Lecture 5. Transport Layer. Transport Layer 1-1

Size: px
Start display at page:

Download "Lecture 5. Transport Layer. Transport Layer 1-1"

Transcription

1 Lecture 5 Transport Layer Transport Layer 1-1

2 Agenda The Transport Layer (TL) Introduction to TL Protocols and Services Connectionless and Connection-oriented Processes in TL Unreliable Data Transfer User Datagram Protocol (UDP) Reliable Data Transfer Transport Control Protocol (TCP) Flow Control Reliable channels Channels with errors and losses Transport Layer 1-2

3 Introduction: Transport Services and Protocols provide logical end-to-end communication between app processes running on different hosts transport protocols run in end systems send side: breaks application messages into segments, passes to the network layer receiving side: reassembles segments into messages, passes to app layer more than one transport protocol available to applications Internet: TCP and UDP application transport network data link physical application transport network data link physical Transport Layer 1-3

4 Transport vs. Network layer network layer: logical communication between hosts related to the network core (infrastructure) transport layer: logical communication between processes relies on and enhances network layer services related to network edge (i.e., intelligent end systems or hosts) and running applications (i.e., adopted syntax, semantics, platform, QoS requirements of applications) Transport Layer 1-4

5 Transport Layer Protocols reliable, in-order delivery: Transport Control Protocol (TCP) flow control congestion control connection setup unreliable, unordered delivery: User Datagram Protocol (UDP) no-frills extension of besteffort IP services not available: delay guarantees Bandwidth guarantees May be losses application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Transport Layer 1-5

6 Multiplexing/Demultiplexing Demultiplexing at rcv host: delivering received segments to correct socket = socket = process Multiplexing at send host: gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) application P3 P1 P1 application P2 P4 application transport transport transport network network network link link link physical physical host 1 host 2 host 3 physical Transport Layer 1-6

7 How Demultiplexing Works host receives IP datagrams each datagram has source IP address, destination IP address each datagram carries 1 transport-layer segment each segment has source, destination port number host uses IP addresses & port numbers to direct segment to appropriate socket (it is called sometimes socket address) 32 bits source port # dest port # other header fields application data (message) TCP/UDP segment format Transport Layer 1-7

8 Connectionless Demux. vs. Connection-oriented Demux. Connectionless-oriented Demux. UDP socket identified by two-tuple: (dest IP address, dest port number) When host receives UDP segment: checks destination port number in segment directs UDP segment to socket with that port number IP datagrams with different source IP addresses and/or source port numbers directed to same socket Connection-oriented Demux. TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number receiving host uses all four values to direct segment to appropriate socket Transport Layer 1-8

9 Connectionless Demux, UDP DatagramSocket serversocket = new DatagramSocket(6428); P2 P3 P1 P1 SP: 6428 DP: 9157 SP: 6428 DP: 5775 SP: 9157 SP: 5775 client IP: A DP: 6428 server IP: C DP: 6428 Client IP:B SP provides return address Transport Layer 1-9

10 Connection-oriented Demux., TCP P1 P4 P5 P6 P2 P1 P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 SP: 9157 client IP: A DP: 80 S-IP: A D-IP:C server IP: C DP: 80 S-IP: B D-IP:C Client IP:B Transport Layer 1-10

11 UDP: User Datagram Protocol [RFC 768] no frills, bare bones Internet transport protocol best effort service, UDP segments may be: lost delivered out of order to the application layer connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired Transport Layer 1-11

12 More about UDP often used for streaming multimedia apps loss tolerant rate sensitive other UDP uses DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! Length, in bytes of UDP segment, including header 32 bits source port # dest port # length Application data (message) checksum UDP segment format Transport Layer 1-12

13 UDP Checksum Goal: detect errors (e.g., flipped bits) in transmitted segment Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1 s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless?. Transport Layer 1-13

14 Principles of Reliable Data Transfer important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer 1-14

15 Rdt1.0: reliable transfer over a reliable channel underlying channel perfectly reliable no bit errors no loss of packets separate finite state machines for sender, receiver: sender sends data into underlying channel receiver read data from underlying channel Wait for call from above rdt_send(data) packet = make_pkt(data) udt_send(packet) Wait for call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) sender receiver Transport Layer 1-15

16 Rdt2.0: channel with bit errors underlying channel may flip bits in packet (pkt) checksum to detect bit errors the question: how to recover from errors? acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection receiver feedback: control msgs (ACK,NAK) rcvr->sender Transport Layer 1-16

17 rdt2.0 has a fatal flaw! What happens if ACK/NAK corrupted? sender doesn t know what happened at receiver! can t just retransmit: possible duplicate Handling duplicates: sender retransmits current pkt if ACK/NAK garbled sender adds sequence number to each pkt receiver discards (doesn t deliver up) duplicate pkt stop and wait Sender sends one packet, then waits for receiver response Transport Layer 1-17

18 rdt2.1: discussion Sender and receiver can handle garbled ACK/NAKs Sender: seq # added to pkt two seq. # s (0,1) will suffice. Why? must check if received ACK/NAK corrupted twice as many states state must remember whether current pkt has 0 or 1 seq. # Receiver: must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender Transport Layer 1-18

19 rdt2.2: a NAK-free protocol same functionality as rdt2.1, using ACKs only instead of NAK, receiver sends ACK for last pkt received OK receiver must explicitly include seq # of pkt being ACKed duplicate ACK at sender results in same action as NAK: retransmit current pkt Transport Layer 1-19

20 rdt3.0: channels with errors and loss New assumption: underlying channel can also lose packets (data or ACKs) checksum, seq. #, ACKs, retransmissions will be of help, but not enough Approach: sender waits reasonable amount of time for ACK retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but use of seq. # s already handles this receiver must specify seq # of pkt being ACKed requires countdown timer Transport Layer 1-20

21 rdt3.0 in action Transport Layer 1-21

22 Performance of rdt3.0 rdt3.0 works, but performance stinks Example: 1 Gbps link, 15 ms propagation delay (i.e., RTT = 30 ms), 8000 bit packet: L 8000bits d trans 8microseconds R 9 10 bps U sender : utilization fraction of time sender busy sending U sender = L / R RTT + L / R = = microsec 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link network protocol limits use of physical resources! Transport Layer 1-22

23 rdt3.0: stop-and-wait operation first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R sender receiver RTT first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R U sender = L / R RTT + L / R = = microsec Transport Layer 1-23

24 Pipelined protocols Pipelining: sender allows multiple, in-flight, yet-tobe-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver Two generic forms of pipelined protocols: go-back-n, selective repeat Transport Layer 1-24

25 Pipelining: increased utilization first packet bit transmitted, t = 0 last bit transmitted, t = L / R sender receiver RTT ACK arrives, send next packet, t = RTT + L / R first packet bit arrives last packet bit arrives, send ACK last bit of 2 nd packet arrives, send ACK last bit of 3 rd packet arrives, send ACK Increase utilization by a factor of 3! U sender = 3 * L / R RTT + L / R = = microsecon Transport Layer 1-25

26 Pipelining Protocols Go-back-N: big picture: Sender can have up to N unacked packets in pipeline Rcvr only sends cumulative acks Doesn t ack packet if there s a gap Sender has timer for oldest unacked packet If timer expires, retransmit all unacked packets Selective Repeat: big pic Sender can have up to N unacked packets in pipeline Rcvr acks individual packets Sender maintains timer for each unacked packet When timer expires, retransmit only unack packet Transport Layer 1-26

27 Go-Back-N or GBN Sender: k-bit seq # in pkt header window of up to N, consecutive unack ed pkts allowed ACK(n): ACKs all pkts up to, including seq # n - cumulative ACK may receive duplicate ACKs (see receiver) timer for each in-flight pkt timeout(n): retransmit pkt n and all higher seq # pkts in window Transport Layer 1-27

28 GBN in action Transport Layer 1-28

29 Selective Repeat receiver individually acknowledges all correctly received pkts buffers pkts, as needed, for eventual in-order delivery to upper layer sender only resends pkts for which ACK not received sender timer for each unacked pkt sender window N consecutive seq # s again limits seq #s of sent, unacked pkts Transport Layer 1-29

30 Selective Repeat: sender, receiver windows Transport Layer 1-30

31 Selective Repeat in action sender data from above : if next available seq # in window, send pkt timeout(n): resend pkt n, restart timer ACK(n) in [sendbase,sendbase+n]: mark pkt n as received if n smallest unacked pkt, advance window base to next unacked seq # receiver pkt n in [rcvbase, rcvbase+n-1] send ACK(n) out-of-order: buffer in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-n,rcvbase-1] ACK(n) otherwise: ignore Transport Layer 1-31

32 Selective Repeat in action Transport Layer 1-32

33 CONNECTION-ORIENTED TRANSPORT TCP Transport Layer 1-33

34 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 socket door point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set window size send & receive buffers application writes data TCP send buffer segment application reads data TCP receive buffer socket door full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) between sender and receiver flow controlled: sender will not overwhelm receiver Transport Layer 3-34

35 TCP segment structure URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window Urg data pnter Options (variable length) application data (variable length) counting by bytes of data (not segments!) # bytes rcvr willing to accept Transport Layer 3-35

36 TCP seq. # s and ACKs Seq. # s: ACKs: byte stream number of first byte in segment s data seq # of next byte expected from other side cumulative ACK User types C host ACKs receipt of echoed C Host A Host B host ACKs receipt of C, echoes back C simple telnet scenario time Transport Layer 3-36

37 TCP Round Trip Time and Timeout Q: how to set TCP timeout value? longer than RTT but RTT varies too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT smoother average several recent measurements, not just current SampleRTT Set timeout = average + safe margin Transport Layer 3-37

38 RTT (milliseconds) TCP Round Trip Time and Timeout EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT Exponential weighted moving average influence of past sample decreases exponentially fast typical value: = RTT: gaia.cs.umass.edu to fantasia.eurecom.fr time (seconnds) SampleRTT Estimated RTT Transport Layer 3-38

39 TCP reliable data transfer TCP creates rdt service on top of IP s unreliable service Pipelined segments Cumulative ACKs TCP uses single retransmission timer Retransmissions are triggered by: timeout events duplicate ACKs Transport Layer 3-39

40 TCP sender events: data rcvd from app: Create segment with seq # seq # is byte-stream number of first data byte in segment start timer if not already running (think of timer as for oldest unacked segment) expiration interval: TimeOutInterval timeout: retransmit segment that caused timeout restart timer Ack rcvd: If acknowledges previously unacked segments update what is known to be acked start timer if there are outstanding segments Transport Layer 3-40

41 Seq=92 timeout timeout Seq=92 timeout TCP: retransmission scenarios Host A Host B Host A Host B X loss Sendbase = 100 SendBase = 120 SendBase = 100 time lost ACK scenario SendBase = 120 time premature timeout Transport Layer 3-41

42 timeout TCP retransmission scenarios (more) Host A Host B X loss SendBase = 120 time Cumulative ACK scenario Transport Layer 3-42

43 Fast Retransmit Time-out period often relatively long: long delay before resending lost packet Detect lost segments via duplicate ACKs. Sender often sends many segments back-toback If segment is lost, there will likely be many duplicate ACKs. If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit: resend segment before timer expires Transport Layer 3-43

44 timeout Host A Host B Fast Retransmit X Packets time Resending a segment after triple duplicate ACK Acknowledgements (waiting seq#) Transport Layer 3-44

45 Quiz Which of the following is true about different unicast routing protocols: - Link-state protocols do not suffer from the count-to-infinity problem. - BGP always uses the shortest path (in terms of router hops) between two nodes. Transport Layer 1-45

46 Lecture Summary Covered material The Transport Layer (TL) Introduction to TL Protocols and Services Connectionless and Connection-oriented Demultiplexing Processes in TL Unreliable Data Transfer User Datagram Protocol (UDP) Reliable Data Transfer Transport Control Protocol (TCP) Reliable channels Channels with errors and losses Material to be covered next lecture Continue the Transport Layer Introduction to the Application Layer Transport Layer 1-46

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless : UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented : TCP segment structure reliable

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 5 Transport Layer Transport Layer 3-1 Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students,

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer Chapter goals: understand principles behind transport layer services: multiplexing/demultiplex ing reliable data transfer flow control congestion control instantiation and implementation

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented Transport services and protocols Internet -layer protocols logical communication between processes protocols run in end systems send side: breaks app messages into segments, passes to layer rcv side: reassembles

More information

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page:

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page: CSE 3214: Computer Networks Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides are

More information

CSE 4213: Computer Networks II

CSE 4213: Computer Networks II Next CSE 4213: Computer Networks II The layer Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/4213 These slides are adapted

More information

Transport layer: Outline

Transport layer: Outline Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer These slides are adapted from the original slides provided by J.Kurose and K.W Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking:

More information

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet:

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet: Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

Chapter 3 outline. TDTS06 Computer networks. Principles of Reliable data transfer. Reliable data transfer: getting started

Chapter 3 outline. TDTS06 Computer networks. Principles of Reliable data transfer. Reliable data transfer: getting started Chapter 3 outline TDTS06 Computer networks Lecture 4: Transport layer II Reliable data delivery and TCP Jose M. Peña, jospe@ida.liu.se IDA/ADIT, LiU 2009-08-28 3.1 Transport-layer services 3.2 Multiplexing

More information

Distributed Systems. 5. Transport Protocols

Distributed Systems. 5. Transport Protocols Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2013/2014 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.

More information

Distributed Systems. 5. Transport Protocols. Werner Nutt

Distributed Systems. 5. Transport Protocols. Werner Nutt Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

COSC4377. Useful Linux Tool: screen

COSC4377. Useful Linux Tool: screen Lecture 10 Useful Linux Tool: screen Alternative to having multiple ssh/putty screens, you can have multiple virtual screens within the same session. To open a screen session: ~$ screen To suspend the

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Lec 9: Reliable Data Transfer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length)

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length) Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connectionoriented transport: TCP segment

More information

Computer Networking: A Top Down Approach

Computer Networking: A Top Down Approach Computer Networking: A Top Down Approach Seventh Edition Chapter 3 Transport Layer Slides in this presentation contain hyperlinks. JAWS users should be able to get a list of links by using INSERT+F7 Transport

More information

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 4 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 1 due this Friday Office hour on Feb

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 10 Transport Layer Continued Spring 2018 Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Last Time.

More information

TDTS06: Computer Networks

TDTS06: Computer Networks TDTS06: Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

Computer Networks & Security 2016/2017

Computer Networks & Security 2016/2017 Computer Networks & Security 2016/2017 Transport Layer (04) Dr. Tanir Ozcelebi Courtesy: Kurose & Ross Courtesy: Forouzan TU/e Computer Science Security and Embedded Networked Systems Transport Layer Our

More information

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure Correcting mistakes Go-back-N: big picture: sender can have up to N unacked packets in pipeline rcvr only sends cumulative acks doesn t ack packet if there s a gap sender has r for oldest unacked packet

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL e MZ Prof.ssa Chiara Petrioli a.a. 2016/2017 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and

More information

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson

More information

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Announcement Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Should have completed at least part II of project 1 Homework 2 will be out next week Review of Previous

More information

CMSC 332 Computer Networks Reliable Data Transfer

CMSC 332 Computer Networks Reliable Data Transfer CMSC 332 Computer Networks Reliable Data Transfer Professor Szajda Last Time Multiplexing/Demultiplexing at the Transport Layer. How do TCP and UDP differ? UDP gives us virtually bare-bones access to the

More information

CSC 4900 Computer Networks: Reliable Data Transport

CSC 4900 Computer Networks: Reliable Data Transport CSC 4900 Computer Networks: Reliable Data Transport Professor Henry Carter Fall 2017 Last Time Multiplexing/Demultiplexing at the Transport Layer. How do TCP and UDP differ? UDP gives us virtually bare-bones

More information

Foundations of Telematics

Foundations of Telematics Foundations of Telematics Chapter 3 Transport Layer Acknowledgement: These slides have been prepared by J.F. Kurose and K.W. Ross Foundations of Telematics (AMW SS 2010): 03 Transport Layer 1 Chapter 3:

More information

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

Transport Layer: outline

Transport Layer: outline Transport Layer: outline Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP Segment structure

More information

LECTURE 3 - TRANSPORT LAYER

LECTURE 3 - TRANSPORT LAYER LECTURE 3 - TRANSPORT LAYER 1 GOALS (1) Understand principles behind transport layer services: multiplexing, demultiplexing reliable data transfer ow control congestion control GOALS (2) Learn about Internet

More information

RSC Part III: Transport Layer 3. TCP

RSC Part III: Transport Layer 3. TCP RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking: A Top Down

More information

By Ossi Mokryn, Based also on slides from: the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and Ross

By Ossi Mokryn, Based also on slides from: the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and Ross Transport Layer By Ossi Mokryn, Based also on slides from: the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and Ross Transport Layer Connectionless and connection oriented

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: The notes used in this course are substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W. Ross, 1996-2007

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley

More information

CSC 8560 Computer Networks: Transport Layer

CSC 8560 Computer Networks: Transport Layer CSC 8560 Computer Networks: Transport Layer Professor Henry Carter Fall 2017 Last Time... Sockets programming API TCP and UDP look different. Remember, there is no connect() in UDP - just start sending

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8 1 A lot of students have been having difficulty seeing the HTTP packets generated when navigating

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9 1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3

More information

Lecture 3 The Transport Control Protocol (TCP) Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 3 The Transport Control Protocol (TCP) Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 3 The Transport Control Protocol (TCP) Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it TCP segment structure URG: urgent data (generally not used) ACK: ACK # valid PSH: push

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.10 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Transport services and protocols

More information

rdt2.0 has a fatal flaw!

rdt2.0 has a fatal flaw! rdt2. has a fatal flaw! rdt2.1:, handles garbled ACK/NAKs what happens if ACK/NAK corrupted? doesn t know what happened at! can t just retransmit: possible duplicate handling duplicates: retransmits current

More information

Chapter 6 Transport Layer

Chapter 6 Transport Layer Chapter 6 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Transport Layer: Outline

Transport Layer: Outline Transport Layer: Outline Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP Segment structure

More information

10 minutes survey (anonymous)

10 minutes survey (anonymous) 10 minutes survey (anonymous) v Comments/Suggestions to my lecture/lab/ homework/exam v If you like this course, which part do you like? v If you don t like it, which part do you not like? Thanks! Transport

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti Data Communications & Networks Session 6 Main Theme Reliable Data Transfer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 1 Lab2 and Homework questions Available on course website 2 Chapter 3 outline 3.1 transport-layer

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April

More information

Chapter 3 outline. Chapter 3: Transport Layer. Transport vs. network layer. Transport services and protocols. Internet transport-layer protocols

Chapter 3 outline. Chapter 3: Transport Layer. Transport vs. network layer. Transport services and protocols. Internet transport-layer protocols Chapter 3: Transport Layer our goals: understand principles behind transport layer : multiplexing, demultiplexing congestion control learn about Internet transport layer protocols: UDP: connectionless

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Spring 2018 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A Course on Computer Communication and Networks Lecture 4 Chapter 3; Transport Layer, Part A EDA344/DIT 420, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

More information

Fall 2012: FCM 708 Bridge Foundation I

Fall 2012: FCM 708 Bridge Foundation I Fall 2012: FCM 708 Bridge Foundation I Prof. Shamik Sengupta Instructor s Website: http://jjcweb.jjay.cuny.edu/ssengupta/ Blackboard Website: https://bbhosted.cuny.edu/ Intro to Computer Networking Transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Part b Connection-Oriented Transport Transport Layer 3-1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4

More information

CSC 4900 Computer Networks: TCP

CSC 4900 Computer Networks: TCP CSC 4900 Computer Networks: TCP Professor Henry Carter Fall 2017 Project 2: mymusic You will be building an application that allows you to synchronize your music across machines. The details of which are

More information

CS 4390 Computer Networks. Pointers to Corresponding Section of Textbook

CS 4390 Computer Networks. Pointers to Corresponding Section of Textbook CS 4390 Computer Networks UT D application transport network data link physical Session 10 Transmission Control Protocol (TCP) An Overview Adapted from Computer Networking a Top-Down Approach 1996-2012

More information

CNT 6885 Network Review on Transport Layer

CNT 6885 Network Review on Transport Layer CNT 6885 Network Review on Transport Layer Jonathan Kavalan, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida User Datagram Protocol [RFC 768] no frills,

More information

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office:

More information

The Transport Layer Multiplexing, Error Detection, & UDP

The Transport Layer Multiplexing, Error Detection, & UDP CPSC 852 Internetworking The Transport Layer Multiplexing, Error Detection, & UDP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

COMP 431 Internet Services & Protocols. Transport Layer Protocols & Services Outline. The Transport Layer Reliable data delivery & flow control in TCP

COMP 431 Internet Services & Protocols. Transport Layer Protocols & Services Outline. The Transport Layer Reliable data delivery & flow control in TCP COMP 431 Internet Services & Protocols Transport Layer Protocols & Services Outline The Transport Layer Reliable data delivery & flow control in TCP Jasleen Kaur Fundamental transport layer services» Multiplexing/Demultiplexing»

More information

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A Course on Computer Communication and Networks Lecture 4 Chapter 3; Transport Layer, Part A EDA344/DIT 423, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Lecturer

More information

Lecture 8. TCP/IP Transport Layer (2)

Lecture 8. TCP/IP Transport Layer (2) Lecture 8 TCP/IP Transport Layer (2) Outline (Transport Layer) Principles behind transport layer services: multiplexing/demultiplexing principles of reliable data transfer learn about transport layer protocols

More information

Chapter 3- parte B outline

Chapter 3- parte B outline Chapter 3- parte B outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport:

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross TCP: Overview RFCs: 793,1122,1323,

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Connection Oriented Transport: TCP Sec 3.5 Prof. Lina Battestilli Fall 2017 Transport Layer Chapter 3 Outline 3.1 Transport-layer Services

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 6 Transport Layer (cont d) Transport Layer 3-1 Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty,

More information

The Transport Layer: TCP & Reliable Data Transfer

The Transport Layer: TCP & Reliable Data Transfer The Transport Layer: TCP & Reliable Data Transfer Smith College, CSC 249 February 15, 2018 1 Chapter 3: Transport Layer q TCP Transport layer services: v Multiplexing/demultiplexing v Connection management

More information

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, Development of reliable protocol Sliding window protocols

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, Development of reliable protocol Sliding window protocols Outline Development of reliable protocol Sliding window protocols Go-Back-N, Selective Repeat Protocol performance Sockets, UDP, TCP, and IP UDP operation TCP operation connection management flow control

More information

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall TCP Kai Shen 10/19/2009 CSC 257/457 - Fall 2009 1 TCP: Overview connection-oriented: handshaking (exchange of control msgs) to initialize sender, receiver state before data exchange pipelined: multiple

More information

Lecture 11: Transport Layer Reliable Data Transfer and TCP

Lecture 11: Transport Layer Reliable Data Transfer and TCP Lecture 11: Transport Layer Reliable Data Transfer and TCP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross rdt2.0 has a fatal flaw! what happens if ACK/NAK corrupted?

More information

CS Lecture 1 Review of Basic Protocols

CS Lecture 1 Review of Basic Protocols CS 557 - Lecture 1 Review of Basic Protocols IP - RFC 791, 1981 TCP - RFC 793, 1981 Spring 2013 These slides are a combination of two great sources: Kurose and Ross Textbook slides Steve Deering IETF Plenary

More information

Go-Back-N. Pipelining: increased utilization. Pipelined protocols. GBN: sender extended FSM

Go-Back-N. Pipelining: increased utilization. Pipelined protocols. GBN: sender extended FSM Pipelined protocols Pipelining: sender allows multiple, in-flight, yet-to-be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver Pipelining: increased utilization

More information

CS 655 System and Network Architectures and Implementation. Module 3 - Transport

CS 655 System and Network Architectures and Implementation. Module 3 - Transport CS 655 System and Network Architectures and Implementation Module 3 - Transport Martin Karsten mkarsten@uwaterloo.ca 3-1 Notice Some slides and elements of slides are taken from third-party slide sets.

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Lecture 9: Transpor Layer Overview and UDP

Lecture 9: Transpor Layer Overview and UDP Lecture 9: Transpor Layer Overview and UDP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose

More information

TCP (Part 2) Session 10 INST 346 Technologies, Infrastructure and Architecture

TCP (Part 2) Session 10 INST 346 Technologies, Infrastructure and Architecture TCP (Part 2) Session 10 INST 346 Technologies, Infrastructure and Architecture Muddiest Points Reading pseudocode Reading finite state diagrams What parts of rdt are in TCP? Goals for Today Finish up TCP

More information

Rdt2.0: channel with packet errors (no loss!)

Rdt2.0: channel with packet errors (no loss!) Rdt2.0: channel with packet errors (no loss!) What mechanisms do we need to deal with error? Error detection Add checksum bits Feedback Acknowledgements (ACKs): receiver explicitly tells sender that packet

More information

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, steam: r Development of reliable protocol r Sliding window protocols

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, steam: r Development of reliable protocol r Sliding window protocols Outline r Development of reliable protocol r Sliding window protocols m Go-Back-N, Selective Repeat r Protocol performance r Sockets, UDP, TCP, and IP r UDP operation r TCP operation m connection management

More information

Lecture 10: Transpor Layer Principles of Reliable Data Transfer

Lecture 10: Transpor Layer Principles of Reliable Data Transfer Lecture 10: Transpor Layer Principles of Reliable Data Transfer COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

CS450 Introduc0on to Networking Lecture 14 TCP. Phu Phung Feb 13, 2015

CS450 Introduc0on to Networking Lecture 14 TCP. Phu Phung Feb 13, 2015 CS450 Introduc0on to Networking Lecture 14 TCP Phu Phung Feb 13, 2015 Next lecture (Feb 16) Assignment 3 (No iclicker ques0ons) Wireshark links Guest lecture on Monday Feb 23 rd DNS Security Midterm exam

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 3: Transport Layer Our goals: understand principles behind transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Transport Layer 3-1 Chapter 3: Transport Layer Our goals: understand

More information

CS 4390 Computer Networks. Transport Services and Protocols

CS 4390 Computer Networks. Transport Services and Protocols CS 4390 Computer Networks UT D data Session 07 Transport Layer Overview and UDP Adapted from Computer Networking a Top-Down Approach 1996-2012 by J.F Kurose and K.W. Ross, All Rights Reserved Transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Chapter 3 Transport Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2017 Prof. Dola Saha 1 Instructions Put your name and student id on each sheet of paper! The exam is closed book. You cannot use any computer

More information