ATM in TCP/IP environment: Adaptations and Effectiveness

Size: px
Start display at page:

Download "ATM in TCP/IP environment: Adaptations and Effectiveness"

Transcription

1 Bremen Institute of Industrial Technology and Applied Work Science ATM in TCP/IP environment: Adaptations and Effectiveness Dipl.-Ing. Kai-Oliver Detken, BIBA ATM Traffic Symposium, Mykonos, Greece, September the 17th, 1997

2 Content Introduction of the European ACTS project EIES (European Information Exchange Service) IP-over-ATM difficulty IP-over-ATM possibilities: Classical IP, LAN Emulation (LANE), and MPOA IP effectiveness: protocol overhead, TCP throughput obstacles, sender and receiver buffers, RTT and MTU deadlocks, UDP and Client performance Performance Improvements and further developments IP-over-ATM (EXPERT).ppt Folie 2/28

3 The ACTS project EIES Definition, implementation, and experimentation of advanced telecommunication services Support routine and non-routine communication between different maritime players Define and transpose the user requirements for the service development of EIES Build-up a pre-commercial global EIES service Establish an ATM link between the different harbour sites (Bordeaux, Bremen, Brest, Santander) to use the prototypes in real life IP-over-ATM (EXPERT).ppt Folie 3/28

4 EIES services Computer Supported Cooperative Work (CSCW) Distribution of multimedia information about different databases (BluePages and Port Entry Guide) Integration of Electronic Data Interchange (EDI) and Electronic Mail ( ) Mobile communication (DSRR, DECT, and Inmarsat) for the mobile access to the services. Fixed networks: ATM, ISDN, and Internet (IP) IP-over-ATM (EXPERT).ppt Folie 4/28

5 EIES platform Mobile Access Mobile Access ATM Communications Server Communications Server LAN Client LAN Client LAN 1 LAN 2 Internet Server IP Router Internet IP Router Internet Server Remote Client Remote Client IP-over-ATM (EXPERT).ppt Folie 5/28

6 IP features Internet Protocol works connectionless (hop-byhop-transmission) No acknowledgements, error- and duplicate detection with IP Data packets are variable: 20 byte - 65 kbyte; destination address identified the other client Lost data packets have to repeat requested by higher layer protocols (TCP) Multicast/broadcast functions Type-of-Service (TOS) IP-over-ATM (EXPERT).ppt Folie 6/28

7 ATM features Connection-oriented technologie: virtual connections will establish for the cell transport (PVC/SVC) ATM has its own address structur and routing funktions 53 byte cells with fixed size contain payload and control data Point-to-point connections Quality-of-Service (QoS) IP-over-ATM (EXPERT).ppt Folie 7/28

8 IP-over over-atm Adaptations Classical-IP - IETF: RFC ATM clients use IP LAN-Emulation (LANE) -ATM-Forum - Traditional networks use ATM Multiprotocol over ATM (MPOA) - ATM-Forum and IETF protocols - Routing mechanisms will be implemented IP-over-ATM (EXPERT).ppt Folie 8/28

9 Classical-IP (RFC-1577) RFC-1577: Classical-IP and ARP over ATM Logical Link Control Encapsulation: Multiple protocols can be transported over a single connection (RFC-1483) VC-Based Multiplexing: Single protocol is transported over an ATM connection (RFC-1483) D-MTU: 9180 Byte PVC/SVC connections Transport over the AAL-5 layer Point-to-point connections Address resolution by central ATMARP server IP-over-ATM (EXPERT).ppt Folie 9/28

10 Classical-IP architecture ATMARP- Server 1 ATM ATMARP- Server 2 LIS 1 LIS 2 Client 1 Router Client 1 Client 2 Control Connection Data Connection Ethernet IP-over-ATM (EXPERT).ppt Folie 10/28

11 Encapsulation (RFC-1483) IP header IP payload IP packet 20 byte byte LLC 0xAAAA03 3 byte OUI 0x PID 0x byte 2 byte IP packet byte LLC/SNAP packet 8 byte IP packet with LLC-SNAP header PAD CPI + CPCS-UU Length Detection CRC-32 AAL-5 packet header byte header 0-47 byte PT 0 SAR-PDU payload cells PT 0 SAR-PDU payload SAR sublayer ATM header ATM payload ATM header ATM payload ATM cells 5 byte 48 byte 5 byte 48 byte IP-over-ATM (EXPERT).ppt Folie 11/28

12 RFC-1577 conclusions Advantages: - high data throughput by high MTU (9180 byte) - simple and stabile standard Disadvantages: - only IP unicast is supported - high manual configuration effort - no multicast/broadcast support - no redundant ATMARP server - direct connections to other LIS subnets is not possible - no QoS IP-over-ATM (EXPERT).ppt Folie 12/28

13 LAN Emulation (LANE) Migration of traditional LANs to ATM: Ethernet switch (layer 2) und router (layer 3) coupling Universal implementation (MAC layer is emulated): arbitrary LAN protocols Using of the application layer without ATM configuration Support of PVC/SVC connections IP multicasting D-MTU: 1500 byte IP-over-ATM (EXPERT).ppt Folie 13/28

14 LANE architecture Configuration Control Connection LAN Emulation Service LAN Emulation Configuration Server (LECS) Configuration Control Connection Control Connection LAN Emulation Server (LES) Control Connection Distributed Control Connection Multicast Control Connection LEC Send Unicast Broadcast and Unknown Server (BUS) Send Multicast LEC Distributed Data Connection Multicast Data Connection Direct Data Exchange IP-over-ATM (EXPERT).ppt Folie 14/28

15 LANE encapsulation IP header IP payload 20 Byte byte IP packet LLC AA AA 03 3 byte OUI PID byte 2 byte IP packet byte LLC/SNAP packet LEheader Destination Address 2 byte 6 byte Source Type/ LANE packet Address Length IP packet with LLC/SNAP encapsulation 6 byte 2 byte 8 byte byte IP packet with LLC/SNAP- and additional LAN encapsulation PAD CPI + CPCS-UU Lenght Detection CRC-32 AAL-Typ5 packe header byte header 0-47 byte PT 0 SAR-PDU payload 2-32 cells PT 0 SAR-PDU payload SAR Sublayer ATM payload ATM- header ATMheader ATM payload ATM cell 5 byte 48 byte 5 byte 48 byte IP-over-ATM (EXPERT).ppt Folie 15/28

16 LANE conclusions Advantages: - integration of traditional networks - transparency for arbitrary network protocols - multicast/broadcast support - automatic configuration Disadvantages: - high functionality (layer 2 emulation) - MTU and older network boards limitated throughput - bad scalability - no redundant BUS (overload) - no QoS IP-over-ATM (EXPERT).ppt Folie 16/28

17 MPOA capacity Support multiple protocols effective over ATM networks Distribute the routing functions between route servers Separate routing from switching functions Leverage performance and QoS capabilities of ATM network Direct connections between ELANs rather than passing through traditional routers Direct Virtual Channel Connections (VCC) between data forwarding devices Interworking with unified routers Enables subnet members to be distributed across the network Efficient scalability of the ATM network IP-over-ATM (EXPERT).ppt Folie 17/28

18 MPOA architecture Control Connection Control Connection Default Forwarder Functional Group Data Connection IASG Coordination Functional Group ATM network ATM-Host Control Connection Data Connection Kontrollverbindung Edge Device Shortcut Data Connection ATM-Host Token Ring Workstation IP-over-ATM (EXPERT).ppt Folie 18/28

19 Extensions for MPOA attempts Multicast Address Resolution Server (MARS) - support of multicasting by additional MARS server Next-Hop Resolution Protocol (NHRP) - direct connection between subnets possible Resource Reservation Protocol (RSVP) - QoS parameter at connectionsless packets - similar to the UNI signaling Private Network-to-Network-Interface (P-NNI) - control data exchange between ATM systems - transparency pass on the virtual connection IP-over-ATM (EXPERT).ppt Folie 19/28

20 Advantages: - QoS is supported for the first time - router bottlenecks are eliminated - management of large networks - build up of VLANs Disadvantages: MPOA conclusions - MPOA is not a full defined spezification (1998) - IETF protocols must further developed - scalability is an extremely complex issue - MPOA does not provide a stable network yet IP-over-ATM (EXPERT).ppt Folie 20/28

21 IPoverATM-Overhead STM-1-Frame (OC-3): 155,52 Mbps ATM Layer: 149,76 Mbps Adaptation Layer AAL-5: 135,632 Mbps LLC/SNAP encapsulation: - MTU: 576 byte 126,937 Mbps - MTU: 9180 byte 135,22 Mbps - MTU: byte 135,563 Mbps Internet Protocol (IP): 125,2/135,1/135,6 Mbps Transport Layer: 120,9/134,8/135,5 Mbps Application Layer via TCP: 116,5/134,5/135,5 Mbps Application Layer via UDP: 119,1/134,7/135,5 Mbps IP-over-ATM (EXPERT).ppt Folie 21/28

22 Socket buffer size at sender/receiver Network: Maximum Transport Unit (MTU) Protocol: Maximum Segment Size (MSS) Sender: using of the Nagle s algorithm Round-Trip-Time (RTT) TCP-Throughput Throughput Obstacles Receiver: delayed acknowledegements Sender: Silly Window Syndrom (SWS) Copy strategy at the socket interface Network congestion and lost packet notice IP-over-ATM (EXPERT).ppt Folie 22/28

23 Sender and Receiver buffer S/E 16 kbyte 20 kbyte 24 kbyte 28 kbyte 32 kbyte 36 kbyte 40 kbyte 44 kbyte 48 kbyte 52 kbyte 16 kbyte 15,05 13,60 0,322 0,319 0,319 0,467 0,469 0,466 0,469 0, kbyte 15,99 14,60 15,07 14,87 15,40 14,24 1,095 1,095 0,548 0, kbyte 17,71 16,79 16,74 16,32 17,40 17,31 17,42 17,12 0,760 0, kbyte 16,57 17,69 17,93 18,13 18,36 19,20 19,74 19,78 18,38 18,20 32 kbyte 14,63 18,96 18,42 19,23 19,14 19,74 19,96 20,31 19,69 19,17 36 kbyte 14,33 19,22 18,12 19,82 19,77 19,92 20,56 20,49 20,13 20,20 40 kbyte 15,16 19,34 18,85 19,73 20,11 20,41 20,81 20,74 20,69 20,57 44 kbyte 14,80 19,40 18,27 20,39 20,16 20,74 20,99 20,87 20,89 20,70 48 kbyte 14,62 19,46 18,34 20,48 20,26 20,41 20,85 20,83 20,93 20,83 52 kbyte 13,92 19,41 18,26 20,50 20,06 20,21 20,88 20,91 21,21 21, IP-over-ATM (EXPERT).ppt Folie 23/28

24 RTT and MTU deadlocks MTU of 9180 byte has the best performance if the RTT is low MTU of 1500 byte has the best performance if the RTT is high If the MTU is smaller as the used packet size: fragmentation and reassembling is necessary! Throughput [Mbps] RTT [10^-3 s] MTU 576 byte MTU 1500 byte MTU 9180 byte TCP-Window-Limit IP-over-ATM (EXPERT).ppt Folie 24/28

25 UDP performance Connectionless structure UDP has no acknowledgements, no end-to-end control and no duplicate detection Less locking effects for protect shared protocol state and data Locking Effects limits the data throughput. 10-Mbps-Ethernet [kbyte] Processor numbers UDP/IP TCP/IP IP-over-ATM (EXPERT).ppt Folie 25/28

26 Client performance Operation system (interprocess communication) Data processing CPU performance Memory speed I/O bus bandwidth ATM adapter implementation Latency Time [µs] Sender (1-3) and Receiver site (4-6) Single-Copy + Checksum LANs (1,4 Ethernet / 2,5 FDDI / 3,6 ATM) IP-over-ATM (EXPERT).ppt Folie 26/28

27 Client Tuning Using of the D-MTU value Path-MTU: max. possible packet size should be switch on (none fragmentation) MSS value: 1436 byte for high speed networks Sender and receiver buffer at least 2 times bigger than MTU value Window Scale Option (RFC-1323) higher Window-Size Classical-IP: LAN-Emulation, test 1: LAN-Emulation, test 2: Throughput of 134,01 Mbps (Sun20-Ultra) Throughput of 76,30 Mbps (Sun20-Ultra) Throughput of 117,63 Mbps (Ultra-Ultra) IP-over-ATM (EXPERT).ppt Folie 27/28

28 ...further developments Classical-IP, Version 2 - distributed ATMARP server LANE, Version 2 - L-UNI: QoS, multicast, ELAN multiplexing - L-NNI: distributed LES/BUS IP-Switching (Ipsilon) - none standard - other proposal Tag-Switching from CISCO IP-over-ATM (EXPERT).ppt Folie 28/28

Adaptation Problems and Solutions. MARCOM 97, Dipl.-Ing. Kai-Oliver Detken, BIBA Bremen, Germany, October the 16th, 1997

Adaptation Problems and Solutions. MARCOM 97, Dipl.-Ing. Kai-Oliver Detken, BIBA Bremen, Germany, October the 16th, 1997 IP-over over-atm: Migrations, Adaptation Problems and Solutions MARCOM 97, Dipl.-Ing. Kai-Oliver Detken, BIBA Bremen, Germany, October the 16th, 1997 Content Introduction of the European ACTS project EIES

More information

LAN Emulation, IP Over ATM and MPOA

LAN Emulation, IP Over ATM and MPOA LAN Emulation, IP Over ATM and MPOA Professor of Computer and Information Sciences Columbus, OH 43210 These slides are available at http://www.cis.ohio-state.edu/~jain/cis777-00/ 1 Overview LAN Emulation

More information

INTEROPERABILITY IN HETEROGENEOUS ENVIRONMENT: MULTIPROTOCOL OVER ATM (MPOA)

INTEROPERABILITY IN HETEROGENEOUS ENVIRONMENT: MULTIPROTOCOL OVER ATM (MPOA) INTEROPERABILITY IN HETEROGENEOUS ENVIRONMENT: MULTIPTROTOCOL OVER ATM (MPOA) Dipl.-Ing. Kai-Oliver Detken System Management ATM/Internet Email: detken@optinet.de OptiNet GmbH, Goebelstr. 50, D-28865 Lilienthal,

More information

IP over ATM. IP over ATM. Agenda. IP over ATM : Solving the Problem I.

IP over ATM. IP over ATM. Agenda. IP over ATM : Solving the Problem I. IP over ATM IP over ATM Classical IP over ATM, MARS, MCS, NHRP, LANE, MPOA ATM is connection-oriented Assumes connection-oriented applications IP is connection-less Assumes connection-less network Significant

More information

Administrivia. Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook

Administrivia. Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook Administrivia Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook Project Discussion class_ gotcha Reading finally on webpage

More information

OmniMSS Powerful, high-performance LAN-to-ATM internetworking services

OmniMSS Powerful, high-performance LAN-to-ATM internetworking services OmniMSS Powerful, high-performance LAN-to-ATM internetworking services LAN emulation (LANE) and Multi-Protocol over ATM (MPOA) are two of the services that make ATM networks valuable in the enterprise.

More information

Asynchronous Transfer Mode

Asynchronous Transfer Mode ATM Asynchronous Transfer Mode CS420/520 Axel Krings Page 1 Protocol Architecture (diag) CS420/520 Axel Krings Page 2 1 Reference Model Planes User plane Provides for user information transfer Control

More information

Packet Switching Techniques

Packet Switching Techniques Packet Switching Techniques 188lecture3.ppt Pasi Lassila 1 Problem Aim: Build larger networks connecting more users also spanning different network technologies Shared media networks limited number of

More information

Explore some common protocols. Telephone network protocols. Traditional digital transmission. Digital Communications II

Explore some common protocols. Telephone network protocols. Traditional digital transmission. Digital Communications II Explore some common protocols Common Protocols Digital Communications II Much discussion of principles, but not protocol details These change with time Real protocols draw many things together Overview

More information

Advanced Internet Technologies

Advanced Internet Technologies Advanced Internet Technologies Chapter 2 ATM Dr.-Ing. Falko Dressler Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

More information

Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN)

Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN) Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN) Petr Grygárek rek 1 ATM basic characteristics Integrates transfer of voice, video, data and other media using statistical al multiplexing ing multiplexes

More information

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1 Outline PPP ATM X.25 Frame Relay 2 Point to Point Data Link Control One sender, one receiver,

More information

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514 Lecture 11 Asynchronous Transfer Mode () Outline Introduction Virtual Circuit Setup PVC vs. SVC Quality of Service and Congestion Control IP over and Frame Relay interworking Network (integrated voice,

More information

Chapter 12 ATM Interworking

Chapter 12 ATM Interworking Whether you are a network manager, field troubleshooter or IT engineer, you face challenges of installing, optimizing and maintaining large, complex data and telecommunication networks. To assist you with

More information

Ch. 4 - WAN, Wide Area Networks

Ch. 4 - WAN, Wide Area Networks 1 X.25 - access 2 X.25 - connection 3 X.25 - packet format 4 X.25 - pros and cons 5 Frame Relay 6 Frame Relay - access 7 Frame Relay - frame format 8 Frame Relay - addressing 9 Frame Relay - access rate

More information

Common Protocols. The grand finale. Telephone network protocols. Traditional digital transmission

Common Protocols. The grand finale. Telephone network protocols. Traditional digital transmission The grand finale Common Protocols An Engineering Approach to Computer Networking Previous chapters presented principles, but not protocol details these change with time real protocols draw many things

More information

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ Networking for Data Acquisition Systems Fabrice Le Goff - 14/02/2018 - ISOTDAQ Outline Generalities The OSI Model Ethernet and Local Area Networks IP and Routing TCP, UDP and Transport Efficiency Networking

More information

TCP/IP THE TCP/IP ARCHITECTURE

TCP/IP THE TCP/IP ARCHITECTURE TCP/IP-1 The Internet Protocol (IP) enables communications across a vast and heterogeneous collection of networks that are based on different technologies. Any host computer that is connected to the Internet

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3 HWP2 Application level query routing HWP1 Each peer knows about every other beacon B2 B1 B3 B4 B5 B6 11-Feb-02 Computer Networks 1 HWP2 Query routing searchget(searchkey, hopcount) Rget(host, port, key)

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Packet Switching. Hongwei Zhang Nature seems to reach her ends by long circuitous routes.

Packet Switching. Hongwei Zhang  Nature seems to reach her ends by long circuitous routes. Problem: not all networks are directly connected Limitations of directly connected networks: limit on the number of hosts supportable limit on the geographic span of the network Packet Switching Hongwei

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 9 Internet Protocols Aims:- basic protocol functions internetworking principles connectionless internetworking IP IPv6 IPSec 1 Protocol Functions have a small set of functions that form basis of

More information

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis Broadband ISDN 3BA33 David Lewis 3BA33 D.Lewis 2007 1 B-ISDN Model has 3 planes User Control Management 3BA33 D.Lewis 2007 3 Broadband ISDN Was Expected to be the Universal Network of the future Takes

More information

Internet Protocols (chapter 18)

Internet Protocols (chapter 18) Internet Protocols (chapter 18) CSE 3213 Fall 2011 Internetworking Terms 1 TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol

More information

Configuring ATM Router Module Interfaces

Configuring ATM Router Module Interfaces 24 CHAPTER This chapter describes steps required to configure the ATM router module on the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM switch routers, and the enhanced ATM router module

More information

ATM Technology in Detail. Objectives. Presentation Outline

ATM Technology in Detail. Objectives. Presentation Outline ATM Technology in Detail Professor Richard Harris Objectives You should be able to: Discuss the ATM protocol stack Identify the different layers and their purpose Explain the ATM Adaptation Layer Discuss

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

EE 610 Part 2: Encapsulation and network utilities

EE 610 Part 2: Encapsulation and network utilities EE 610 Part 2: Encapsulation and network utilities Objective: After this experiment, the students should be able to: i. Understand the format of standard frames and packet headers. Overview: The Open Systems

More information

Computer Networking. Introduction. Quintin jean-noël Grenoble university

Computer Networking. Introduction. Quintin jean-noël Grenoble university Computer Networking Introduction Quintin jean-noël Jean-noel.quintin@imag.fr Grenoble university Based on the presentation of Duda http://duda.imag.fr 1 Course organization Introduction Network and architecture

More information

3. (a) What is bridge? Explain the operation of a LAN bridge from to (b) Explain the operation of transparent bridge.

3. (a) What is bridge? Explain the operation of a LAN bridge from to (b) Explain the operation of transparent bridge. Code No: RR320503 Set No. 1 III B.Tech II Semester Supplimentary Examinations, Aug/Sep 2007 COMPUTER NETWORKS ( Common to Computer Science & Engineering, Information Technology, Electronics & Control Engineering,

More information

LAN Emulation Overview

LAN Emulation Overview This overview chapter gives a high-level description of (LANE). Procedures for configuring LANE are provided in the following chapters in this publication: Configuring chapter Configuring Token Ring chapter

More information

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1 A T M Cell Switched Technology Fixed Length - 53 bytes not SMDS Defacto Standard Multimedia capable Use with SONET or SDH SCTE VA 12.1 SONET Optical Carrier (OC) Rates and SDH Synchronous Transport Module

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

===================================================================== Exercises =====================================================================

===================================================================== Exercises ===================================================================== ===================================================================== Exercises ===================================================================== 1 Chapter 1 1) Design and describe an application-level

More information

Asynchronous_Transfer_Mode_Switching

Asynchronous_Transfer_Mode_Switching Asynchronous Transfer Mode (ATM) is an International Telecommunication Union-Telecommunications Standards Section (ITU-T) standard for cell relay wherein information for multiple service types, such as

More information

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table Introduction Datagram Forwarding Gail Hopkins Service paradigm IP datagrams Routing Encapsulation Fragmentation Reassembly Internet Service Paradigm IP Datagrams supports both connectionless and connection-oriented

More information

A method for managing distributed IP packet forwarding in ATM/LANE based networks

A method for managing distributed IP packet forwarding in ATM/LANE based networks A method for managing distributed IP packet forwarding in ATM/LANE based networks Nikola Musa ICT Department, Networking Services Financial Agency (FINA) Ul. Grada Vukovara 70, Zagreb, HR-10000, Croatia

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR320503 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2007 COMPUTER NETWORKS ( Common to Computer Science & Engineering, Information Technology, Electronics & Control Engineering,

More information

Asynchronous. nous Transfer Mode. Networks: ATM 1

Asynchronous. nous Transfer Mode. Networks: ATM 1 Asynchronous nous Transfer Mode (ATM) Networks: ATM 1 Issues Driving LAN Changes Traffic Integration Voice, video and data traffic Multimedia became the buzz word One-way batch Two-way batch One-way interactive

More information

Question 7: What are Asynchronous links?

Question 7: What are Asynchronous links? Question 1:.What is three types of LAN traffic? Unicasts - intended for one host. Broadcasts - intended for everyone. Multicasts - intended for an only a subset or group within an entire network. Question2:

More information

Ethernet Switches (more)

Ethernet Switches (more) Ethernet Switches layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A - to-b simultaneously, no collisions large number of interfaces often: individual hosts, star-connected

More information

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections 168 430 Computer Networks Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks Multiple logical connections over

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

Internetwork Basic. Possible causes of LAN traffic congestion are

Internetwork Basic. Possible causes of LAN traffic congestion are Internetworking 1 C H A P T E R 2 Internetworking Basics Internetworking Model The OSI Reference Model Ethernet Networking Wireless Networking Data Encapsulation Topic 3 1 Internetwork Basic 4 Possible

More information

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction Areas for Discussion Packet Switching - Asynchronous Transfer Mode 3.3 Cell Switching (ATM) Introduction Cells Joseph Spring School of Computer Science BSc - Computer Network Protocols & Arch s Based on

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode William Stallings Data and Computer Communications 7 th Edition Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets Cell Switching (ATM) Connection-oriented packet-switched network Used in both WAN and LAN settings Signaling (connection setup) Protocol: Q2931 Specified by ATM forum Packets are called cells 5-byte header

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols 1 Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among

More information

Avaya. User s Guide M-ACCF/SF MODULE AVAYA M770 MULTIFUNCTION SWITCH

Avaya. User s Guide M-ACCF/SF MODULE AVAYA M770 MULTIFUNCTION SWITCH Avaya User s Guide M-ACCF/SF MODULE AVAYA M770 MULTIFUNCTION SWITCH July 2000 Preface Introduction This guide provides the information that you need to install and configure the M-ACCF/SF OC12 ATM Access

More information

LAN Emulation, Virtual LANs, and the ATM Inernetwork. Version 1.0

LAN Emulation, Virtual LANs, and the ATM Inernetwork. Version 1.0 LAN Emulation, Virtual LANs, and the ATM Inernetwork Version 1.0 LAN EMULATION TUTORIAL...1 Definition...1 Benefits...1 ATM Forum Standard LAN Emulation v1.0...3 LAN Emulation User-to-Network Interface...4

More information

Measurement of the Performance of IP Packets over ATM Environment via Multiprotocol-over-ATM (MPOA)

Measurement of the Performance of IP Packets over ATM Environment via Multiprotocol-over-ATM (MPOA) Measurement of the Performance of IP Packets over ATM Environment via Multiprotocol-over-ATM (MPOA) Dipl.-Ing. Kai-Oliver Detken Director wwl network, Bremen WWL Internet AG, Goebelstr. 46, D-28865 Lilienthal/Bremen,

More information

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM CISC452 Telecommunications Systems Lesson 6 Frame Relay and ATM 1 Technology Comparison Private Line X.25 SMDS Frame Relay ATM IP Speed 56K - 622M 9.6K - 2.048M 56K - 34M Dial - 45M 1.5M - 622M Dial -

More information

Multiprotocol over ATM Overview

Multiprotocol over ATM Overview Multiprotocol over ATM Overview This chapter describes the Multiprotocol over ATM (MPOA) feature, which is supported in Cisco IOS Release 11.3 and later releases. MPOA enables the fast routing of internetwork-layer

More information

Position of IP and other network-layer protocols in TCP/IP protocol suite

Position of IP and other network-layer protocols in TCP/IP protocol suite Position of IP and other network-layer protocols in TCP/IP protocol suite IPv4 is an unreliable datagram protocol a best-effort delivery service. The term best-effort means that IPv4 packets can be corrupted,

More information

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network Question No: 1( M a r k s: 1 ) A ---------- Relies on the hardware manufacturer to assign a unique physical

More information

Routing Between VLANs Overview

Routing Between VLANs Overview Routing Between VLANs Overview This chapter provides an overview of VLANs. It describes the encapsulation protocols used for routing between VLANs and provides some basic information about designing VLANs.

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

PPPoE on ATM. Finding Feature Information. Prerequisites for PPPoE on ATM. Restrictions for PPPoE on ATM

PPPoE on ATM. Finding Feature Information. Prerequisites for PPPoE on ATM. Restrictions for PPPoE on ATM This feature module describes the PPP over Ethernet (PPPoE) on ATM feature. The feature provides the ability to connect a network of hosts over a simple bridging-access device to a remote access concentrator.

More information

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline ATM Asynchronous Transfer Mode these slides are based on USP ATM slides from Tereza Carvalho 1 ATM Networks Outline ATM technology designed as a support for ISDN Definitions: STM and ATM Standardization

More information

ETSI TS V1.1.1 ( )

ETSI TS V1.1.1 ( ) TS 101 675 V1.1.1 (2000-06) Technical Specification Technical Framework for the Provision of Interoperable ATM Services; Network-Network Interface (NNI) User and Control Plane Specification (including

More information

Imi :... Data:... Nazwisko:... Stron:...

Imi :... Data:... Nazwisko:... Stron:... Imi :.................................................... Data:....................... Nazwisko:............................................... Stron:...................... 1. Which of the following protocols

More information

Asynchronous Transfer Mode (ATM) Testing

Asynchronous Transfer Mode (ATM) Testing Asynchronous Transfer Mode (ATM) Testing Definition Testing asynchronous transfer mode (ATM) communications and network equipment is the function of performing the three primary testing phases required

More information

Routing Between VLANs Overview

Routing Between VLANs Overview Routing Between VLANs Overview This chapter provides an overview of VLANs. It describes the encapsulation protocols used for routing between VLANs and provides some basic information about designing VLANs.

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

WAN Technologies (to interconnect IP routers) Mario Baldi

WAN Technologies (to interconnect IP routers) Mario Baldi WAN Technologies (to interconnect IP routers) Mario Baldi www.baldi.info WAN_Technologies - 1 Copyright: see page 2 Copyright Notice This set of transparencies, hereinafter referred to as slides, is protected

More information

Comparison of Concepts for IP Multicast over ATM. 1 Introduction. 2 IP Multicast. 3 IP-Multicast over ATM

Comparison of Concepts for IP Multicast over ATM. 1 Introduction. 2 IP Multicast. 3 IP-Multicast over ATM Comparison of Concepts for IP Multicast over ATM Torsten Braun, Stefan Gumbrich, and Heinrich J. Stüttgen IBM European Networking Center, Vangerowstr. 18, D-69115 Heidelberg E-mail: braun@heidelbg.ibm.com,

More information

CN-100 Network Analyzer Product Overview

CN-100 Network Analyzer Product Overview CN-100 Network Analyzer Product Overview CN-100 network analyzers offer an extremely powerful yet cost effective solution for today s complex networking requirements. Test Ethernet or ATM networks with

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching.

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching. Asynchronous Transfer Mode (ATM) Networks! All source media is first broken down into a stream of fixed sized units known as cells.! Cell streams relating to different media types are multiplexed together

More information

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks Verkkomedian perusteet Fundamentals of Media T-110.250 19.2.2002 Antti Ylä-Jääski 19.2.2002 / AYJ lide 1 Goals and topics protocols Discuss how packet-switching networks differ from circuit switching networks.

More information

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace Virtual Link Layer 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia 3 Lectures left HW #2

More information

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch 3.1.5 & 3.2 Xiaowei Yang xwy@cs.duke.edu Review Past lectures Single link networks Point-to-point,

More information

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace Virtual Link Layer 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia 3 Lectures left HW #2

More information

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects Internet 1) Internet basic technology (overview) 2) Mobility aspects 3) Quality of Service (QoS) aspects Relevant information: these slides (overview) course textbook (Part H) www.ietf.org (details) IP

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

SE 4C03 Winter Sample Midterm Test. Instructor: Kartik Krishnan

SE 4C03 Winter Sample Midterm Test. Instructor: Kartik Krishnan Name Student number SE 4C03 Winter 2004 Sample Midterm Test Instructor: Kartik Krishnan You have 50 minutes to complete this test consisting of 6 pages and 18 questions. The test is open book and class

More information

Networking interview questions

Networking interview questions Networking interview questions What is LAN? LAN is a computer network that spans a relatively small area. Most LANs are confined to a single building or group of buildings. However, one LAN can be connected

More information

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access Last time Wireless link-layer Introduction Wireless hosts, base stations, wireless links Characteristics of wireless links Signal strength, interference, multipath propagation Hidden terminal, signal fading

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Unit 5: Internet Protocols skong@itt-tech.edutech.edu Internet Protocols She occupied herself with studying a map on the opposite wall because she knew she would have to change trains at some point. Tottenham

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

TCP/IP Performance ITL

TCP/IP Performance ITL TCP/IP Performance ITL Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25, HDLC etc. ATM 4/30/2002 Hans Kruse & Shawn Ostermann,

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

SE 4C03 Winter Midterm Test Answer Key. Instructor: Kartik Krishnan

SE 4C03 Winter Midterm Test Answer Key. Instructor: Kartik Krishnan Name Student number SE 4C03 Winter 2004 Midterm Test Answer Key Instructor: Kartik Krishnan You have 50 minutes to complete this test consisting of 6 pages and 18 questions. The test is open book and class

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

Internet Protocol (IP)

Internet Protocol (IP) CPSC 360 - Network Programming Internet Protocol (IP) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu March 14, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Data Link Technology Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Agenda Functions of the data link layer Technologies concept and design error control flow

More information

What Bytes Are Counted by IP to ATM CoS Queueing?

What Bytes Are Counted by IP to ATM CoS Queueing? What Bytes Are Counted by IP to ATM CoS Queueing? Document ID: 10420 Contents Introduction Prerequisites Requirements Components Used Conventions Determine the Value for the Bandwidth Statement in a QoS

More information

Defining Networks with the OSI Model. Module 2

Defining Networks with the OSI Model. Module 2 Defining Networks with the OSI Model Module 2 Objectives Skills Concepts Objective Domain Description Objective Domain Number Understanding OSI Basics Defining the Communications Subnetwork Defining the

More information

lane global-lecs-address

lane global-lecs-address lane global-lecs-address lane global-lecs-address To specify a list of LECS addresses to use when the addresses cannot be obtained from the ILMI, use the lane global-lecs-address command in interface configuration

More information

Asynchronous Transfer Mode (ATM) ATM concepts

Asynchronous Transfer Mode (ATM) ATM concepts Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode (ATM) is a switching technique for telecommunication networks. It uses asynchronous time-division multiplexing,[1][2] and it encodes data into

More information

05 Transmission Control Protocol (TCP)

05 Transmission Control Protocol (TCP) SE 4C03 Winter 2003 05 Transmission Control Protocol (TCP) Instructor: W. M. Farmer Revised: 06 February 2003 1 Interprocess Communication Problem: How can a process on one host access a service provided

More information

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates:

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates: BSc.(Hons) Computer Science with Network Security BEng (Hons) Telecommunications Cohort: BCNS/17B/FT Examinations for 2017-2018 / Semester 2 Resit Examinations for BCNS/15A/FT, BTEL/15B/FT & BTEL/16B/FT

More information