CSC 401 Data and Computer Communications Networks

Size: px
Start display at page:

Download "CSC 401 Data and Computer Communications Networks"

Transcription

1 CSC 401 Data and Computer Communications Networks Transport Layer Principles of Reliable Data Transfer Sec 3.4 Prof. Lina Battestilli 2017 Fall

2 Transport Layer Chapter 3 Outline 3.1 Transport-layer Services 3.2 Multiplexing and Demultiplexing 3.3 Connectionless Transport: UDP 3.4 Principles of Reliable Data Transfer 3.5 Connection-oriented Transport: TCP segment structure, reliable data transfer, flow control, connection management 3.6 Principles of Congestion Control 3.7 TCP Congestion Control

3 Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics!

4 Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

5 Principles of reliable data transfer characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

6 The Interfaces for our Data Transfer Protocol rdt_send(): called from above, (e.g., by app.). Passed data to deliver to upper layer deliver_data(): called by rdt to deliver data to upper send side receive side udt_send(): called by rdt, to transfer packet over unreliable channel to rdt_rcv(): called when packet arrives on rcv-side of channel

7 Designing a Reliable Data Transfer protocol We will: incrementally develop, sides of a reliable data transfer protocol (rdt) consider only unidirectional data transfer but control info will flow on both directions! use finite state machines (FSM) to specify, event causing state transition actions taken on state transition state: when in this state next state uniquely determined by next event state 1 event actions state 2 state 3

8 Problem can send at a rate of 500 pkts/sec How to make the network reliable? can receive at a rate of 200 pkts/sec Sender should not send more packets than can process Receiver gives feedback Two basic approaches Stop and wait (one packet in flight) Pipelining (many packets in flight)

9 rdt1.0: reliable channel Underlying channel perfectly reliable no bit errors no loss of packets call from above rdt_send(data) packet = make_pkt(data) udt_send(packet) call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) sends data into underlying channel receives data into underlying channel

10 rdt2.0: channel with bit errors Underlying channel may flip bits in packet checksum to detect bit errors The question: how to recover from errors: acknowledgements (ACKs): explicitly tells that pkt received OK negative acknowledgements (NAKs): explicitly tells that pkt had errors retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): How do humans recover from errors error detection during conversation? feedback: control msgs (ACK,NAK) rcvr->

11 rdt2.0: channel with bit errors underlying channel may flip bits in packet checksum to detect bit errors The question: how to recover from errors: acknowledgements (ACKs): explicitly tells that pkt was received OK negative acknowledgements (NAKs): explicitly tells that pkt had errors retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (extending rdt1.0): error detection: checksum feedback: control msgs (ACK,NAK) rcvr-> retransmission: -> rsvr

12 rdt2.0: FSM specification rdt_send(data) sndpkt = make_pkt(data, checksum) call from above ACK or NAK isack(rcvpkt) L isnak(rcvpkt) corrupt(rcvpkt) udt_send(nak) call from below notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ack) 3-17

13 rdt2.0: operation with no errors rdt_send(data) snkpkt = make_pkt(data, checksum) call from above isack(rcvpkt) L ACK or NAK isnak(rcvpkt) corrupt(rcvpkt) udt_send(nak) call from below notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ack)

14 rdt2.0: error scenario rdt_send(data) snkpkt = make_pkt(data, checksum) call from above isack(rcvpkt) L ACK or NAK isnak(rcvpkt) corrupt(rcvpkt) udt_send(nak) call from below Q: Are there any flaws with this protocol? notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ack)

15 rdt2.0 has a flaw! What happens if ACK/NAK corrupted? doesn t know what happened at! Add a checksum for the ACK/NAK but what if ACK/NAK is lost? Can t just retransmit: possible duplicates! horse dog dog cat Receiver does NOT know if this is a retransmitted packet or or if dog was sent twice as part of the stream. Q: How to handle duplicates?

16 sending dog cat Duplicates Problem send dog corrupted ack So did the get dog? pkt1 dog pkt1 dog ack dog send ack rcv send dog rcv dog dog received dog cat Receiver did get dog send cat ack pkt2 cat send ack cat rcv Q: How to handle duplicates? 21

17 rdt2.0 ACK/NAK can be corrupted Handling Duplicates: retransmits current packet if ACK/NAK corrupted adds sequence number to each packet discards (doesn t deliver up to application) duplicate packet stop and wait protocol At most one packet in flight b/n & Sender sends one packet, then waits for response Receiver sends ACK/NAK, and based on that the sends another packet

18 Handling Duplicates For stop-and-wait protocol a 1- bit sequence number is enough Still assuming a channel that does NOT loose packets Received nak so retransmits pkt1 Received a corrupted ack or nak retransmits pkt1 Received ack OK send pkt0 rcv ack send pkt1 rcv nak send pkt1 rcv ack send pkt1 rcv ack send pkt0 pkt0 ack pkt1 nak pkt1 ack pkt1 ack pkt0 rcv pkt0 send ack rcv pkt1 send nak rcv pkt1 send ack rcv pkt1 send ack Received pkt0 OK Received pkt1 but it was corrupted Received pkt1 OK Received pkt1 OK, but it was expecting pkt0 so it detects duplicate and drops pkt1, sends an ack to get the to transmit the next pkt0 23

19 rdt2.1:, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) L ( corrupt(rcvpkt) isnak(rcvpkt) ) rdt_send(data) sndpkt = make_pkt(0, data, checksum) call 0 from above ACK or NAK 1 rdt_send(data) sending pkt0 ACK or NAK 0 call 1 from above ( corrupt(rcvpkt) isnak(rcvpkt) ) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) sndpkt = make_pkt(1, data, checksum) L If ACK/NAK corrupted or if it is a NAK: Finally you know that pkt0 made it to the OK handles bit corruption but not packet loss 24

20 rdt2.1:, handles garbled ACK/NAKs pkt received was corrupted so send a NAK (corrupt(rcvpkt) Good Case: pkt 0 received OK notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) (corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) not corrupt(rcvpkt) && has_seq1(rcvpkt) sndpkt = make_pkt(ack, chksum) pkt received OK but the wrong sequence number, i.e., duplicate, so the did not get ACK for pkt1. Q: why do this? 0 from below 1 from below notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) sndpkt = make_pkt(nak, chksum) notcorrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ack, chksum) 25

21 seq # added to pkt two seq. # s (0,1) will suffice. must check if received ACK/NAK corrupted twice as many states state must remember to get an ACK for pkts with seq # of 0 or 1 before transitioning must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # does not know if its last ACK/NAK received OK at No sequence # added to ACKs/NAKs Q: Do we need both ACKs and NAKs 26

22 rdt2.2: a NAK-free protocol same functionality as rdt2.1, but using ACKs only instead of NAK, sends ACK for last pkt received correctly (no errors) must explicitly include seq # of pkt being ACKed duplicate ACK at results in same action as NAK: retransmit current pkt 27

23 rdt2.2:, FSM fragments ACKs have checksums AND sequence numbers (corrupt(rcvpkt) has_seq1(rcvpkt)) rdt_send(data) sndpkt = make_pkt(0, data, checksum) call 0 from above 0 from below ACK 0 ( corrupt(rcvpkt) isack(rcvpkt,1) ) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) L BAD: If pkt corrupted or received ACK for pkt1 sequence in ACKs GOOD: received ACK for pkt0 BAD: pkt received was corrupted or it had wrong sequence number, so send an ACK for pkt1 again notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack1, chksum) GOOD: pkt received OK and it has the correct sequence number then send ACK for pkt1 28

24 rdt3.0: channels with errors and loss New assumption: underlying channel can also lose packets (data, ACKs) checksum, seq. #, ACKs, retransmissions will help but NOT enough. Why? / can get stuck! Q: what would you do in the analogy of phone conversation? approach: modify only the to wait reasonable amount of time for ACK retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but seq. # s already handles this must specify seq# of pkt being ACKed requires countdown timer picking right time is hard: timeout too short or too long 29

25 rdt3.0 rdt_rcv(rcvpkt) L call 0 from above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,1) stop_timer timeout start_timer ( corrupt(rcvpkt) isack(rcvpkt,0) ) L Wait for ACK1 rdt_send(data) sndpkt = make_pkt(0, data, checksum) start_timer rdt_send(data) Wait for ACK0 call 1 from above sndpkt = make_pkt(1, data, checksum) start_timer ( corrupt(rcvpkt) isack(rcvpkt,1) ) L timeout start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) stop_timer rdt_rcv(rcvpkt) L BAD: If pkt corrupted or received ACK for pkt1 NEW! Resend based on timeout GOOD : If pkt received Ok and it is an ACK for pkt0 Sender is done with pkt0 so it goes to wait to get new data from app 30

26 rdt3.0 in action Timing Diagrams send pkt0 rcv ack0 send pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 pkt0 ack0 rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt0 send ack0 send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 X loss pkt1 ack1 pkt0 ack0 rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt0 send ack0 (a) no loss (b) packet loss 31

27 rdt3.0 in action Timing Diagrams send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 X loss pkt1 ack1 pkt0 ack0 rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt1 (detect duplicate) send ack1 rcv pkt0 send ack0 send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 rcv ack1 rcv ack0 send pkt1 pkt0 ack0 pkt1 ack1 pkt1 pkt0 ack1 ack0 pkt1 rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt1 (detect duplicate) send ack1 rcv pkt0 send ack0 rcv pkt1 send ack1 (c) ACK loss (d) premature timeout/ delayed ACK 32

28 This is the FSM for rdt3.0. Write the FSM for the. rdt_rcv(rcvpkt) L call 0 from above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,1) stop_timer timeout start_timer ( corrupt(rcvpkt) isack(rcvpkt,0) ) L Wait for ACK1 rdt_send(data) sndpkt = make_pkt(0, data, checksum) start_timer rdt_send(data) Wait for ACK0 call 1 from above sndpkt = make_pkt(1, data, checksum) start_timer ( corrupt(rcvpkt) isack(rcvpkt,1) ) L timeout start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) stop_timer rdt_rcv(rcvpkt) L BAD: If pkt corrupted or received ACK for pkt1 NEW! Resend based on timeout GOOD : If pkt received Ok and ACK for pkt0 Sender is done with pkt0 so it goes to wait to get new data from app You can use rdt_rcv(), notcorrupt(), corrupt(), udt_send(pkt), extract(.), deliver(.), make_pkt(.), hasseq(.). start_timer 33

29 Solution -- rdt 3.0 from rdt2.2 will work for rdt3.0 as well! GOOD: pkt received OK and it has sequence number 0 then send ACK0 notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack0, chksum) (corrupt(rcvpkt) has_seq1(rcvpkt)) sndpkt=make_pkt(ack, 1, checksum) BAD: received pkt but it was corrupt or it had sequence number -- so tell the with ACK1 that you have already gotten pkt1 0 from below notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack1, chksum) 1 from below (corrupt(rcvpkt) has_seq0(rcvpkt)) sndpkt=make_pkt(ack, 0, checksum) 34

30 35 rdt Protocols Stop & Wait Vers. Description Mechanism for reliable data transfer rdt 1.0 underlying channel perfectly reliable rdt 2.0 bit errors possible retransmission rdt 2.1 bit errors possible retransmission ACK/NAK could also be corrupted rdt 2.2 bit errors possible retransmission only ACKs (got rid of NAKs) rdt 3.0 bit errors possible retransmission only ACKs loss possible Checksum ACK/NAK Checksum Sequence Numbers ACK/NAK have checksums Checksum Sequence Numbers ACKs have checksums AND sequence numbers Checksum Sequence Numbers ACKs with checksum & sequence numbers Timeouts at

31 Performance of rdt3.0 rdt3.0 is correct, but performance not so great e.g.: 1 Gbps link, 15ms one-way prop. delay, 30msec RTT, 8000 bit packet: D trans = L R 8000 bits = 10 9 = 8 microsecs bits/sec U : utilization fraction of time busy sending U = L / R RTT + L / R = Kbps throughput over 1 Gbps link = stop&wait network protocol limits use of physical resources!

32 rdt3.0: stop-and-wait operation first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R RTT first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R U = L / R RTT + L / R = =

33 Pipelined protocols pipelining: allows multiple, in-flight, yet-to-beacknowledged pkts range of sequence numbers must be increased buffering at and/or Two generic forms of pipelined protocols: go-back-n, selective repeat

34 References Some of the slides are identical or derived from 1. Slides for the 7 th edition of the book Kurose & Ross, Computer Networking: A Top-Down Approach, 2. Computer Networking, Nick McKeown and Philip Levis, 2014 Stanford University

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK 219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer

More information

Last time. Mobility in Cellular networks. Transport Layer. HLR, VLR, MSC Handoff. Introduction Multiplexing / demultiplexing UDP 14-1

Last time. Mobility in Cellular networks. Transport Layer. HLR, VLR, MSC Handoff. Introduction Multiplexing / demultiplexing UDP 14-1 Last time Mobility in Cellular networks HLR, VLR, MSC Handoff Transport Layer Introduction Multiplexing / demultiplexing UDP 14-1 This time Reliable Data Transfer Midterm review 14-2 Chapter 3 outline

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Transport Layer II Dmitri Loguinov Texas A&M University February 27, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 4 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 1 due this Friday Office hour on Feb

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Lec 9: Reliable Data Transfer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose

More information

Lecture 10: Transpor Layer Principles of Reliable Data Transfer

Lecture 10: Transpor Layer Principles of Reliable Data Transfer Lecture 10: Transpor Layer Principles of Reliable Data Transfer COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

CMSC 332 Computer Networks Reliable Data Transfer

CMSC 332 Computer Networks Reliable Data Transfer CMSC 332 Computer Networks Reliable Data Transfer Professor Szajda Last Time Multiplexing/Demultiplexing at the Transport Layer. How do TCP and UDP differ? UDP gives us virtually bare-bones access to the

More information

CSC 4900 Computer Networks: Reliable Data Transport

CSC 4900 Computer Networks: Reliable Data Transport CSC 4900 Computer Networks: Reliable Data Transport Professor Henry Carter Fall 2017 Last Time Multiplexing/Demultiplexing at the Transport Layer. How do TCP and UDP differ? UDP gives us virtually bare-bones

More information

COSC4377. Useful Linux Tool: screen

COSC4377. Useful Linux Tool: screen Lecture 10 Useful Linux Tool: screen Alternative to having multiple ssh/putty screens, you can have multiple virtual screens within the same session. To open a screen session: ~$ screen To suspend the

More information

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented Transport services and protocols Internet -layer protocols logical communication between processes protocols run in end systems send side: breaks app messages into segments, passes to layer rcv side: reassembles

More information

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet:

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet: Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8 1 A lot of students have been having difficulty seeing the HTTP packets generated when navigating

More information

Transport layer: Outline

Transport layer: Outline Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 5 Transport Layer Transport Layer 3-1 Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students,

More information

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti Data Communications & Networks Session 6 Main Theme Reliable Data Transfer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Spring 2018 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless : UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented : TCP segment structure reliable

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL e MZ Prof.ssa Chiara Petrioli a.a. 2016/2017 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and

More information

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Announcement Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Should have completed at least part II of project 1 Homework 2 will be out next week Review of Previous

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross rdt2.0 has a fatal flaw! what happens if ACK/NAK corrupted?

More information

Computer Networks & Security 2016/2017

Computer Networks & Security 2016/2017 Computer Networks & Security 2016/2017 Transport Layer (04) Dr. Tanir Ozcelebi Courtesy: Kurose & Ross Courtesy: Forouzan TU/e Computer Science Security and Embedded Networked Systems Transport Layer Our

More information

TDTS06: Computer Networks

TDTS06: Computer Networks TDTS06: Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides

More information

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office:

More information

Rdt2.0: channel with packet errors (no loss!)

Rdt2.0: channel with packet errors (no loss!) Rdt2.0: channel with packet errors (no loss!) What mechanisms do we need to deal with error? Error detection Add checksum bits Feedback Acknowledgements (ACKs): receiver explicitly tells sender that packet

More information

rdt2.0 has a fatal flaw!

rdt2.0 has a fatal flaw! rdt2. has a fatal flaw! rdt2.1:, handles garbled ACK/NAKs what happens if ACK/NAK corrupted? doesn t know what happened at! can t just retransmit: possible duplicate handling duplicates: retransmits current

More information

CSC 8560 Computer Networks: Transport Layer

CSC 8560 Computer Networks: Transport Layer CSC 8560 Computer Networks: Transport Layer Professor Henry Carter Fall 2017 Last Time... Sockets programming API TCP and UDP look different. Remember, there is no connect() in UDP - just start sending

More information

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Transport services and protocols

More information

CS 655 System and Network Architectures and Implementation. Module 3 - Transport

CS 655 System and Network Architectures and Implementation. Module 3 - Transport CS 655 System and Network Architectures and Implementation Module 3 - Transport Martin Karsten mkarsten@uwaterloo.ca 3-1 Notice Some slides and elements of slides are taken from third-party slide sets.

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Pipelined Reliable Data Transfer Protocols: Go-Back-N and Selective Repeat Sec 3.4.2-3.4.3 Prof. Lina Battestilli Fall 2017 Transport Layer

More information

Chapter 3 outline. TDTS06 Computer networks. Principles of Reliable data transfer. Reliable data transfer: getting started

Chapter 3 outline. TDTS06 Computer networks. Principles of Reliable data transfer. Reliable data transfer: getting started Chapter 3 outline TDTS06 Computer networks Lecture 4: Transport layer II Reliable data delivery and TCP Jose M. Peña, jospe@ida.liu.se IDA/ADIT, LiU 2009-08-28 3.1 Transport-layer services 3.2 Multiplexing

More information

Distributed Systems. 5. Transport Protocols

Distributed Systems. 5. Transport Protocols Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

Distributed Systems. 5. Transport Protocols. Werner Nutt

Distributed Systems. 5. Transport Protocols. Werner Nutt Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 1 Lab2 and Homework questions Available on course website 2 Chapter 3 outline 3.1 transport-layer

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer Chapter goals: understand principles behind transport layer services: multiplexing/demultiplex ing reliable data transfer flow control congestion control instantiation and implementation

More information

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A Course on Computer Communication and Networks Lecture 4 Chapter 3; Transport Layer, Part A EDA344/DIT 420, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

More information

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A Course on Computer Communication and Networks Lecture 4 Chapter 3; Transport Layer, Part A EDA344/DIT 423, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

Chapter 3 outline. Chapter 3: Transport Layer. Transport vs. network layer. Transport services and protocols. Internet transport-layer protocols

Chapter 3 outline. Chapter 3: Transport Layer. Transport vs. network layer. Transport services and protocols. Internet transport-layer protocols Chapter 3: Transport Layer our goals: understand principles behind transport layer : multiplexing, demultiplexing congestion control learn about Internet transport layer protocols: UDP: connectionless

More information

The Transport Layer Multiplexing, Error Detection, & UDP

The Transport Layer Multiplexing, Error Detection, & UDP CPSC 852 Internetworking The Transport Layer Multiplexing, Error Detection, & UDP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April

More information

COMP211 Chapter 3 Transport Layer

COMP211 Chapter 3 Transport Layer COMP211 Chapter 3 Transport Layer All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer our goals: understand principles behind transport layer services: multiplexing, demultiplexing reliable data transfer flow control congestion control learn about Internet transport

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer our goals: understand principles behind transport layer services: multiplexing, demultiplexing reliable data transfer flow control congestion control learn about Internet transport

More information

Transport Layer. CMPS 4750/6750: Computer Networks

Transport Layer. CMPS 4750/6750: Computer Networks Transport Layer CMPS 4750/6750: Computer Networks 1 Outline Overview of transport-layer services Connectionless Transport: UDP Principles of reliable data transfer Connection-Oriented Transport: TCP TCP

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Transport Layer 3-1 Chapter 3: Transport Layer our goals: understand principles behind transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

ELEN Network Fundamentals Lecture 15

ELEN Network Fundamentals Lecture 15 ELEN 4017 Network Fundamentals Lecture 15 Purpose of lecture Chapter 3: Transport Layer Reliable data transfer Developing a reliable protocol Reliability implies: No data is corrupted (flipped bits) Data

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Transport Layer 3-1 Chapter 3: Transport Layer Our goals: understand

More information

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline. Our goals: understand principles behind transport layer services:

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline. Our goals: understand principles behind transport layer services: Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 3: Transport Layer Our goals: understand principles behind transport

More information

Lecture 9: Transpor Layer Overview and UDP

Lecture 9: Transpor Layer Overview and UDP Lecture 9: Transpor Layer Overview and UDP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose

More information

Lecture 5. Transport Layer. Transport Layer 1-1

Lecture 5. Transport Layer. Transport Layer 1-1 Lecture 5 Transport Layer Transport Layer 1-1 Agenda The Transport Layer (TL) Introduction to TL Protocols and Services Connectionless and Connection-oriented Processes in TL Unreliable Data Transfer User

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Transport Layer. Chapter 3. Computer Networking: A Top Down Approach

Transport Layer. Chapter 3. Computer Networking: A Top Down Approach Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer CSF531 Advanced Computer Networks 高等電腦網路 Chapter 3 Transport Layer 吳俊興 國立高雄大學資訊工程學系 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP

More information

Computer Networks. Transport Layer

Computer Networks. Transport Layer Computer Networks Transport Layer By: Mohammad Nassiri Bu-Ali Sina University, Hamedan Fall 2009 Chapter 3: Transport Layer Our goals:!! understand principles behind transport layer services: "! multiplexing/

More information

Chapter 3: Transport Layer. Computer Networks. Transport Layer. Transport services and protocols. Chapter 3 outline. Bu-Ali Sina University, Hamedan

Chapter 3: Transport Layer. Computer Networks. Transport Layer. Transport services and protocols. Chapter 3 outline. Bu-Ali Sina University, Hamedan Computer Networks Transport Layer By: Mohammad Nassiri Chapter 3: Transport Layer Our goals:!! understand principles behind transport layer services: "! multiplexing/ demultiplexing "! reliable data transfer

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Chapter 3 Transport Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

More information

3.4 Principles of Reliable Data Transfer

3.4 Principles of Reliable Data Transfer 204 CHAPTER 3 TRANSPORT LAYER provides error checking, it does not do anything to recover from an error. Some implementations of UDP simply discard the damaged segment; others pass the damaged segment

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer our goals: understand principles behind transport layer services: multiplexing, demultiplexing reliable data transfer flow control congestion control learn about Internet transport

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 3: Transport Layer Our goals: understand principles behind transport

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter 3: Transport Layer

EC441 Fall 2018 Introduction to Computer Networking Chapter 3: Transport Layer EC441 Fall 2018 Introduction to Computer Networking Chapter 3: Transport Layer This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking: A Top

More information

CS/ECE 438: Communication Networks Fall Transport Layer

CS/ECE 438: Communication Networks Fall Transport Layer CS/ECE 438: Communication Networks Fall 2017 3. Transport Layer Chapter 3: Transport Layer application transport network link physical 2 Chapter 3: Transport Layer our goals: understand principles behind

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Architettura di Reti

Architettura di Reti Università di Ferrara Architettura di Reti Chapter 3: Transport Layer Carlo Giannelli carlo.giannelli@unife.it http://www.unife.it/scienze/informatica/insegnamenti/architettura-reti/ http://docente.unife.it/carlo.giannelli

More information

Transport services and protocols. Chapter 3 Transport Layer. Chapter 3: Transport Layer. Transport vs. network layer

Transport services and protocols. Chapter 3 Transport Layer. Chapter 3: Transport Layer. Transport vs. network layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Protocoles et Interconnexions

Protocoles et Interconnexions Protocoles et Interconnexions Course Overview and Introduction Dario Vieira Department of Computer Science EFREI Computer Networking Preliminaries Transport Layer Network Layer Introduction Terminology

More information

CSCI Computer Networks Fall 2016

CSCI Computer Networks Fall 2016 source: computer-networks-webdesign.com CSCI 4760 - Computer Networks Fall 2016 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose and

More information

CSCI Computer Networks Spring 2017

CSCI Computer Networks Spring 2017 source: computer-networks-webdesign.com CSCI 6760 - Computer Networks Spring 2017 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Transport Services and Protocols. Chapter 3 Outline

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Transport Services and Protocols. Chapter 3 Outline Chapter 3 Transport Layer A note on the use of these ppt slides: The notes used in this course are substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W. Ross, 1996-2007

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Modified form the following All material copyright 1996-2012 J.F Kurose

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Chapter 3. Transport Layer. Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

Chapter 3. Transport Layer. Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Lecture 11: Transport Layer Reliable Data Transfer and TCP

Lecture 11: Transport Layer Reliable Data Transfer and TCP Lecture 11: Transport Layer Reliable Data Transfer and TCP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Introduction to Computer Networking Guy Leduc Chapter 3 Transport Layer Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016 From Computer Networking,

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2015 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Transport Layer The majority of slides presented

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2013/2014 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.

More information

Chapter 3. Kultida Rojviboonchai, Ph.D. Dept. of Computer Engineering Faculty of Engineering Chulalongkorn University

Chapter 3. Kultida Rojviboonchai, Ph.D. Dept. of Computer Engineering Faculty of Engineering Chulalongkorn University Chapter 3 Transport Layer Kultida Rojviboonchai, Ph.D. Dept. of Computer Engineering Faculty of Engineering Chulalongkorn University A note on the use of these ppt slides: The notes used in this course

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer CSB051 Computer Networks 電腦網路 Chapter 3 Transport Layer 吳俊興國立高雄大學資訊工程學系 Reference: Computer Networking: A Top Down Approach, 7th Global Edition, Jim Kurose, Keith Ross, Pearson Chapter 3 outline 3.1 transport-layer

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer our goals: understand principles behind transport layer services: multiplexing, demultiplexing reliable data transfer fow control congestion control learn about Internet transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer CSB051 Computer Networks 電腦網路 Chapter 3 Transport Layer 吳俊興國立高雄大學資訊工程學系 Chapter 3: Transport Layer Our goals: understand principles behind transport layer services: multiplexing/demultipl exing reliable

More information