Making TCP more Robust against Packet Reordering

Size: px
Start display at page:

Download "Making TCP more Robust against Packet Reordering"

Transcription

1 Making TCP more Robust against Packet Reordering Alexander Zimmermann Lennart Schulte TCPM, IETF-9, Honolulu, HI, USA November, 24

2 TCPM s feedback at IETF 89 & 9 to the reordering problem in general Strong consensus that we should make TCP more robust against reordering Question: what kind of packet reordering do we want to make TCP robust against? to reordering data & TCP-aNCR measurements Measuring reordering as a fraction of time Considering loss mixed with reordering TCP-aNCR performance vs. Linux Kernel 3.x 2

3 Reordering in Mobile Networks an Update Netradar.org measurement platform Provides information about the quality of mobile Internet connections and mobile devices App available for many mobile device OSes Measurement setup Measurement Aalto University, Finland Performs sec bulk TCP transfer PCAP files are analyzed for reordering < Implements draft-zimmermann-tcpm-reordering-detection 3

4 Reordering Events per Connection (3G & 4G) Observations 3G: w/ Operator 6% of connections with reordering 4G: even more connections with reordering Reordering is operator and network depended Oper (2888) Oper 2 (28) Oper 3 (384)..2 Oper (8277) Oper 2 (8487) Oper 3 (2788). Number of reorderings per connection (#) Number of reorderings per connection (#) 3G Connections 4G Connections 4

5 Absolute Reordering Extent (3G) Observations Absolute reordering extent can be huge Absolute reordering extent is operator depended Operator : ± 78% of reordering events < 3 segments Operator 2: ± 7% of reordering events > 3 segments Reordering extent (Byte) Oper (27786) Oper 2 (5) Oper 3 (32782).2 Oper (27786) Oper 2 (5) Oper 3 (32782) Reordering extent (Byte) 5

6 Reordering Delay (3G & 4G) Observations Two different kinds of packet reordering can be seen Operator : higher, fine grained reordering Operator 2: lower, coarse grained reordering Illustrate: absolute reordering extent is a func. of CWND Oper (27776) Oper 2 (48) Oper 3 (32784) Oper (77233) Oper 2 (4534) Oper 3 (54536) Reordering delay (ms) Reordering delay (ms) 3G Connections 4G Connections 6

7 Relative Reordering Extent (3G & 4G) Observations Relative reordering extent less in > 9% of all cases No strong need to delay a Fast Retransmit more than ± CWND ( ± RTT) Oper (27789) Oper 2 (47) Oper 3 (32784) Oper (77243) Oper 2 (45648) Oper 3 (54536) Relative reordering extent Relative reordering extent 3G Connections 4G Connections 7

8 Bursts and Reordering mixed w/ Losses (3G) Observations Reordering events can be bursty, or just a lot in one recovery / disorder phase Reordering events can be co-located with losses à no spurious recovery All potential recoveries (3G).95 8 Loss Reorder Mixed.9 % of total Oper (24646) Oper 2 (838) Oper 3 (247) 2 Oper Oper 2 Oper 3 Burst size 8

9 Number of Avoidable Recoveries (3G) Putting all together Operator : in 4% of all connections one or more recovery phases could have been avoided For other operators: fewer connections were affected (% &.2%) Reorder phases (#) Oper (2888) Oper 2 (28) Oper 3 (384) 9

10 Summary & Next Steps We should tackle reordering in all dimension à besides prevention strategies, we need a state recovery strategy too detected all kinds of reordering, despite of any reaction à draft-zimmermann-tcpm-reordering-detection start to work a reordering detection to gain more inside à adapt draft-zimmermann-tcpm-reordering-detection We may make TCP not robust against any kind of reordering, i.e. reordering > ± RTT revive draft-blanton-tcp-reordering as overview draft?

11 Document Status draft-zimmermann-tcpm-reordering-detection-2 Extended algorithm for calculation of reordering extents greater than one RTT (steps C.2, S.5 and D.3) Moved reasoning for relative reordering extent to discussion draft-zimmermann-tcpm-reordering-reaction-2 Specify interaction between TCP-aNCR and PRR Fix typo in DupThresh calculation (steps I.5 and E.9)

12 Appendix 2

13 Additional 4G measurement results

14 Absolute Reordering Extent (4G) Observations Operator : ± 98% of reordering events < 3 segments Operator 2: % of reordering events > 3 segments! Same two different kinds of packet reordering as in 3G networks Reordering extent (Byte) Oper (7745) Oper 2 (435) Oper 3 (5444).2 Oper (7745) Oper 2 (435) Oper 3 (5444) Reordering extent (Byte) 4

15 Bursts and Reordering mixed w/ Losses (4G) Observations Operator : reordering events are more bursty than in the 3G networks Reordering events are as much co-located with losses as in the 3G networks All potential recoveries (4G) Loss Reorder Mixed % of total Oper (74386) Oper 2 (4374) Oper 3 (24749) 2 Oper Oper 2 Oper 3 Burst size 5

16 Number of Avoidable Recoveries (4G) Observations Worst is Operator : in 2% of all connections one or more recovery phases could have.98 been avoided Reflects same behavior as in 3G networks Reorder phases (#) Oper (8277) Oper 2 (8487) Oper 3 (2788) 6

17 TCP-aNCR Measurement Results draft-zimmermann-tcpm-reordering-detection-2 draft-zimmermann-tcpm-reordering-reaction-2

18 Evaluation Methodology Traffic model One unidirectional long-lived bulk TCP NewReno flow No competing flows; no cross traffic, no short-lived flows Traffic generation: flowgrind < Network emulation: netem Flows under test Linux 3.6 (w/(o) Timestamps); TCP-(a)NCR (CF & AG) Duration 2s; Repetition: x Bottleneck Bandwidth 2 Mbps, RTT 4ms Reordering Rate 2%, Reordering Delay 2ms 8

19 Bandwidth Variation No Reordering 2 Native Linux DS Native Linux TS TCP-NCR CF TCP-NCR AG TCP-aNCR CF TCP-aNCR AG 8 Throughput [ Mb /s] Bottleneck Bandwidth [ Mb /s] 9

20 Bandwidth Variation Reordering 2 Native Linux DS Native Linux TS TCP-NCR CF TCP-NCR AG TCP-aNCR CF TCP-aNCR AG 8 Throughput [ Mb /s] Bottleneck Bandwidth [ Mb /s] 2

21 Round-Trip Time Variation 25 Native Linux DS Native Linux TS TCP-NCR CF TCP-NCR AG TCP-aNCR CF TCP-aNCR AG 2 Throughput [ Mb /s] Round-Trip Time [ms] 2

22 Reordering Rate Variation 25 Native Linux DS Native Linux TS TCP-NCR CF TCP-NCR AG TCP-aNCR CF TCP-aNCR AG 2 Throughput [ Mb /s] Reordering Rate [%] 22

23 Reordering Delay Variation 25 Native Linux DS Native Linux TS TCP-NCR CF TCP-NCR AG TCP-aNCR CF TCP-aNCR AG 2 Throughput [ Mb /s] Reordering Delay [ms] 23

24 ACK Loss Variation 25 2 Native Linux DS Native Linux TS TCP-NCR CF TCP-NCR AG TCP-aNCR CF TCP-aNCR AG Throughput [ Mb /s] ACK Loss Rate [%] 24

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Improving the Robustness of TCP to Non-Congestion Events

Improving the Robustness of TCP to Non-Congestion Events Improving the Robustness of TCP to Non-Congestion Events Presented by : Sally Floyd floyd@acm.org For the Authors: Sumitha Bhandarkar A. L. Narasimha Reddy {sumitha,reddy}@ee.tamu.edu Problem Statement

More information

Model-based Measurements Of Network Loss

Model-based Measurements Of Network Loss Model-based Measurements Of Network Loss June 28, 2013 Mirja Kühlewind mirja.kuehlewind@ikr.uni-stuttgart.de Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof.

More information

Addressing the Challenges of Web Data Transport

Addressing the Challenges of Web Data Transport Addressing the Challenges of Web Data Transport Venkata N. Padmanabhan Microsoft Research UW Whistler Retreat December 1998 Outline Challenges Solutions TCP Session Fast Start Ongoing and Future Work The

More information

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals Equation-Based Congestion Control for Unicast Applications Sally Floyd, Mark Handley AT&T Center for Internet Research (ACIRI) Jitendra Padhye Umass Amherst Jorg Widmer International Computer Science Institute

More information

IIP Wireless. Presentation Outline

IIP Wireless. Presentation Outline IIP Wireless Improving Internet Protocols for Wireless Links Markku Kojo Department of Computer Science www.cs cs.helsinki.fi/research/.fi/research/iwtcp/ 1 Presentation Outline Project Project Summary

More information

Exercises TCP/IP Networking With Solutions

Exercises TCP/IP Networking With Solutions Exercises TCP/IP Networking With Solutions Jean-Yves Le Boudec Fall 2009 3 Module 3: Congestion Control Exercise 3.2 1. Assume that a TCP sender, called S, does not implement fast retransmit, but does

More information

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Transport Protocols for Data Center Communication Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Contents Motivation and Objectives Methodology Data Centers and Data Center Networks

More information

Studying Fairness of TCP Variants and UDP Traffic

Studying Fairness of TCP Variants and UDP Traffic Studying Fairness of TCP Variants and UDP Traffic Election Reddy B.Krishna Chaitanya Problem Definition: To study the fairness of TCP variants and UDP, when sharing a common link. To do so we conduct various

More information

Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren

Lecture 21: Congestion Control CSE 123: Computer Networks Alex C. Snoeren Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren Lecture 21 Overview" How fast should a sending host transmit data? Not to fast, not to slow, just right Should not be faster than

More information

Linux Plumbers Conference TCP-NV Congestion Avoidance for Data Centers

Linux Plumbers Conference TCP-NV Congestion Avoidance for Data Centers Linux Plumbers Conference 2010 TCP-NV Congestion Avoidance for Data Centers Lawrence Brakmo Google TCP Congestion Control Algorithm for utilizing available bandwidth without too many losses No attempt

More information

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Fast Retransmit Problem: coarsegrain TCP timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Sender Receiver

More information

The Impact of Delay Variations on TCP Performance

The Impact of Delay Variations on TCP Performance INSTITUT FÜR KOMMUNIKATIONSNETZE UND RECHNERSYSTEME Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn The Impact of Delay Variations on TCP Performance Michael Scharf scharf@ikr.uni-stuttgart.de ITG FG 5.2.1 Workshop,

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

TCP Enhancements in Linux. Pasi Sarolahti. Berkeley Summer School Outline

TCP Enhancements in Linux. Pasi Sarolahti. Berkeley Summer School Outline TCP Enhancements in Linux Pasi Sarolahti Berkeley Summer School 6.6.2002 Outline TCP details per IETF RFC s Pitfalls in the specifications Linux TCP congestion control engine Features Discussion on performance

More information

Rob Sherwood Bobby Bhattacharjee Ryan Braud. University of Maryland. Misbehaving TCP Receivers Can Cause Internet-Wide Congestion Collapse p.

Rob Sherwood Bobby Bhattacharjee Ryan Braud. University of Maryland. Misbehaving TCP Receivers Can Cause Internet-Wide Congestion Collapse p. Rob Sherwood Bobby Bhattacharjee Ryan Braud University of Maryland UCSD Misbehaving TCP Receivers Can Cause Internet-Wide Congestion Collapse p.1 Sender Receiver Sender transmits packet 1:1461 Time Misbehaving

More information

TCP SIAD: Congestion Control supporting Low Latency and High Speed

TCP SIAD: Congestion Control supporting Low Latency and High Speed TCP SIAD: Congestion Control supporting Low Latency and High Speed Mirja Kühlewind IETF91 Honolulu ICCRG Nov 11, 2014 Outline Current Research Challenges Scalability in

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat BITAG TWG Boulder, CO February 27, 2013 Kathleen Nichols Van Jacobson Background The persistently full buffer problem, now called bufferbloat,

More information

CSE/EE 461 Lecture 16 TCP Congestion Control. TCP Congestion Control

CSE/EE 461 Lecture 16 TCP Congestion Control. TCP Congestion Control CSE/EE Lecture TCP Congestion Control Tom Anderson tom@cs.washington.edu Peterson, Chapter TCP Congestion Control Goal: efficiently and fairly allocate network bandwidth Robust RTT estimation Additive

More information

Circuit Breakers for Multimedia Congestion Control

Circuit Breakers for Multimedia Congestion Control Circuit Breakers for Multimedia Congestion Control Varun Singh Aalto University Stephen McQuistin, Martin Ellis, and Colin Perkins University of Glasgow Context Video conferencing seeing increasing deployment

More information

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD Overview 15-441 Computer Networking Lecture 9 More TCP & Congestion Control TCP congestion control TCP modern loss recovery TCP modeling Lecture 9: 09-25-2002 2 TCP Congestion Control Changes to TCP motivated

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks George Porter Thanks: Amin Vahdat, Dina Katabi and Alex C. Snoeren Lecture 14 Overview" TCP congestion control review Dukkipati

More information

TCP Roadmap 2.0. Alexander Zimmermann

TCP Roadmap 2.0. Alexander Zimmermann TCP Roadmap 2.0 Alexander Zimmermann 1 Document history (1/4) draft-zimmermann-tcpm-tcp-rfc4614bis-00 No content-related updates Only xml code were updated à new boilerplate and new structure of reference

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Brad Karp UCL Computer Science CS 3035/GZ01 31 st October 2013 Outline Slow Start AIMD Congestion control Throughput, loss, and RTT equation Connection

More information

Congestion Control End Hosts. CSE 561 Lecture 7, Spring David Wetherall. How fast should the sender transmit data?

Congestion Control End Hosts. CSE 561 Lecture 7, Spring David Wetherall. How fast should the sender transmit data? Congestion Control End Hosts CSE 51 Lecture 7, Spring. David Wetherall Today s question How fast should the sender transmit data? Not tooslow Not toofast Just right Should not be faster than the receiver

More information

draft-johansson-rmcat-scream-cc

draft-johansson-rmcat-scream-cc SCReAM Self-Clocked Rate Adaptation for Multimedia draft-johansson-rmcat-scream-cc Ingemar Johansson Zaheduzzaman Sarker Ericsson Research Main features Self-clocked framework similar to TCP Functional

More information

Documents. Configuration. Important Dependent Parameters (Approximate) Version 2.3 (Wed, Dec 1, 2010, 1225 hours)

Documents. Configuration. Important Dependent Parameters (Approximate) Version 2.3 (Wed, Dec 1, 2010, 1225 hours) 1 of 7 12/2/2010 11:31 AM Version 2.3 (Wed, Dec 1, 2010, 1225 hours) Notation And Abbreviations preliminaries TCP Experiment 2 TCP Experiment 1 Remarks How To Design A TCP Experiment KB (KiloBytes = 1,000

More information

Insights into the performance and configuration of TCP in Automotive Ethernet Networks

Insights into the performance and configuration of TCP in Automotive Ethernet Networks Insights into the performance and configuration of TCP in Automotive Ethernet Networks Jörn MIGGE, RealTime-at-Work (RTaW) Nicolas NAVET, University of Luxembourg 2018 IEEE Standards Association (IEEE-SA)

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Amin Vahdat, Dina Katabi Lecture 14 Overview" TCP congestion control review XCP Overview 2 Congestion Control

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 14 Congestion Control Some images courtesy David Wetherall Animations by Nick McKeown and Guido Appenzeller The bad news and the good news The bad news: new

More information

SharkFest 17 Europe. My TCP ain t your TCP. Simon Lindermann. Stack behavior back then and today. Miele & Cie KG.

SharkFest 17 Europe. My TCP ain t your TCP. Simon Lindermann. Stack behavior back then and today. Miele & Cie KG. SharkFest 17 Europe My TCP ain t your TCP Stack behavior back then and today 9th November 2017 Simon Lindermann Miele & Cie KG #sf17eu Estoril, Portugal#sf17eu My TCP Estoril, ain tportugal your TCP 7-10

More information

Performance Consequences of Partial RED Deployment

Performance Consequences of Partial RED Deployment Performance Consequences of Partial RED Deployment Brian Bowers and Nathan C. Burnett CS740 - Advanced Networks University of Wisconsin - Madison ABSTRACT The Internet is slowly adopting routers utilizing

More information

EXPERIENCES EVALUATING DCTCP. Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook

EXPERIENCES EVALUATING DCTCP. Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook EXPERIENCES EVALUATING DCTCP Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook INTRODUCTION Standard TCP congestion control, which only reacts to packet losses has many problems Can

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

Insights into Laminar TCP

Insights into Laminar TCP Insights into Laminar TCP draft-mathis-tcpm-laminar-tcp-01 https://developers.google.com/speed/protocols/tcp-laminar Matt Mathis mattmathis@google.com TCPM, IETF-84 July 30, 2012 Running code Patch against

More information

One More Bit Is Enough

One More Bit Is Enough One More Bit Is Enough Yong Xia, RPI Lakshmi Subramanian, UCB Ion Stoica, UCB Shiv Kalyanaraman, RPI SIGCOMM 05, Philadelphia, PA 08 / 23 / 2005 Motivation #1: TCP doesn t work well in high b/w or delay

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

F-RTO: An Enhanced Recovery Algorithm for TCP Retransmission Timeouts

F-RTO: An Enhanced Recovery Algorithm for TCP Retransmission Timeouts F-RTO: An Enhanced Recovery Algorithm for TCP Retransmission Timeouts Pasi Sarolahti Nokia Research Center pasi.sarolahti@nokia.com Markku Kojo, Kimmo Raatikainen University of Helsinki Department of Computer

More information

CS Transport. Outline. Window Flow Control. Window Flow Control

CS Transport. Outline. Window Flow Control. Window Flow Control CS 54 Outline indow Flow Control (Very brief) Review of TCP TCP throughput modeling TCP variants/enhancements Transport Dr. Chan Mun Choon School of Computing, National University of Singapore Oct 6, 005

More information

BSDCan 2015 June 13 th Extensions to FreeBSD Datacenter TCP for Incremental Deployment Support. Midori Kato

BSDCan 2015 June 13 th Extensions to FreeBSD Datacenter TCP for Incremental Deployment Support. Midori Kato BSDCan 2015 June 13 th Extensions to FreeBSD Datacenter TCP for Incremental Deployment Support Midori Kato DCTCP has been available since FreeBSD 11.0!! 2 FreeBSD DCTCP highlight

More information

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup Chapter 4 Routers with Tiny Buffers: Experiments This chapter describes two sets of experiments with tiny buffers in networks: one in a testbed and the other in a real network over the Internet2 1 backbone.

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

Sebastian Zander, Grenville Armitage. Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology

Sebastian Zander, Grenville Armitage. Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology TCP Experiment Automation Controlled Using Python (TEACUP) Sebastian Zander, Grenville Armitage Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology Overview TCP Experiments

More information

Low Latency Low Loss Scalable throughput (L4S) and RACK an opportunity to remove HoL blocking from links

Low Latency Low Loss Scalable throughput (L4S) and RACK an opportunity to remove HoL blocking from links Low Latency Low Loss Scalable throughput (L4S) and RACK an opportunity to remove HoL blocking from links Bob Briscoe, CableLabs Koen De Schepper, TSVWG,

More information

ADVANCED TOPICS FOR CONGESTION CONTROL

ADVANCED TOPICS FOR CONGESTION CONTROL ADVANCED TOPICS FOR CONGESTION CONTROL Congestion Control The Internet only functions because TCP s congestion control does an effective job of matching traffic demand to available capacity. TCP s Window

More information

Adding Acknowledgement Congestion Control to TCP draft-floyd-tcpm-ackcc-03a.txt. Status of this Memo

Adding Acknowledgement Congestion Control to TCP draft-floyd-tcpm-ackcc-03a.txt. Status of this Memo Internet Engineering Task Force INTERNET-DRAFT Intended status: Experimental Expires: 29 May 2008 S. Floyd ICIR A. Arcia D. Ros ENST Bretagne J. Iyengar Connecticut College 29 November 2007 Adding Acknowledgement

More information

TCP. CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli)

TCP. CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli) TCP CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli) 1 Sources Fall and Stevens, TCP/IP Illustrated Vol. 1, 2nd edition Congestion Avoidance

More information

DualRTT: Enhancing TCP Performance During Delay Spikes

DualRTT: Enhancing TCP Performance During Delay Spikes DualRTT: Enhancing TCP Performance During Delay Spikes Ph.D. School of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq Presentation at Tohoku University, Sendai,

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control : Computer Networks Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control TCP performance We ve seen how TCP the protocol works Sequencing, receive window, connection setup and teardown And

More information

TCP HACK: TCP Header Checksum Option to improve Performance over Lossy Links

TCP HACK: TCP Header Checksum Option to improve Performance over Lossy Links TCP HACK: TCP Header Checksum Option to improve Performance over Lossy Links R. K. Balan, B. P. Lee, K. R. R. Kumar, L. Jacob, W. K. G. Seah,, A. L. Ananda Centre for Internet Research School of Computing

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

TCP congestion control:

TCP congestion control: TCP congestion control: Probing for usable bandwidth: Ideally: transmit as fast as possible (cwnd as large as possible) without loss Increase cwnd until loss (congestion) Loss: decrease cwnd, then begin

More information

Investigations On Making TCP Robust Against Spurious. Retransmissions

Investigations On Making TCP Robust Against Spurious. Retransmissions Investigations On Making TCP Robust Against Spurious Retransmissions Zhu Ying Jie School of Computing National University of Singapore 3 Science Drive 2, Singapore 117543 Investigations On Making TCP Robust

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 15: Congestion Control Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

Brief Overview and Background

Brief Overview and Background Brief Overview and Background In this assignment you will be studying the performance behavior of TCP, using ns 2. At the end of this exercise, you should be able to write simple scripts in ns 2 as well

More information

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver

More information

Making TCP Robust Against Delay Spikes

Making TCP Robust Against Delay Spikes University of Helsinki Department of Computer Science Series of Publications C, No. C-1-3 Making TCP Robust Against Delay Spikes Andrei Gurtov Helsinki, November 1 Report C-1-3 University of Helsinki Department

More information

Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks

Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks Zongsheng Zhang Go Hasegawa Masayuki Murata Osaka University Contents Introduction Analysis of parallel TCP mechanism Numerical

More information

TCP Congestion Control in Wired and Wireless networks

TCP Congestion Control in Wired and Wireless networks TCP Congestion Control in Wired and Wireless networks Mohamadreza Najiminaini (mna28@cs.sfu.ca) Term Project ENSC 835 Spring 2008 Supervised by Dr. Ljiljana Trajkovic School of Engineering and Science

More information

Uncompressed HD Video Streaming with Congestion Control

Uncompressed HD Video Streaming with Congestion Control Uncompressed HD Video Streaming with Congestion Control Ladan Gharai...University of Southern California/ISI Colin Perkins... University of Glasgow http://www.east.isi.edu/~ladan/apan.pdf Outline Goals

More information

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long 6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long Please read Chapter 19 of the 6.02 book for background, especially on acknowledgments (ACKs), timers,

More information

A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. Motivation

A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. Motivation A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks Stephan Bohacek João P. Hespanha Junsoo Lee Katia Obraczka University of Delaware University of Calif.

More information

Extensions to FreeBSD Datacenter TCP for Incremental Deployment Support

Extensions to FreeBSD Datacenter TCP for Incremental Deployment Support Extensions to FreeBSD Datacenter TCP for Incremental Deployment Support Midori Kato Fixstars Solutions midori.kato@fixstars.com Rodney Van Meter Keio University rdv@sfc.keio.ac.jp Lars Eggert NetApp lars@netapp.com

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources Congestion Source 1 Source 2 10-Mbps Ethernet 100-Mbps FDDI Router 1.5-Mbps T1 link Destination Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets

More information

RCRT:Rate-Controlled Reliable Transport Protocol for Wireless Sensor Networks

RCRT:Rate-Controlled Reliable Transport Protocol for Wireless Sensor Networks RCRT:Rate-Controlled Reliable Transport Protocol for Wireless Sensor Networks JEONGYEUP PAEK, RAMESH GOVINDAN University of Southern California 1 Applications that require the transport of high-rate data

More information

Proportional Rate Reduction for TCP

Proportional Rate Reduction for TCP Proportional Rate Reduction for TCP draft-ietf-tcpm-proportional-rate-reduction-00.txt IETF 82 16-Nov-2011 Matt Mathis, Nandita Dukkipati, Yuchung Cheng We want to improve TCP recovery Traces frequently

More information

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse Good Ideas So Far 15-441 Computer Networking Lecture 17 TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window Loss recovery Timeouts Acknowledgement-driven recovery (selective

More information

TCP Congestion Control

TCP Congestion Control TCP Congestion Control Lecture material taken from Computer Networks A Systems Approach, Third Ed.,Peterson and Davie, Morgan Kaufmann, 2003. Computer Networks: TCP Congestion Control 1 TCP Congestion

More information

LEDBAT++: Low priority TCP Congestion Control in Windows

LEDBAT++: Low priority TCP Congestion Control in Windows LEDBAT++: Low priority TCP Congestion Control in Windows Praveen Balasubramanian pravb@microsoft.com Background Software updates, telemetry, or error reporting Should not interfere with Skype call, interactive

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 24: Congestion Control Prof. Alan Mislove (amislove@ccs.neu.edu) Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica,

More information

On the use of TCP's Initial Congestion Window in IPv4 and by Content Delivery Networks

On the use of TCP's Initial Congestion Window in IPv4 and by Content Delivery Networks On the use of TCP's Initial Congestion Window in IPv4 and by Content Delivery Networks Jan Rüth, Christian Bormann, Oliver Hohlfeld http://comsys.rwth-aachen.de/ London / IETF-11, March 218 Why look at

More information

Kathie Nichols CoDel. present by Van Jacobson to the IETF-84 Transport Area Open Meeting 30 July 2012 Vancouver, Canada

Kathie Nichols CoDel. present by Van Jacobson to the IETF-84 Transport Area Open Meeting 30 July 2012 Vancouver, Canada Kathie Nichols CoDel present by Van Jacobson to the IETF-84 Transport Area Open Meeting 30 July 2012 Vancouver, Canada 2 3 Sender Receiver 4 Sender Receiver 5 Sender Receiver Queue forms at a bottleneck

More information

Investigations on TCP Behavior during Handoff

Investigations on TCP Behavior during Handoff Investigations on TCP Behavior during Handoff Thomas Schwabe, Jörg Schüler Technische Universität Dresden Outlook 1. Transport Control Protocol - TCP Overview TCP versions 2. Simulation scenarios Local

More information

Performance Comparison of TFRC and TCP

Performance Comparison of TFRC and TCP ENSC 833-3: NETWORK PROTOCOLS AND PERFORMANCE CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS FINAL PROJECT Performance Comparison of TFRC and TCP Spring 2002 Yi Zheng and Jian Wen {zyi,jwena}@cs.sfu.ca

More information

MEASURING PERFORMANCE OF VARIANTS OF TCP CONGESTION CONTROL PROTOCOLS

MEASURING PERFORMANCE OF VARIANTS OF TCP CONGESTION CONTROL PROTOCOLS MEASURING PERFORMANCE OF VARIANTS OF TCP CONGESTION CONTROL PROTOCOLS Harjinder Kaur CSE, GZSCCET, Dabwali Road, Bathinda, Punjab, India, sidhuharryab@gmail.com Gurpreet Singh Abstract CSE, GZSCCET, Dabwali

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

Adding Acknowledgement Congestion Control to TCP draft-floyd-tcpm-ackcc-05.txt. Status of this Memo

Adding Acknowledgement Congestion Control to TCP draft-floyd-tcpm-ackcc-05.txt. Status of this Memo Internet Engineering Task Force INTERNET-DRAFT Intended status: Informational Expires: 23 July 2009 S. Floyd ICIR A. Arcia D. Ros TELECOM Bretagne J. Iyengar Franklin & Marshall College 23 January 2009

More information

******************************************************************* *******************************************************************

******************************************************************* ******************************************************************* ATM Forum Document Number: ATM_Forum/96-0517 Title: Buffer Requirements for TCP over ABR Abstract: In our previous study [2], it was shown that cell loss due to limited buffering may degrade throughput

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

Congestion Control. Tom Anderson

Congestion Control. Tom Anderson Congestion Control Tom Anderson Bandwidth Allocation How do we efficiently share network resources among billions of hosts? Congestion control Sending too fast causes packet loss inside network -> retransmissions

More information

TCP Incast problem Existing proposals

TCP Incast problem Existing proposals TCP Incast problem & Existing proposals Outline The TCP Incast problem Existing proposals to TCP Incast deadline-agnostic Deadline-Aware Datacenter TCP deadline-aware Picasso Art is TLA 1. Deadline = 250ms

More information

Christos Papadopoulos

Christos Papadopoulos CS557: Measurements Christos Papadopoulos Adapted by Lorenzo De Carli Outline End-to-End Packet Dynamics - Paxon99b Wireless measurements - Aguayo04a Note: both these studies are old, so the results have

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Modeling the Goodput of TCP NewReno in Cellular Environments

Modeling the Goodput of TCP NewReno in Cellular Environments Modeling the Goodput of TCP NewReno in Cellular Environments Sushant Sharma, Donald. Gillies, u-chun Feng Corporate R&D, Qualcomm San Diego, CA Synergy Lab, Virginia Tech Blacksburg, VA Abstract In this

More information

TCP Performance. EE 122: Intro to Communication Networks. Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim

TCP Performance. EE 122: Intro to Communication Networks. Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim TCP Performance EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks

More information

THE NETWORK PERFORMANCE OVER TCP PROTOCOL USING NS2

THE NETWORK PERFORMANCE OVER TCP PROTOCOL USING NS2 THE NETWORK PERFORMANCE OVER TCP PROTOCOL USING NS2 Ammar Abdulateef Hadi, Raed A. Alsaqour and Syaimak Abdul Shukor School of Computer Science, Faculty of Information Science and Technology, University

More information

Evaluating the Eifel Algorithm for TCP in a GPRS Network

Evaluating the Eifel Algorithm for TCP in a GPRS Network Evaluating the Eifel Algorithm for TCP in a GPRS Network Andrei Gurtov University of Helsinki Finland e-mail: Andrei.Gurtov@cs.Helsinki.FI Reiner Ludwig Ericsson Research Germany e-mail: Reiner.Ludwig@Ericsson.com

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

Traffic Management using Multilevel Explicit Congestion Notification

Traffic Management using Multilevel Explicit Congestion Notification Traffic Management using Multilevel Explicit Congestion Notification Arjan Durresi, Mukundan Sridharan, Chunlei Liu, Mukul Goyal Department of Computer and Information Science The Ohio State University

More information

Reorder Detecting TCP (RD-TCP) with Explicit Packet Drop Notification (EPDN)

Reorder Detecting TCP (RD-TCP) with Explicit Packet Drop Notification (EPDN) 1 Reorder Detecting TCP () with Explicit Packet Drop Notification (EPDN) Arjuna Sathiaseelan Tomasz Radzik Department of Computer Science, King s College London, Strand, London WC2R2LS, United Kingdom

More information

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. Internet Engineering Task Force INTERNET-DRAFT Intended status: Informational Expires: 4 January 2010 S. Floyd ICIR A. Arcia D. Ros TELECOM Bretagne J. Iyengar Franklin & Marshall College 4 July 2009 Adding

More information