Introduction to Computer Networking Netkit lab Routing protocols: RIP and OSPF

Size: px
Start display at page:

Download "Introduction to Computer Networking Netkit lab Routing protocols: RIP and OSPF"

Transcription

1 Introduction to Computer Networking Netkit lab Routing protocols: RIP and OSPF Simon Liénardy and Yves Vanaubel Academic year Introduction This lab session tackles routing protocols. First, you will study the behavior of the Routing Information Protocol (RIP) in a simple scenario. Second, you will focus on Open Shortest Path First (OSPF), a link state routing algorithm. OSPF is an interior gateway protocol, such as RIP and IS-IS. You will study how OSPF spreads routing information among routers, and how it reacts when the topology changes, or when a failure occurs in the network. As usual, you are asked to return a handwritten report. Question are colored in blue and are listed in section 4 for your convenience 1. Plagiarism is forbidden, in line with the policy of the university ( plagiat). Discussion and exchange of ideas between teams is a good thing but you must write your own answers, that are the reflection of your own understanding of the subject. Contents 1 Introduction 1 2 The Routing Information Protocol (RIP) 2 3 Open Shortest Path First (OSPF) 4 3 Packets exchanged and impact on forwarding tables Reaction to failures OSPFD internals [If enough time] List of all questions 6 1 This practical exercise was highly inspired by student Netkit labs of the University of Rome III ( 1

2 2 The Routing Information Protocol (RIP) The Netkit configuration files for this exercise are available in rip directory. 0.0/24 A eth3 R /30 E /30 H B 0.0/24 R /30 G 4 eth3 8 R4 D 0.4.0/24 F 0.0.4/30.6 eth3 0 I 0.06/30 7 R3 C 0.3.0/24 Figure 1 Topology for RIP network Consider the network topology in Figure 1. In this Netkit environment, routers use the daemons zebra and ripd in order to run RIP. These daemons are not run automatically when you launch Netkit. 1. On each router, run the daemons using the command: ri:# /etc/init.d/zebra start At each step, observe the forwarding table of r1 (command: ip route). Are all destinations directly available? Is this instantaneous? Why? 2. Sniff RIP packets on the interface of r4 using the command 2 r4:# tcpdump -i -v -s 0 where -v enables the verbose mode, and -s 0 enables to sniff the entire Ethernet packet (not only the first 68 bytes, as by default). Does it confirm what you expected 3? 3. Run traceroute from r2 to the interface of r4 and observe the path chosen by RIP. 2 You could also display the sniffed packed in wireshark but it would take more time 3 What did you expect? See the reminder if you thirst for refreshing your memory. 2

3 4. Shut down the interface of r3 using the command: r3:# ip link set down Run again traceroute from r2 to r4. Does it work directly? How long (approximately) does RIP need to recover the failure? Is it what you expected? Check the forwarding table of r2 to check if it was correctly updated after a while. 5. Re-activate the interface of r3 using the command r3:# ip link set up Wait until RIP updates the different routing tables. Then, crash r3. To do so, use the command host$ lcrash r3 in the host terminal. Do again the same traceroute as previously. How long does it take to RIP to update the routing tables? Do you see any difference with the link failure? Explain. 3

4 3 Open Shortest Path First (OSPF) The different Netkit files needed for this lab are available in the ospf directory. The topology of the network is available in Figure 2. The red values represent the OSPF costs to exit the interface. In this Netkit environment, routers use the zebra and ospfd daemons in order to run OSPF. These daemons are not run automatically when you launch Netkit. Area bb /24 Collision Domain A bb2 45 Collision Domain D.0.3.0/24 bb Collision Domain B.0.0/24 bb4 7 Collision Domain C.0.0/24 bb3 Figure 2 Topology of the network 3 Packets exchanged and impact on forwarding tables 1. Run tcpdump on the interface of bb4: bb4:# tcpdump -i -s 0 proto ospf & # Use '-v' for more details Run then zebra on each router successively, starting from bb0 to bb4, using the command: bbi:# /etc/init.d/zebra start Which packets are exchanged by the different routers? Try to explain their role briefly (1 or 2 sentences). Hints: (a) There are 5 kinds of OSPF packets to observe. If you miss some packets, you might have to crash and restart the lab. (b) The IP addresses and are used to address a group of routers (respectively All OSPF routers and All OSPF DRs ) and are called multicast addresses. These are beyond the scope of this introductory course. 4

5 2. Run traceroute from bb1 to.0. What is the path chosen by the probes? And the ICMP replies? Explain why. 3 Reaction to failures 3. Run tcpdump on the interface of bb0. Bring then down the interface of bb2 using bb2:# ip link set down How long does it take to OSPF to update the routing tables? notification is propagated in the collision domain A. Describe how the failure 4. Re-activate the interface on bb2. After a while, crash bb2 using the command host$ lcrash bb2 in the host terminal. How long does it take to OSPF to update the routing tables? Is OSPF faster than RIP? 3.3 OSPFD internals [If enough time] You should crash and restart the lab. When the lab is started, run zebra on each router. In order to access the ospfd daemon of a device, use the command (in the device terminal): bbi:# telnet localhost ospfd You are asked to enter a password. This is Sparta. You enter then an environment enabling you to display useful information, such as the OSPF daemon state. To quit, use the command exit. 5. Display the OSPF database on the different routers using the following command in the environment: ospfd> show ip ospf database What do you observe in the OSPF database? Explain. 6. Select a router and execute the following commands: ospfd> show ip ospf neighbor ospfd> show ip ospf route ospfd> show ip ospf interface What kind of information do they display? 5

6 4 List of all questions 1. RIP 1. Are all destinations directly available? Is this instantaneous? Why? 1. Does your observation with tcpdump confirm what you expected? 1.3. Observe the path chosen by RIP Does it work directly? How long (approximately) does RIP need to recover the failure? Is it what you expected? 1.5. How long does it take to RIP to update the routing tables? Do you see any difference with the link failure? Explain. 2. OSPF 2. Which packets are exchanged by the different routers? Try to explain their role briefly. 2. What is the path chosen by the probes? And the ICMP replies? Explain why When a link goes down, how long does it take to OSPF to update the routing tables? Describe how the failure notification is propagated in the collision domain A When a node goes down, how long does it take to OSPF to update the routing tables? Is OSPF faster than RIP? 2.5. What do you observe in the OSPF databases? Explain What kind of information do the commands neighbor, route, interface display? 6

lab rip experiences with RIPv2 distance vector protocol

lab rip experiences with RIPv2 distance vector protocol lab rip experiences with RIPv2 distance vector protocol hosts need routing each host with a network stack performs some elementary routing ip layer nic eth0? lo the network stack may be used to access

More information

Laboratory 2 Dynamic routing using RIP. Iptables. Part1. Dynamic Routing

Laboratory 2 Dynamic routing using RIP. Iptables. Part1. Dynamic Routing Introduction Laboratory 2 Dynamic routing using RIP. Iptables. Part1. Dynamic Routing Static routing has the advantage that it is simple, requires no computing power in router for determining routes (this

More information

LAB FOUR Dynamic Routing Protocols

LAB FOUR Dynamic Routing Protocols LAB FOUR Dynamic Routing Protocols In the previous lab, you learned how to configure routing table entries manually. This was referred to as static routing. The topic of Lab 4 is dynamic routing, where

More information

User module RIP APPLICATION NOTE

User module RIP APPLICATION NOTE User module RIP APPLICATION NOTE USED SYMBOLS Used Symbols Danger important notice, which may have an influence on the user s safety or the function of the device. Attention notice on possible problems,

More information

LAB EXERCISES (TP) 6 INTER-DOMAIN ROUTING: BGP-4 With Solutions

LAB EXERCISES (TP) 6 INTER-DOMAIN ROUTING: BGP-4 With Solutions Name 1: Name 2: COMPUTER NETWORKING LAB EXERCISES (TP) 6 INTER-DOMAIN ROUTING: BGP-4 With Solutions Abstract This lab covers BGP-4, which is the Inter-Domain Routing Protocol of the Internet. You will

More information

netkit lab bgp: transit as Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group

netkit lab bgp: transit as Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group netkit lab bgp: transit as Version Author(s) E-mail Web Description 1.7.1 (compact) Luca Cittadini,

More information

netkit lab IPv6 Neighbor Discovery (NDP)

netkit lab IPv6 Neighbor Discovery (NDP) netkit lab IPv6 Neighbor Discovery (NDP) Version 1.0 Author(s) E-mail Web Description S. Doro based on work ARP by G. Di Battista, M. Patrignani, M. Pizzonia, F. Ricci, M. Rimondini sandro.doro@gmail.com

More information

netkit lab bgp: transit as Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group

netkit lab bgp: transit as Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group Version 1.7 Author(s) netkit lab bgp: transit as Luca Cittadini, Giuseppe Di Battista, Massimo

More information

IP Routing Lab Assignment Configuring Basic Aspects of IP IGP Routing Protocols

IP Routing Lab Assignment Configuring Basic Aspects of IP IGP Routing Protocols IP Routing Lab Assignment Configuring Basic Aspects of IP IGP Routing Protocols 1 PURPOSE AND GOALS This lab assignment will give you a hands-on experience in configuring and managing routers and particularly

More information

Why dynamic route? (1)

Why dynamic route? (1) Routing Why dynamic route? (1) Static route is ok only when Network is small There is a single connection point to other network No redundant route 2 Why dynamic route? (2) Dynamic Routing Routers update

More information

ROUTING PROTOCOL BASICS

ROUTING PROTOCOL BASICS ROUTING PROTOCOL BASICS Let s spice things up. 0..0. LAN E 0..0.0/6 LAN D 0..0.0/6 eth: 0..0. router 0..0. LAN C 0..0.0/6 A much more complex topology pc pc 0..0. eth: 0..0. router eth: 0.9.0. eth: 0.0.0.

More information

The Assignment is divided into preparation, practical part, and documentation.

The Assignment is divided into preparation, practical part, and documentation. EINTE LAB EXERCISES LAB EXERCISE #4 IGP ROUTING PURPOSE AND GOALS This lab assignment will give you a hands-on experience in configuring and managing routers and particularly in setting up IP routing protocols.

More information

Novell TCP IP for Networking Professionals.

Novell TCP IP for Networking Professionals. Novell 050-649 TCP IP for Networking Professionals http://killexams.com/exam-detail/050-649 I. RECV (Receive) J. RETR (Retrieve) Answer: Pending, Please email feedback to support@hotcerts.com QUESTION:

More information

5. Write a capture filter for question 4.

5. Write a capture filter for question 4. Pre-Lab 2: Single Segment IP Networks 1. Review Linux man pages for arp at www.linuxmanpages.com (in both Sections 7 and 8), the ARP RFC (RFC 826) at www.ietf.org, and Section 3.4 of the IBM Red Book.

More information

User module OSPF APPLICATION NOTE

User module OSPF APPLICATION NOTE User module OSPF APPLICATION NOTE USED SYMBOLS Used Symbols Danger important notice, which may have an influence on the user s safety or the function of the device. Attention notice on possible problems,

More information

The trace is here: https://kevincurran.org/com320/labs/wireshark/trace-dhcp.pcap

The trace is here: https://kevincurran.org/com320/labs/wireshark/trace-dhcp.pcap Lab Exercise DHCP Objective To see how DHCP (Dynamic Host Configuration Protocol) works. The trace is here: https://kevincurran.org/com320/labs/wireshark/trace-dhcp.pcap Network Setup Recall that DHCP

More information

8.9.2 Lab: Configure an Ethernet NIC to use DHCP in Windows Vista

8.9.2 Lab: Configure an Ethernet NIC to use DHCP in Windows Vista 8.9.2 Lab: Configure an Ethernet NIC to use DHCP in Windows Vista Introduction If Vista is not available in your classroom, you may complete this lab by viewing the figures in this document. Print and

More information

prefix filtering netkit-lab-bgp-1

prefix filtering netkit-lab-bgp-1 prefix filtering netkit-lab-bgp-1 applying policies 1 announcement filtering send/accept an announcement only if some condition is verified commands: prefix-list used to filter prefixes filter-lists used

More information

PreLab for CS356 Lab NIL (Lam) (To be submitted when you come for the lab)

PreLab for CS356 Lab NIL (Lam) (To be submitted when you come for the lab) PreLab for CS356 Lab NIL (Lam) (To be submitted when you come for the lab) Name: UT EID: 1. Differentiate between Routers, Switches, and Hubs. 2. Explain subnet masks. 3. For this lab, where is subnet

More information

OSPF DR and BDR Elections

OSPF DR and BDR Elections OSPF DR and BDR Elections In Chapter 6, Enhanced IGRP (EIGRP) and Open Shortest Path First (OSPF), of the Sybex CCNA Study Guide Standard and CCNA Study Guide Deluxe Editions, I discussed EIGRP and OSPF

More information

Chapter 6 Reading Organizer

Chapter 6 Reading Organizer Name Date Chapter 6 Reading Organizer After completion of this chapter, you should be able to: Describe and plan a network using OSPF Design and configure a network using single-area OSPF Work with multi-protocol

More information

Lab Using Wireshark to Examine Ethernet Frames

Lab Using Wireshark to Examine Ethernet Frames Topology Objectives Part 1: Examine the Header Fields in an Ethernet II Frame Part 2: Use Wireshark to Capture and Analyze Ethernet Frames Background / Scenario When upper layer protocols communicate with

More information

COM-208: Computer Networks - Homework 6

COM-208: Computer Networks - Homework 6 COM-208: Computer Networks - Homework 6. (P22) Suppose you are interested in detecting the number of hosts behind a NAT. You observe that the IP layer stamps an identification number sequentially on each

More information

Lab 1: Packet Sniffing and Wireshark

Lab 1: Packet Sniffing and Wireshark Lab 1: Packet Sniffing and Wireshark Fengwei Zhang Wayne State University Course: Cyber Security Practice 1 Packet Sniffer Packet sniffer is a basic tool for observing network packet exchanges in a computer

More information

Routing Protocols of IGP. Koji OKAMURA Kyushu University, Japan

Routing Protocols of IGP. Koji OKAMURA Kyushu University, Japan Routing Protocols of IGP Koji OKAMURA Kyushu University, Japan Routing Protocol AS (Autonomous System) Is operated autonomous in the organization. 6bit IGP (Interior Gateway Protocol) Routing Control inside

More information

Lab I: Using tcpdump and Wireshark

Lab I: Using tcpdump and Wireshark Objectives To get the student familiar with basic network protocol analyzer, tools and equipment used in later labs, including tcpdump and Wireshark. Lab Readings Go to http://www.tcpdump.org/tcpdump_man.html

More information

521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking

521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking 521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking Name Student ID Signature In this exercise we will connect our LANs made in first exercise with routers and build an internet.

More information

Lab Using Wireshark to Examine Ethernet Frames

Lab Using Wireshark to Examine Ethernet Frames Topology Objectives Part 1: Examine the Header Fields in an Ethernet II Frame Part 2: Use Wireshark to Capture and Analyze Ethernet Frames Background / Scenario When upper layer protocols communicate with

More information

2 nd SEE 6DISS Workshop Plovdiv June Host Configuration (Windows XP) Athanassios Liakopoulos

2 nd SEE 6DISS Workshop Plovdiv June Host Configuration (Windows XP) Athanassios Liakopoulos 2 nd SEE 6DISS Workshop Plovdiv 27-29 June 2007 Host Configuration (Windows XP) Athanassios Liakopoulos aliako@grnet.gr 1. Lab information Network Topology The network topology is shown in Figure 1. PCs

More information

Application of Mininet

Application of Mininet 1 Application of Mininet Report of Wireless communication and mobile network Project Nie Xiaofang 5110309418 1 2 Abstract: This report is the summary with learning mininet. And it starts with the basics.

More information

Lab 2: Network Troubleshooting NET311 - Computer Networks Management

Lab 2: Network Troubleshooting NET311 - Computer Networks Management Lab 2: Network Troubleshooting NET311 - Computer Networks Management Instructor: Dr. Mostafa Dahshan Objectives 1. Use protocol analyzers, such as Wireshark, to inspect the packet contents. 2. Use basic

More information

Lab 3.3 Configuring Wireshark and SPAN

Lab 3.3 Configuring Wireshark and SPAN Lab 3.3 Configuring Wireshark and SPAN Learning Objectives Install Wireshark on a host PC Configure a switch to use the SPAN monitoring tool. Topology Diagram Scenario In this lab, you will configure a

More information

FSOS VPN Command Line Reference

FSOS VPN Command Line Reference FSOS VPN Command Line Reference Contents 1 VRF Commands...3 1.1 ip vrf...3 1.2 show ip vrf... 4 1.3 ip vrf forwarding... 5 1.4 ip route vrf...6 1.5 arp vrf...7 1.6 show ip arp vrf... 9 1.7 clear ip arp

More information

COMS3200/7201 Computer Networks 1 (Version 1.0)

COMS3200/7201 Computer Networks 1 (Version 1.0) COMS3200/7201 Computer Networks 1 (Version 1.0) Assignment 3 Due 8pm Monday 29 th May 2017. V1 draft (hopefully final) Note that the assignment has three parts Part A, B & C, each worth 50 marks. Total

More information

INTERNET TEACHING LAB: Interior Gateway Protocol (IGP) LAB

INTERNET TEACHING LAB: Interior Gateway Protocol (IGP) LAB INTERNET TEACHING LAB: Interior Gateway Protocol (IGP) LAB Overview In this lab, we will explore some common interior gateway protocols - RIP version 1 (Routing Information Protocol) - OSPF (Open Shortest

More information

Module 8. Routing. Version 2 ECE, IIT Kharagpur

Module 8. Routing. Version 2 ECE, IIT Kharagpur Module 8 Routing Lesson 27 Routing II Objective To explain the concept of same popular routing protocols. 8.2.1 Routing Information Protocol (RIP) This protocol is used inside our autonomous system and

More information

Software Engineering 4C03 Answer Key

Software Engineering 4C03 Answer Key Software Engineering 4C03 Answer Key DAY CLASS Dr. William M. Farmer DURATION OF EXAMINATION: 2 Hours MCMASTER UNIVERSITY FINAL EXAMINATION April 2002 (1) [2 pts.] Conventional encryption cannot be used

More information

CS 326e Lab 2, Edmondson-Yurkanan, Spring 2004 Router Configuration, Routing and Access Lists

CS 326e Lab 2, Edmondson-Yurkanan, Spring 2004 Router Configuration, Routing and Access Lists CS 326e Lab 2, Edmondson-Yurkanan, Spring 2004 Router Configuration, Routing and Access Lists Name: In this lab you will learn: PartA Cisco 2600 Router Configuration Static Routing PartB 20 min Dynamic

More information

Performance Evaluation of The QUAGGA Router

Performance Evaluation of The QUAGGA Router Performance Evaluation of The QUAGGA Router Vincent Omollo, Dr. K. Langat, Dr. S. Musyoki, P. Nyakomita, P. Otieno Department of Telecommunication and Information Engineering, Jomo Kenyatta University

More information

The Internet Ecosystem and Evolution. Lab 1

The Internet Ecosystem and Evolution. Lab 1 The Internet Ecosystem and Evolution Lab 1 GNS3: Installation and configuration GNS3: Network simulator Real router and host images connected into an emulated network: CISCO, Juniper, Vyatta, Linux, etc.

More information

NET323 D: NETWORKS PROTOCOLS

NET323 D: NETWORKS PROTOCOLS 1 NET323 D: NETWORKS PROTOCOLS Networks and Communication Systems Department TA. Anfal AlHazzaa Lab # 6 : Dynamic Route (OSPF Single area) Lab Objectives 2 To connect small LANs using routers. To configure

More information

NET. Networking. Goals of this lab: Prerequisites: LXB

NET. Networking. Goals of this lab: Prerequisites: LXB NET Networking Goals of this lab: To learn how to configure network connections in a UNIX system. To gain experience with fundamental routing. Prerequisites: LXB REVISION: 2.1 [2015-08-28] 2005-2015 DAVID

More information

Internal and External Components p. 213 Modularity p. 217 Cabling p. 219 Summary p. 222 Basic Switch Terminology p. 223 Cisco Switching Fundamentals

Internal and External Components p. 213 Modularity p. 217 Cabling p. 219 Summary p. 222 Basic Switch Terminology p. 223 Cisco Switching Fundamentals Acknowledgments p. xxv Introduction p. xxvii Networking Basics The OSI Model p. 3 What Is a Packet? p. 4 OSI Model Basics p. 6 Other Network Models p. 16 Summary p. 20 Ethernet and Wireless LANs p. 21

More information

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) 2. What is the purpose of Layer-3-Switches

More information

Lab - Using Wireshark to Examine a UDP DNS Capture

Lab - Using Wireshark to Examine a UDP DNS Capture Topology Objectives Part 1: Record a PC s IP Configuration Information Part 2: Use Wireshark to Capture DNS Queries and Responses Part 3: Analyze Captured DNS or UDP Packets Background / Scenario If you

More information

This is a sample Lab report from ECE 461 from previous years. L A B 6

This is a sample Lab report from ECE 461 from previous years. L A B 6 This is a sample Lab report from ECE 461 from previous years. L A B 6 Part 1 1. o the source and destination M A C/IP addresses change when a packet traverses a bridge? Provide an explanation and include

More information

Material for the Networking lab in EITF25 & EITF45

Material for the Networking lab in EITF25 & EITF45 Material for the Networking lab in EITF25 & EITF45 2016 Preparations In order to succeed with the lab, you must have understood some important parts of the course. Therefore, before you come to the lab

More information

Lab - Using Wireshark to Examine a UDP DNS Capture

Lab - Using Wireshark to Examine a UDP DNS Capture Topology Objectives Part 1: Record a PC s IP Configuration Information Part 2: Use Wireshark to Capture DNS Queries and Responses Part 3: Analyze Captured DNS or UDP Packets Background / Scenario If you

More information

Routing Protocols. Autonomous System (AS)

Routing Protocols. Autonomous System (AS) Routing Protocols Two classes of protocols: 1. Interior Routing Information Protocol (RIP) Open Shortest Path First (OSPF) 2. Exterior Border Gateway Protocol (BGP) Autonomous System (AS) What is an AS?

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

ITEC452 Lab Guide Introduction

ITEC452 Lab Guide Introduction Introduction In our laboratory project, we use four Ubuntu Linux Routers with the open-source package Quagga and two Cisco 2851 routers for Cisco-Linux integration skills for our students. Figure Lab-1

More information

COMP2330 Data Communications and Networking

COMP2330 Data Communications and Networking COMP2330 Data Communications and Networking Dr. Chu Xiaowen (Second semester, 2009-2010 academic year) Laboratory 3 Last update: Feb-3-2009 Use Wireshark to Analyze IP Packet Objectives: (1) Use Wireshark

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) Internet Control Message Protocol (ICMP) 1 Overview The IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions: Control functions (ICMP) Multicast signaling

More information

NET323 D: NETWORKS PROTOCOLS

NET323 D: NETWORKS PROTOCOLS 1 NET323 D: NETWORKS PROTOCOLS Networks and Communication Systems Department TA. Anfal AlHazzaa Lab # 5 : Dynamic Route (RIP) Lab Objectives 2 To connect small LANs using routers. To configure dynamic

More information

Detecting Sniffers on Your Network

Detecting Sniffers on Your Network Detecting Sniffers on Your Network Sniffers are typically passive programs They put the network interface in promiscuous mode and listen for traffic They can be detected by programs such as: ifconfig eth0

More information

BIRD Internet Routing Daemon

BIRD Internet Routing Daemon BIRD Internet Routing Daemon Ondřej Zajíček CZ.NIC z.s.p.o. 2015-02-16 BIRD overview BIRD Internet Routing Daemon Routing protocols BGP, OSPF, RIP and BFD IPv4 and IPv6 support Linux and BSD kernel support

More information

COMPUTER NETWORKING LAB EXERCISES (TP) 4

COMPUTER NETWORKING LAB EXERCISES (TP) 4 Name 1: Name 2: Group number: COMPUTER NETWORKING LAB EXERCISES (TP) 4 IPV6 December 14, 2009 Abstract In this TP you will revisit some of the basic networking tools that were introduced in TP1, only this

More information

Basic Cisco Router Configuration: Multiple Routers

Basic Cisco Router Configuration: Multiple Routers Basic Cisco Router Configuration: Multiple Routers Routers rarely exist alone. Most organizations have several to several dozens of routers. In this Lab, we will study two different ways in which routers

More information

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services: NET 331 Computer Networks Lecture 12 Internet Routing Protocols Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson Education

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Hands-On TCP/IP Networking

Hands-On TCP/IP Networking Hands-On Course Description In this Hands-On TCP/IP course, the student will work on a live TCP/IP network, reinforcing the discussed subject material. TCP/IP is the communications protocol suite on which

More information

Study Guide. Module Two

Study Guide. Module Two Module Two Study Guide Study Guide Contents Part One -- Textbook Questions Part Two -- Assignment Questions Part Three -- Vocabulary Chapter 4 Data Link Layer What is the function of the data link layer?

More information

Laboration 2 Troubleshooting Switching and First-Hop Redundancy

Laboration 2 Troubleshooting Switching and First-Hop Redundancy Laboration 2 Troubleshooting Switching and First-Hop Redundancy Topology All contents are Copyright 1992 2011 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1

More information

FACULTY OF ENGINEERING. Lab Experiment

FACULTY OF ENGINEERING. Lab Experiment FACULTY OF ENGINEERING ECE2056 Data Communications and Networking Lab Experiment DCN1: Network Setup and Study Using Routers Last revised: 20-11- 2015 Revised by: GVT Learning Outcome: Pre- Requisite:

More information

FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions

FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions First name: Family name: FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions Jean-Yves Le Boudec, Patrick Thiran 2011 January 15 INSTRUCTIONS 1. The exam is in two time slots. Slot 1

More information

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents Table of Contents Table of Contents Chapter 1 Static Routing Configuration... 1-1 1.1 Introduction... 1-1 1.1.1 Static Route... 1-1 1.1.2 Default Route... 1-1 1.1.3 Application Environment of Static Routing...

More information

Lab Troubleshooting Using traceroute Instructor Version 2500

Lab Troubleshooting Using traceroute Instructor Version 2500 Lab 9.3.4 Troubleshooting Using traceroute Instructor Version 2500 294-833 CCNA 2: Routers and Routing Basics v 3.1 - Lab 9.3.4 Copyright 2003, Cisco Systems, Inc. Objective Use the traceroute Cisco IOS

More information

Table of Contents 1 Static Routing Configuration 1-1

Table of Contents 1 Static Routing Configuration 1-1 Table of Contents 1 Static Routing Configuration 1-1 Introduction 1-1 Static Route 1-1 Default Route 1-1 Application Environment of Static Routing 1-2 Configuring a Static Route 1-2 Configuration Prerequisites

More information

Genie Routing lab. Laboration in data communications GenieLab Department of Information Technology, Uppsala University. Overview

Genie Routing lab. Laboration in data communications GenieLab Department of Information Technology, Uppsala University. Overview Genie Routing lab Laboration in data communications GenieLab Department of Information Technology, Uppsala University Overview This lab deals with linux network setup and routing in the network layer.

More information

Lab Capturing and Analyzing Network Traffic

Lab Capturing and Analyzing Network Traffic Lab 1.2.2 Capturing and Analyzing Network Traffic Host Name IP Address Fa0/0 Subnet Mask IP Address S0/0/0 Subnet Mask Default Gateway RouterA 172.17.0.1 255.255.0.0 192.168.1.1 (DCE) 255.255.255.0 N/A

More information

Finish Network Layer Start Transport Layer. CS158a Chris Pollett Apr 25, 2007.

Finish Network Layer Start Transport Layer. CS158a Chris Pollett Apr 25, 2007. Finish Network Layer Start Transport Layer CS158a Chris Pollett Apr 25, 2007. Outline OSPF BGP IPv6 Transport Layer Services Sockets Example Socket Program OSPF We now look at routing in the internet.

More information

Basics of GNS3 and Cisco IOS

Basics of GNS3 and Cisco IOS Lab00: Objectives: Basics of GNS3 and Cisco IOS IERG4090 Lab00 P.1 Upon completion of this lab, you will be able to: - Extract a given topology GNS3 archive - Start GNS3 - Open the given topology file

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter 5 Network Layer Network Layer IPv4 2 IP Header Application Header + data 3 IP IP IP IP 4 Focus on Transport Layer IP IP 5 Network Layer The Network layer (Layer 3) provides services to exchange

More information

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Topology Objectives Review EIGRP and OSPF configuration. Redistribute into EIGRP. Redistribute into OSPF. Summarize routes in EIGRP. Filter routes

More information

ETS110: Internet Protocol Routing Lab Assignment

ETS110: Internet Protocol Routing Lab Assignment Dept of Electrical and Information Technology 2010-10-13 Jens A Andersson vers 3.1 ETS110: Internet Protocol Routing Lab Assignment 1 Purpose and Goals This lab assignment will give a hands-on experience

More information

IP Routing Volume Organization

IP Routing Volume Organization IP Routing Volume Organization Manual Version 20091105-C-1.03 Product Version Release 6300 series Organization The IP Routing Volume is organized as follows: Features IP Routing Overview Static Routing

More information

THE HONG KONG POLYTECHNIC UNIVERSITY. Department of Computing. This is an open-book examination.

THE HONG KONG POLYTECHNIC UNIVERSITY. Department of Computing. This is an open-book examination. THE HONG KONG POLYTECHNIC UNIVERSITY Department of Computing This is an open-book examination. () Internetworking Protocols and Software 7 January 2013 3 hours [Answer all ten questions.] 2 Please answer

More information

Supplies VLab pod 192 VMs shown above. Forum

Supplies VLab pod 192 VMs shown above. Forum Lab 4: Dynamic routing In this lab we will be using the Quagga package to implement dynamic routing across the three routers shown in the diagram below. Supplies VLab pod 192 VMs shown above Forum Use

More information

Lab Applying a Logical Layered Model to a Physical Network

Lab Applying a Logical Layered Model to a Physical Network Lab 3.1.1 Applying a Logical Layered Model to a Physical Network Objective In this exercise, you will use various Cisco IOS commands and a protocol analyzer to map the layers in the OSI model to the encapsulated

More information

CS356 Lab NIL (Lam) In this lab you will learn: Cisco 2600 Router Configuration Static Routing PartB 20 min Access Control Lists PartC 30 min Explore!

CS356 Lab NIL (Lam) In this lab you will learn: Cisco 2600 Router Configuration Static Routing PartB 20 min Access Control Lists PartC 30 min Explore! CS356 Lab NIL (Lam) In this lab you will learn: PartA Time: 2 hrs 40 min Cisco 2600 Router Configuration Static Routing PartB 20 min Access Control Lists PartC 30 min Explore! Components used: 2 computers

More information

FiberstoreOS. VPN Command Line Reference

FiberstoreOS. VPN Command Line Reference FiberstoreOS VPN Command Line Reference Contents 1 VRF Commands...3 1.1 ip vrf...3 1.2 show ip vrf...3 1.3 ip vrf forwarding...4 1.4 ip route vrf...5 1.5 arp vrf... 5 1.6 show ip arp vrf... 6 1.7 clear

More information

Examsheets Questions and Answers

Examsheets Questions and Answers 640-802 Examsheets Questions and Answers Number: 640-802 Passing Score: 800 Time Limit: 120 min File Version: 17.6 http://www.gratisexam.com/ 640-802 Questions and Answers Exam Name: Cisco Cisco Certified

More information

BTEC Level 3 Extended Diploma

BTEC Level 3 Extended Diploma BTEC Level 3 Extended Diploma Unit 9 Computer Network Routing and Routing Protocols BTEC Level 3 Extended Diploma Introduction to Routing Routing is the process that a router uses to forward packets toward

More information

Laboration 1 Examine the Topology and Basic Troubleshooting Commands

Laboration 1 Examine the Topology and Basic Troubleshooting Commands Laboration 1 Examine the Topology and Basic Troubleshooting Commands Topology All contents are Copyright 1992 2011 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page

More information

ITEC451 Network Design & Analysis Laboratory Guide: Appendix

ITEC451 Network Design & Analysis Laboratory Guide: Appendix Linux Guide Accessing the command prompt Before you can access the command prompt, you must login to the system. The administrative user on Linux machines is named root. On most Linux distributions, you

More information

521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing

521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing 521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing Name Student ID Signature In this exercise we will take a little look at the multimedia and Quality of Service

More information

Module 6 ibgp and Basic ebgp

Module 6 ibgp and Basic ebgp ISP Workshop Lab Module 6 ibgp and Basic ebgp Objective: Simulate four different interconnected ISP backbones using a combination of OSPF, internal BGP, and external BGP. Prerequisites: Module 1 Topology

More information

OSPF Demand Circuit Feature

OSPF Demand Circuit Feature OSPF Demand Circuit Feature Document ID: 5132 Contents Introduction Prerequisites Requirements Components Used Conventions How Is OSPF over Demand Circuit Different from a Normal Circuit? Suppressed Periodic

More information

Design And Implementation Of Virtual Network Testbeds For Routing Protocols. Julius A. Bankole

Design And Implementation Of Virtual Network Testbeds For Routing Protocols. Julius A. Bankole Design And Implementation Of Virtual Network Testbeds For Routing Protocols Julius A. Bankole BSc., University of Ibadan, (Nigeria), 1998 MSc., Beijing University of Posts & Telecommunications, (China),

More information

Lab #4 TECH 4281 Spring 2015

Lab #4 TECH 4281 Spring 2015 Lab #4 TECH 4281 Spring 2015 If you have not done so yet, install GNS3 from http://www.gns3.com/. When starting GNS3, please name the project Lab3_Yourname. For this lab, we will be using the Cisco.bin

More information

CCNA Exploration Network Fundamentals

CCNA Exploration Network Fundamentals CCNA Exploration 4.0 1. Network Fundamentals The goal of this course is to introduce you to fundamental networking concepts and technologies. These online course materials will assist you in developing

More information

Chapter 7 Lab 7-1, Configuring BGP with Default Routing

Chapter 7 Lab 7-1, Configuring BGP with Default Routing Chapter 7 Topology Objectives Configure BGP to exchange routing information with two ISPs. Background The International Travel Agency (ITA) relies extensively on the Internet for sales. For this reason,

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

Table of Contents 1 Static Routing Configuration 1-1

Table of Contents 1 Static Routing Configuration 1-1 Table of Contents 1 Static Routing Configuration 1-1 Introduction 1-1 Static Route 1-1 Default Route 1-1 Application Environment of Static Routing 1-2 Configuring a Static Route 1-2 Configuration Prerequisites

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 5565 Network Architecture and Protocols Lecture 20 Godmar Back Project 2B due in 2 parts: Apr 29 and May 6 Extra Credit Opportunities: Expand simulator (and your implementation) to introduce

More information

S ITGuru Excercise (2: Building the MPLS-capable Core Network)

S ITGuru Excercise (2: Building the MPLS-capable Core Network) S-38.3192 ITGuru Excercise (2: Building the MPLS-capable Core Network) Spring 2006 Original version: Johanna Nieminen and Timo Viipuri (2005) Modified: Timo-Pekka Heikkinen, Juha Järvinen and Yavor Ivanov

More information

Solution of Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Solution of Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Solution of Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) They forward packets

More information