurboX Delivers cost savings, high definition display, and supercharged sharing OpenText Exceed TurboX is an advanced solution for desktop virtualization and remote access to enterprise

More information

Design of Large-Scale Optical Networks Λ

Design of Large-Scale Optical Networks Λ Design of Large-Scale Optical Networks Λ Yufeng Xin, George N. Rouskas, Harry G. Perros Department of Computer Science, North Carolina State University, Raleigh NC 27695 E-mail: fyxin,rouskas,hpg@eos.ncsu.edu

More information

Multi-objective Optimization

Multi-objective Optimization Jugal K. Kalita Single vs. Single vs. Single Objective Optimization: When an optimization problem involves only one objective function, the task of finding the optimal solution is called single-objective

More information

Generation of Ultra Side lobe levels in Circular Array Antennas using Evolutionary Algorithms

Generation of Ultra Side lobe levels in Circular Array Antennas using Evolutionary Algorithms Generation of Ultra Side lobe levels in Circular Array Antennas using Evolutionary Algorithms D. Prabhakar Associate Professor, Dept of ECE DVR & Dr. HS MIC College of Technology Kanchikacherla, AP, India.

More information

Interactive Genetic Algorithms for User Interface Design

Interactive Genetic Algorithms for User Interface Design Interactive Genetic Algorithms for User Interface Design Juan C. Quiroz, Sushil J. Louis, Anil Shankar, Sergiu M. Dascalu Abstract We attack the problem of user fatigue in using an interactive genetic

More information

Using a genetic algorithm for editing k-nearest neighbor classifiers

Using a genetic algorithm for editing k-nearest neighbor classifiers Using a genetic algorithm for editing k-nearest neighbor classifiers R. Gil-Pita 1 and X. Yao 23 1 Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Madrid (SPAIN) 2 Computer Sciences Department,

More information

Knowledge Discovery in Data Bases

Knowledge Discovery in Data Bases Knowledge Discovery in Data Bases Chien-Chung Chan Department of CS University of Akron Akron, OH 44325-4003 2/24/99 1 Why KDD? We are drowning in information, but starving for knowledge John Naisbett

More information

Using Genetic Algorithms to Solve the Box Stacking Problem

Using Genetic Algorithms to Solve the Box Stacking Problem Using Genetic Algorithms to Solve the Box Stacking Problem Jenniffer Estrada, Kris Lee, Ryan Edgar October 7th, 2010 Abstract The box stacking or strip stacking problem is exceedingly difficult to solve

More information

System of Systems Architecture Generation and Evaluation using Evolutionary Algorithms

System of Systems Architecture Generation and Evaluation using Evolutionary Algorithms SysCon 2008 IEEE International Systems Conference Montreal, Canada, April 7 10, 2008 System of Systems Architecture Generation and Evaluation using Evolutionary Algorithms Joseph J. Simpson 1, Dr. Cihan

More information

Reducing Graphic Conflict In Scale Reduced Maps Using A Genetic Algorithm

Reducing Graphic Conflict In Scale Reduced Maps Using A Genetic Algorithm Reducing Graphic Conflict In Scale Reduced Maps Using A Genetic Algorithm Dr. Ian D. Wilson School of Technology, University of Glamorgan, Pontypridd CF37 1DL, UK Dr. J. Mark Ware School of Computing,

More information

A More Stable Approach To LISP Tree GP

A More Stable Approach To LISP Tree GP A More Stable Approach To LISP Tree GP Joseph Doliner August 15, 2008 Abstract In this paper we begin by familiarising ourselves with the basic concepts of Evolutionary Computing and how it can be used

More information

CHAPTER 4 GENETIC ALGORITHM

CHAPTER 4 GENETIC ALGORITHM 69 CHAPTER 4 GENETIC ALGORITHM 4.1 INTRODUCTION Genetic Algorithms (GAs) were first proposed by John Holland (Holland 1975) whose ideas were applied and expanded on by Goldberg (Goldberg 1989). GAs is

More information

Topics. Hardware and Software. Introduction. Main Memory. The CPU 9/21/2014. Introduction to Computers and Programming

Topics. Hardware and Software. Introduction. Main Memory. The CPU 9/21/2014. Introduction to Computers and Programming Topics C H A P T E R 1 Introduction to Computers and Programming Introduction Hardware and Software How Computers Store Data Using Python Introduction Computers can be programmed Designed to do any job

More information

Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm

Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm Zeshan Ahmad, Matteo Zoppi, Rezia Molfino Abstract The stiffness of the workpiece is very important to reduce the errors in

More information

Solving Constraint Satisfaction Problems with Heuristic-based Evolutionary Algorithms

Solving Constraint Satisfaction Problems with Heuristic-based Evolutionary Algorithms ; Solving Constraint Satisfaction Problems with Heuristic-based Evolutionary Algorithms B.G.W. Craenen Vrije Universiteit Faculty of Exact Sciences De Boelelaan 1081 1081 HV Amsterdam Vrije Universiteit

More information

A Data Mining technique for Data Clustering based on Genetic Algorithm

A Data Mining technique for Data Clustering based on Genetic Algorithm Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONAR COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp269-274) A Data Mining technique for Data Clustering based on Genetic Algorithm J. Aguilar CEMISID.

More information

A Genetic Algorithm Framework

A Genetic Algorithm Framework Fast, good, cheap. Pick any two. The Project Triangle 3 A Genetic Algorithm Framework In this chapter, we develop a genetic algorithm based framework to address the problem of designing optimal networks

More information

Genetically Enhanced Parametric Design for Performance Optimization

Genetically Enhanced Parametric Design for Performance Optimization Genetically Enhanced Parametric Design for Performance Optimization Peter VON BUELOW Associate Professor, Dr. -Ing University of Michigan Ann Arbor, USA pvbuelow@umich.edu Peter von Buelow received a BArch

More information

Introducing a New Advantage of Crossover: Commonality-Based Selection

Introducing a New Advantage of Crossover: Commonality-Based Selection Introducing a New Advantage of Crossover: Commonality-Based Selection Stephen Chen Stephen F. Smith The Robotics Institute The Robotics Institute Carnegie Mellon University Carnegie Mellon University 5000

More information

A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem

A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem Richard E. Mowe Department of Statistics St. Cloud State University mowe@stcloudstate.edu Bryant A. Julstrom Department

More information

And program Office to FlipBook Pro is powerful enough to convert your DOCs to such kind of ebooks with ease.

And program Office to FlipBook Pro is powerful enough to convert your DOCs to such kind of ebooks with ease. Note: This product is distributed on a try-before-you-buy basis. All features described in this documentation are enabled. The unregistered version will be added a demo watermark. About Office to FlipBook

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make). Webots simulation software. Webots User Guide Webots Reference Manual. The

More information

FLIP BOOK MAKER FOR EPUB. Flip Book Maker for epub Create Amazing Page-flipping ebooks with EPUB. User Documentation

FLIP BOOK MAKER FOR EPUB. Flip Book Maker for epub Create Amazing Page-flipping ebooks with EPUB. User Documentation WWW.FLIPBOOKMAKER.COM FLIP BOOK MAKER FOR EPUB Page 1 of 33 Create your flipping book from EPUB files Note: This product is distributed on a try-before-you-buy basis. All features described in this documentation

More information

A genetic algorithm approach for scheduling of resources in well-services companies

A genetic algorithm approach for scheduling of resources in well-services companies A genetic algorithm approach for scheduling of resources in well-services companies Adrian Brezulianu, Lucian Fira Gheorghe Asachi Technical University of Iasi and Greensoft Ltd. Iasi, Romania Monica Fira

More information

The Optimization Model and Algorithm for Train Connection at Transfer Stations in Urban Rail Transit Network

The Optimization Model and Algorithm for Train Connection at Transfer Stations in Urban Rail Transit Network Send Orders for Reprints to reprints@benthamscienceae 690 The Open Cybernetics & Systemics Journal, 205, 9, 690-698 Open Access The Optimization Model and Algorithm for Train Connection at Transfer Stations

More information

Generative Art Images by Complex Functions Based Genetic Algorithm

Generative Art Images by Complex Functions Based Genetic Algorithm Generative rt Images by Complex Functions Based Genetic lgorithm Hong Liu, Xiyu Liu School of Information Scinece and Engineering, Shandong Normal University, Jinan, P. R. China,50014 School of Management,

More information

Genetic Algorithms for Classification and Feature Extraction

Genetic Algorithms for Classification and Feature Extraction Genetic Algorithms for Classification and Feature Extraction Min Pei, Erik D. Goodman, William F. Punch III and Ying Ding, (1995), Genetic Algorithms For Classification and Feature Extraction, Michigan

More information

Logging and Log Management

Logging and Log Management Logging and Log Management The Authoritative Guide to Understanding the Concepts Surrounding Logging and Log Management Dr. Anton A. Chuvakin Kevin J. Schmidt Christopher Phillips Partricia Moulder, Technical

More information

K/Compute (Private) Limited Web:

K/Compute (Private) Limited   Web: K/Compute (Private) Limited Email: info@kcompute.com Web: www.kcompute.com Document Repository v 3.0 Copyright 2012, KCompute (Private) Limited 1.0 Product Brief 1.1 Introduction (KDR ) is an enterprise

More information

Rapport de recherche interne : RR Reusable genomes : Welcome to the green genetic algorithm world

Rapport de recherche interne : RR Reusable genomes : Welcome to the green genetic algorithm world Rapport de recherche interne : RR-1469-13 Reusable genomes : Welcome to the green genetic algorithm world Maurin Nadal CNRS, LaBRI,UMR 5800 & INRIA Bordeaux Sud-Ouest, F-33400 Talence, France Email: nadal@labri.fr

More information

Modified Order Crossover (OX) Operator

Modified Order Crossover (OX) Operator Modified Order Crossover (OX) Operator Ms. Monica Sehrawat 1 N.C. College of Engineering, Israna Panipat, Haryana, INDIA. Mr. Sukhvir Singh 2 N.C. College of Engineering, Israna Panipat, Haryana, INDIA.

More information

A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem

A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem C. E. Nugraheni, L. Abednego Abstract This paper is concerned with minimization of mean tardiness

More information

GA is the most popular population based heuristic algorithm since it was developed by Holland in 1975 [1]. This algorithm runs faster and requires les

GA is the most popular population based heuristic algorithm since it was developed by Holland in 1975 [1]. This algorithm runs faster and requires les Chaotic Crossover Operator on Genetic Algorithm Hüseyin Demirci Computer Engineering, Sakarya University, Sakarya, 54187, Turkey Ahmet Turan Özcerit Computer Engineering, Sakarya University, Sakarya, 54187,

More information

Managing Project Activities System using Genetic Algorithm

Managing Project Activities System using Genetic Algorithm Managing Project Activities System using Genetic Algorithm MILENA KAROVA, GERGANA TODOROVA, IVAYLO PENEV, MARIANA TODOROVA Department of Computer Science and Engineering Technical University of Varna Studentska

More information

A Parallel Genetic Algorithm for Cell Image Segmentation

A Parallel Genetic Algorithm for Cell Image Segmentation Electronic Notes in Theoretical Computer Science 46 (2001) URL: http://www.elsevier.nl/locate/entcs/volume46.html 11 pages A Parallel Genetic Algorithm for Cell Image Segmentation Tianzi Jiang 1,2, Faguo

More information

Semantically-Driven Search Techniques for Learning Boolean Program Trees

Semantically-Driven Search Techniques for Learning Boolean Program Trees Semantically-Driven Search Techniques for Learning Boolean Program Trees by Nicholas Charles Miller Bachelor of Science Computer Engineering Georgia Institute of Technology 2006 A thesis submitted to Florida

More information

Self-Adaptive Genotype-Phenotype Maps: Neural Networks as a Meta-Representation

Self-Adaptive Genotype-Phenotype Maps: Neural Networks as a Meta-Representation Self-Adaptive Genotype-Phenotype Maps: Neural Networks as a Meta-Representation Luís F. Simões 1, Dario Izzo 2, Evert Haasdijk 1, and A. E. Eiben 1 1 Vrije Universiteit Amsterdam, The Netherlands 2 European

More information

What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool

What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool Lecture 5: GOSET 1 What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool GOSET is a MATLAB based genetic algorithm toolbox for solving optimization problems 2 GOSET Features Wide

More information

Evolution of Robot Leg Movements in a Physical Simulation

Evolution of Robot Leg Movements in a Physical Simulation Evolution of Robot Leg Movements in a Physical Simulation Jens Ziegler, Wolfgang Banzhaf University of Dortmund, Dept. of Computer Science, D-44227 Dortmund, Germany Abstract This paper introduces a Genetic

More information