Kathie Nichols CoDel. present by Van Jacobson to the IETF-84 Transport Area Open Meeting 30 July 2012 Vancouver, Canada

Size: px
Start display at page:

Download "Kathie Nichols CoDel. present by Van Jacobson to the IETF-84 Transport Area Open Meeting 30 July 2012 Vancouver, Canada"

Transcription

1 Kathie Nichols CoDel present by Van Jacobson to the IETF-84 Transport Area Open Meeting 30 July 2012 Vancouver, Canada

2 2

3 3

4 Sender Receiver 4

5 Sender Receiver 5

6 Sender Receiver Queue forms at a bottleneck There s probably just one bottleneck (each flow sees exactly one) Choices: can move the queue (by making a new bottleneck) or control it. 5

7 Good Queue / Bad Queue Queue length Time 6

8 Good Queue / Bad Queue Queue length Time Queue length Time 6

9 Good Queue / Bad Queue Queue length Good queue goes away in an RTT, bad queue hangs around. Time queue length min() over a sliding window measures bad queue... Queue length... as long as window is at least an RTT wide. Time 7

10 Good Queue / Bad Queue Queue length Good queue goes away in an RTT, bad queue hangs around. Time tracking min() in a sliding window gives bad queue... Queue length... as long as window is at least an RTT wide. Time 8

11 Good Queue / Bad Queue Queue length Good queue goes away in an RTT, bad queue hangs around. Time tracking min() in a sliding window gives bad queue... Queue length... as long as window is at least an RTT wide. Time 8

12 How big is the queue? Can measure size in bytes interesting if worried about overflow requires output bandwidth to compute delay Can measure packet s sojourn time direct measure of delay easy (no enque/deque coupling so works with any packet pipeline). 9

13 Sojourn Time Works with time-varying output bandwidth (e.g., wireless and shared links) Better behaved than queue length no high frequency phase noise Includes everything that affects packet so works for multi-queue links 10

14 Two views of a Queue Q delay (ms.) Top graph is sojourn time, bottom is queue size. Time (sec.) (one ftp + web traffic; 10Mbps bottleneck; 80ms RTT; TCP Reno) Q size (ms.)

15 Two views of a Queue Q delay (ms.) Top graph is sojourn time, bottom is queue size. Time (sec.) (one ftp + web traffic; 10Mbps bottleneck; 80ms RTT; TCP Reno) Q size (ms.)

16 Two views of a Queue Q delay (ms.) Top graph is sojourn time, bottom is queue size. (one ftp + web traffic; 10Mbps bottleneck; 80ms RTT; TCP Reno) Q size (ms.) Time (sec.) 12

17 Multi-Queue behavior 13

18 Controlling Queue a) Measure what you ve got b) Decide what you want c) If (a) isn t (b), move it toward (b) 14

19 Controlling Queue a) Measure what you ve got b) Decide what you want c) If (a) isn t (b), move it toward (b) - Estimator - Setpoint - Control loop 15

20 How much bad queue do we want? Can t let the link go idle (need one or two MTU of backlog) More than this will give higher utilization at low degree of multiplexing (1-3 bulk xfers) at the cost of higher delay Can the trade-off be quantified? 16

21 Utilization vs. Target for a single Reno TCP Bottleneck Link Utilization (% of max) Target (% of RTT) 17

22 Power vs. Target for a Reno TCP Average Power (Xput/Delay) Target (as % of RTT) 18

23 Power vs. Target for a Reno TCP Average Power (Xput/Delay) Target (as % of RTT) 18

24 Power vs. Target for a Reno TCP Average Power (Xput/Delay) Target (as % of RTT) 19

25 Power vs. Target for a Reno TCP Average Power (Xput/Delay) Target (as % of RTT) 19

26 20

27 Setpoint target of 5% of nominal RTT (5ms for 100ms RTT) yields substantial utilization improvement for small added delay. 20

28 Setpoint target of 5% of nominal RTT (5ms for 100ms RTT) yields substantial utilization improvement for small added delay. Result holds independent of bandwidth and congestion control algorithm (tested with Reno, Cubic & Westwood). 20

29 Setpoint target of 5% of nominal RTT (5ms for 100ms RTT) yields substantial utilization improvement for small added delay. Result holds independent of bandwidth and congestion control algorithm (tested with Reno, Cubic & Westwood). CoDel has no free parameters: runningmin window width determined by worstcase expected RTT and target is a fixed fraction of same RTT. 20

30 Algorithm & Control Law (see I-D, CACM paper and Linux kernels >= 3.5) 21

31 Eric Dumazet has combined CoDel with a simple SFQ ( buckets with RR service discipline). Cost in state & cycles is small and improvement is big. provides isolation - protects low rate CBR and web for a better user experience. Makes IW10 concerns a non-issue. gets rid of bottleneck bi-directional traffic problems ( ack-compression burstiness) improves flow mixing for better network performance (reduce HoL blocking) Since we re adding code, add fqcodel, not codel. 22

32 Where are we? thanks to Jim Gettys and the ACM, have dead-tree publication to protect ideas un-encumbered code (BSD/GPL dual-license) available for ns2, ns3 & linux in both simulation and real deployment, CoDel does no harm it either does nothing or reduces delay without affecting xput. 23

33 What needs to be done Still looking at parts of the algorithm but changes likely to be 2nd order. Would like to see CoDel on both ends of every home/small-office access link but: - We need to know more about how traffic behaves on particular bottlenecks (wi-fi, 3G cellular, cable modem) - There are system issues with deployment 24

34 Deployment Issues Home Gateway RTR/AP Cable Modem Headend 25

35 Deployment Issues Home Gateway RTR/AP Cable Modem Headend Linux kernel Protocol stack Device Driver Device 26

36 Deployment Issues Home Gateway RTR/AP Cable Modem Headend Linux kernel Protocol stack Device Driver Device Cellphone Phone CPU 3G Modem RAN? SGSN 27

37 Our thanks to: Jim Gettys CoDel early experimenters, particularly Dave Taht Eric Dumazet ACM Queue Eben Moglen 28

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat BITAG TWG Boulder, CO February 27, 2013 Kathleen Nichols Van Jacobson Background The persistently full buffer problem, now called bufferbloat,

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control : Computer Networks Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control TCP performance We ve seen how TCP the protocol works Sequencing, receive window, connection setup and teardown And

More information

CS419: Computer Networks. Lecture 10, Part 3: Apr 13, 2005 Transport: TCP performance

CS419: Computer Networks. Lecture 10, Part 3: Apr 13, 2005 Transport: TCP performance : Computer Networks Lecture 10, Part 3: Apr 13, 2005 Transport: TCP performance TCP performance We ve seen how TCP the protocol works But there are a lot of tricks required to make it work well Indeed,

More information

On the Effectiveness of CoDel for Active Queue Management

On the Effectiveness of CoDel for Active Queue Management 1 13 Third International Conference on Advanced Computing & Communication Technologies On the Effectiveness of CoDel for Active Queue Management Dipesh M. Raghuvanshi, Annappa B., Mohit P. Tahiliani Department

More information

The State of the Art in Bufferbloat Testing and Reduction on Linux

The State of the Art in Bufferbloat Testing and Reduction on Linux The State of the Art in Bufferbloat Testing and Reduction on Linux Toke Høiland-Jørgensen Roskilde University IETF 86, 12th March 2013 1 / 31 Outline Introduction Recent changes in the Linux kernel Testing

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

BLEST: Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks. Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli

BLEST: Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks. Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli BLEST: Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli Multipath TCP: What is it? TCP/IP is built around the notion of a

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

Appendix B. Standards-Track TCP Evaluation

Appendix B. Standards-Track TCP Evaluation 215 Appendix B Standards-Track TCP Evaluation In this appendix, I present the results of a study of standards-track TCP error recovery and queue management mechanisms. I consider standards-track TCP error

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Transport Layer TCP / UDP

Transport Layer TCP / UDP Transport Layer TCP / UDP Chapter 6 section 6.5 is TCP 12 Mar 2012 Layers Application Transport Why do we need the Transport Layer? Network Host-to-Network/Physical/DataLink High Level Overview TCP (RFC

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

ENSC 835 project (2002) TCP performance over satellite links. Kenny, Qing Shao Grace, Hui Zhang

ENSC 835 project (2002) TCP performance over satellite links. Kenny, Qing Shao Grace, Hui Zhang ENSC 835 project (2002) TCP performance over satellite links Kenny, Qing Shao Qshao@cs.sfu.ca Grace, Hui Zhang Hzhange@cs.sfu.ca Road map Introduction to satellite communications Simulation implementation

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle Dissertation Defense May 14, 2003 Advisor: Kevin Jeffay Research Question Can the use of exact timing information improve

More information

ENSC 835 project (2002) TCP performance over satellite links. Kenny, Qing Shao Grace, Hui Zhang

ENSC 835 project (2002) TCP performance over satellite links. Kenny, Qing Shao Grace, Hui Zhang ENSC 835 project (2002) TCP performance over satellite links Kenny, Qing Shao Qshao@cs.sfu.ca Grace, Hui Zhang Hzhange@cs.sfu.ca Road map Introduction to satellite communications Simulation implementation

More information

14-740: Fundamentals of Computer and Telecommunication Networks

14-740: Fundamentals of Computer and Telecommunication Networks 14-740: Fundamentals of Computer and Telecommunication Networks Fall 2018 Quiz #2 Duration: 75 minutes ANSWER KEY Name: Andrew ID: Important: Each question is to be answered in the space provided. Material

More information

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks Random Early Detection (RED) gateways Sally Floyd CS 268: Computer Networks floyd@eelblgov March 20, 1995 1 The Environment Feedback-based transport protocols (eg, TCP) Problems with current Drop-Tail

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

Performance Analysis of TCP Variants

Performance Analysis of TCP Variants 102 Performance Analysis of TCP Variants Abhishek Sawarkar Northeastern University, MA 02115 Himanshu Saraswat PES MCOE,Pune-411005 Abstract The widely used TCP protocol was developed to provide reliable

More information

Performance Consequences of Partial RED Deployment

Performance Consequences of Partial RED Deployment Performance Consequences of Partial RED Deployment Brian Bowers and Nathan C. Burnett CS740 - Advanced Networks University of Wisconsin - Madison ABSTRACT The Internet is slowly adopting routers utilizing

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

Congestion Control for High Bandwidth-delay Product Networks

Congestion Control for High Bandwidth-delay Product Networks Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Presented by Chi-Yao Hong Adapted from slides by Dina Katabi CS598pbg Sep. 10, 2009 Trends in the Future

More information

Performance-oriented Congestion Control

Performance-oriented Congestion Control Performance-oriented Congestion Control Mo Dong, Qingxi Li, Doron Zarchy*, P. Brighten Godfrey and Michael Schapira* University of Illinois at Urbana Champaign *Hebrew University of Jerusalem Mo Dong Qingxi

More information

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer Midterm Study Sheet Below is a list of topics that will be covered on the midterm exam. Some topics may have summaries to clarify the coverage of the topic during the lecture. Disclaimer: the list may

More information

BBR Congestion Control: IETF 100 Update: BBR in shallow buffers

BBR Congestion Control: IETF 100 Update: BBR in shallow buffers BBR Congestion Control: IETF 100 Update: BBR in shallow buffers Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh Ian Swett, Jana Iyengar, Victor Vasiliev Van Jacobson https://groups.google.com/d/forum/bbr-dev

More information

Exercises TCP/IP Networking With Solutions

Exercises TCP/IP Networking With Solutions Exercises TCP/IP Networking With Solutions Jean-Yves Le Boudec Fall 2009 3 Module 3: Congestion Control Exercise 3.2 1. Assume that a TCP sender, called S, does not implement fast retransmit, but does

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

Peer-to-Peer Protocols and Data Link Layer. Chapter 5 from Communication Networks Leon-Gracia and Widjaja

Peer-to-Peer Protocols and Data Link Layer. Chapter 5 from Communication Networks Leon-Gracia and Widjaja Peer-to-Peer Protocols and Data Link Layer Chapter 5 from Communication Networks Leon-Gracia and Widjaja Peer-to-Peer Protocols At each layer two (or more) entities execute These are peer processes For

More information

Multimedia-unfriendly TCP Congestion Control and Home Gateway Queue Management

Multimedia-unfriendly TCP Congestion Control and Home Gateway Queue Management Multimedia-unfriendly TCP Congestion Control and Home Gateway Queue Management Lawrence Stewart α, David Hayes α, Grenville Armitage α, Michael Welzl β, Andreas Petlund β α Centre for Advanced Internet

More information

Can Congestion-controlled Interactive Multimedia Traffic Co-exist with TCP? Colin Perkins

Can Congestion-controlled Interactive Multimedia Traffic Co-exist with TCP? Colin Perkins Can Congestion-controlled Interactive Multimedia Traffic Co-exist with TCP? Colin Perkins Context: WebRTC WebRTC project has been driving interest in congestion control for interactive multimedia Aims

More information

Introducing optical switching into the network

Introducing optical switching into the network Introducing optical switching into the network ECOC 2005, Glasgow Nick McKeown High Performance Networking Group Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm Network religion Bigger

More information

Linux Plumbers Conference TCP-NV Congestion Avoidance for Data Centers

Linux Plumbers Conference TCP-NV Congestion Avoidance for Data Centers Linux Plumbers Conference 2010 TCP-NV Congestion Avoidance for Data Centers Lawrence Brakmo Google TCP Congestion Control Algorithm for utilizing available bandwidth without too many losses No attempt

More information

Congestion Control. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Congestion Control. Daniel Zappala. CS 460 Computer Networking Brigham Young University Congestion Control Daniel Zappala CS 460 Computer Networking Brigham Young University 2/25 Congestion Control how do you send as fast as possible, without overwhelming the network? challenges the fastest

More information

Linux 2.4 Implementation of Westwood+ TCP with Rate Halving : A Performance Evaluation over the Internet

Linux 2.4 Implementation of Westwood+ TCP with Rate Halving : A Performance Evaluation over the Internet Linux 2.4 Implementation of Westwood+ TCP with Rate Halving : A Performance Evaluation over the Internet Angelo Dell'Aera Luigi Alfredo Grieco Saverio Mascolo Dipartimento di Elettrotecnica ed Elettronica

More information

Multipath Transport for Virtual Private Networks

Multipath Transport for Virtual Private Networks Multipath Transport for Virtual Private Networks Daniel Lukaszewski 1 Geoffrey Xie 2 1 U.S. Department of Defense 2 Department of Computer Science Naval Postgraduate School USENIX Security 2017 Computer

More information

Internet Engineering Task Force (IETF) J. Iyengar, Ed. Google January 2018

Internet Engineering Task Force (IETF) J. Iyengar, Ed. Google January 2018 Internet Engineering Task Force (IETF) Request for Comments: 8289 Category: Experimental ISSN: 2070-1721 K. Nichols Pollere, Inc. V. Jacobson A. McGregor, Ed. J. Iyengar, Ed. Google January 2018 Controlled

More information

Lecture 2: Internet Structure

Lecture 2: Internet Structure Lecture 2: Internet Structure COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose and K.W. Ross,

More information

Wireless TCP Performance Issues

Wireless TCP Performance Issues Wireless TCP Performance Issues Issues, transport layer protocols Set up and maintain end-to-end connections Reliable end-to-end delivery of data Flow control Congestion control Udp? Assume TCP for the

More information

On the Performance Characteristics of WLANs: Revisited

On the Performance Characteristics of WLANs: Revisited On the Performance Characteristics of WLANs: Revisited S. Choi,, K. Park and C.K. Kim Sigmetrics 2005 Banff, Canada Presenter - Bob Kinicki Advanced Computer Networks Fall 2007 Outline Introduction System

More information

Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet

Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet Aamir Shaikh and Kenneth J. Christensen Department of Computer Science and Engineering University of South Florida Tampa,

More information

WQM: Practical, Adaptive, and Lightweight Wireless Queue Management System

WQM: Practical, Adaptive, and Lightweight Wireless Queue Management System WQM: Practical, Adaptive, and Lightweight Wireless Queue Management System Basem Shihada Computer Science & Electrical Engineering CEMSE, KAUST University of Waterloo Seminar December 8 th, 2014 2 3 How

More information

Dummynet AQM v0.1 CoDel and FQ-CoDel for FreeBSD s ipfw/dummynet framework

Dummynet AQM v0.1 CoDel and FQ-CoDel for FreeBSD s ipfw/dummynet framework Dummynet AQM v.1 CoDel and FQ-CoDel for FreeBSD s ipfw/dummynet framework Rasool Al-Saadi, Grenville Armitage Centre for Advanced Internet Architectures, Technical Report 16226A Swinburne University of

More information

Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren

Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren Lecture 22: Buffering & Scheduling CSE 123: Computer Networks Alex C. Snoeren Lecture 23 Overview Buffer Management FIFO RED Traffic Policing/Scheduling 2 Key Router Challenges Buffer management: which

More information

Performance Enhancement Of TCP For Wireless Network

Performance Enhancement Of TCP For Wireless Network P a g e 32 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology Performance Enhancement Of TCP For Wireless Network 1 Pranab Kumar Dhar, 2 Mohammad Ibrahim Khan, 3

More information

Computer Networks and the Internet. CMPS 4750/6750: Computer Networks

Computer Networks and the Internet. CMPS 4750/6750: Computer Networks Computer Networks and the Inter CMPS 4750/6750: Computer Networks Outline What Is the Inter? Access Networks Packet Switching and Circuit Switching A closer look at delay, loss, and throughput Interconnection

More information

Making TCP more Robust against Packet Reordering

Making TCP more Robust against Packet Reordering Making TCP more Robust against Packet Reordering Alexander Zimmermann Lennart Schulte TCPM, IETF-9, Honolulu, HI, USA November, 24 TCPM s feedback

More information

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013 Congestion Control Kai Shen Principles of Congestion Control Congestion: Informally: too many sources sending too much data too fast for the network to handle Results of congestion: long delays (e.g. queueing

More information

Transport Layer (Congestion Control)

Transport Layer (Congestion Control) Transport Layer (Congestion Control) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Congestion Collapse Congestion

More information

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Haowei Bai Honeywell Aerospace Mohammed Atiquzzaman School of Computer Science University of Oklahoma 1 Outline Introduction

More information

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Semra.gulder@crc.ca, mathieu.deziel@crc.ca Abstract: This paper describes a QoS mechanism suitable for Mobile Ad Hoc Networks

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

ENSC 835 project TCP performance over satellite links. Kenny, Qing Shao Grace, Hui Zhang

ENSC 835 project TCP performance over satellite links. Kenny, Qing Shao Grace, Hui Zhang ENSC 835 project TCP performance over satellite links Kenny, Qing Shao Qshao@cs.sfu.ca Grace, Hui Zhang Hzhange@cs.sfu.ca Road map Introduction to satellite communications Simulation implementation Window

More information

Using Dummynet AQM - FreeBSD s CoDel, PIE, FQ-CoDel and FQ-PIE with TEACUP v1.0 testbed

Using Dummynet AQM - FreeBSD s CoDel, PIE, FQ-CoDel and FQ-PIE with TEACUP v1.0 testbed Using Dummynet AQM - FreeBSD s CoDel, PIE, FQ-CoDel and FQ-PIE with TEACUP v1. testbed Jonathan Kua, Rasool Al-Saadi, Grenville Armitage Centre for Advanced Internet Architectures, Technical Report 1678A

More information

High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK

High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK [r.tasker@dl.ac.uk] DataTAG is a project sponsored by the European Commission - EU Grant IST-2001-32459

More information

Promoting the Use of End-to-End Congestion Control in the Internet

Promoting the Use of End-to-End Congestion Control in the Internet Promoting the Use of End-to-End Congestion Control in the Internet Sally Floyd and Kevin Fall IEEE/ACM Transactions on Networking May 1999 ACN: TCP Friendly 1 Outline The problem of Unresponsive Flows

More information

CPSC 441 COMPUTER COMMUNICATIONS MIDTERM EXAM

CPSC 441 COMPUTER COMMUNICATIONS MIDTERM EXAM CPSC 441 COMPUTER COMMUNICATIONS MIDTERM EXAM Department of Computer Science University of Calgary Professor: Carey Williamson November 1, 2005 This is a CLOSED BOOK exam. Textbooks, notes, laptops, personal

More information

Sizing Router Buffers

Sizing Router Buffers Sizing Router Buffers Sachin Katti, CS244 Slides courtesy: Nick McKeown Routers need Packet Buffers It s well known that routers need packet buffers It s less clear why and how much Goal of this work is

More information

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Fast Retransmit Problem: coarsegrain TCP timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Sender Receiver

More information

TCP in Asymmetric Environments

TCP in Asymmetric Environments TCP in Asymmetric Environments KReSIT, IIT Bombay Vijay T. Raisinghani TCP in Asymmetric Environments 1 TCP Overview Four congestion control algorithms Slow start Congestion avoidance Fast retransmit Fast

More information

Flow-start: Faster and Less Overshoot with Paced Chirping

Flow-start: Faster and Less Overshoot with Paced Chirping Flow-start: Faster and Less Overshoot with Paced Chirping Joakim Misund, Simula and Uni Oslo Bob Briscoe, Independent IRTF ICCRG, Jul 2018 The Slow-Start

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks

Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan M.I.T. CSAIL http://alfalfa.mit.edu April 5, 2013 Cellular networks

More information

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup Chapter 4 Routers with Tiny Buffers: Experiments This chapter describes two sets of experiments with tiny buffers in networks: one in a testbed and the other in a real network over the Internet2 1 backbone.

More information

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm QoS on Low Bandwidth High Delay Links Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm Agenda QoS Some Basics What are the characteristics of High Delay Low Bandwidth link What factors

More information

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services Overview 15-441 15-441 Computer Networking 15-641 Lecture 19 Queue Management and Quality of Service Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 What is QoS? Queuing discipline and scheduling

More information

Link Layer. (continued)

Link Layer. (continued) Link Layer (continued) Where we are in the Course Moving on up to the Link Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Topics 1. Framing Delimiting start/end of

More information

CSE 573S Protocols for Computer Networks (Spring 2005 Final Project)

CSE 573S Protocols for Computer Networks (Spring 2005 Final Project) CSE 573S Protocols for Computer Networks (Spring 2005 Final Project) To Investigate the degree of congestion control synchronization of window-based connections bottlenecked at the same link Kumar, Vikram

More information

TCP LoLa Toward Low Latency and High Throughput Congestion Control

TCP LoLa Toward Low Latency and High Throughput Congestion Control TCP LoLa Toward Low Latency and High Throughput Congestion Control Mario Hock, Felix Neumeister, Martina Zitterbart, Roland Bless KIT The Research University in the Helmholtz Association www.kit.edu Motivation

More information

Model-based Measurements Of Network Loss

Model-based Measurements Of Network Loss Model-based Measurements Of Network Loss June 28, 2013 Mirja Kühlewind mirja.kuehlewind@ikr.uni-stuttgart.de Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof.

More information

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals Equation-Based Congestion Control for Unicast Applications Sally Floyd, Mark Handley AT&T Center for Internet Research (ACIRI) Jitendra Padhye Umass Amherst Jorg Widmer International Computer Science Institute

More information

CS 43: Computer Networks. 19: TCP Flow and Congestion Control October 31, Nov 2, 2018

CS 43: Computer Networks. 19: TCP Flow and Congestion Control October 31, Nov 2, 2018 CS 43: Computer Networks 19: TCP Flow and Congestion Control October 31, Nov 2, 2018 Five-layer Internet Model Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability

More information

ECEN Final Exam Fall Instructor: Srinivas Shakkottai

ECEN Final Exam Fall Instructor: Srinivas Shakkottai ECEN 424 - Final Exam Fall 2013 Instructor: Srinivas Shakkottai NAME: Problem maximum points your points Problem 1 10 Problem 2 10 Problem 3 20 Problem 4 20 Problem 5 20 Problem 6 20 total 100 1 2 Midterm

More information

A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. Motivation

A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. Motivation A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks Stephan Bohacek João P. Hespanha Junsoo Lee Katia Obraczka University of Delaware University of Calif.

More information

Congestion Control. Resource allocation and congestion control problem

Congestion Control. Resource allocation and congestion control problem Congestion Control 188lecture8.ppt Pirkko Kuusela 1 Resource allocation and congestion control problem Problem 1: Resource allocation How to effectively and fairly allocate resources among competing users?

More information

Chapter 6: Congestion Control and Resource Allocation

Chapter 6: Congestion Control and Resource Allocation Chapter 6: Congestion Control and Resource Allocation CS/ECPE 5516: Comm. Network Prof. Abrams Spring 2000 1 Section 6.1: Resource Allocation Issues 2 How to prevent traffic jams Traffic lights on freeway

More information

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Transport Protocols for Data Center Communication Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Contents Motivation and Objectives Methodology Data Centers and Data Center Networks

More information

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers TCP & Routers 15-744: Computer Networking RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay Product Networks L-6

More information

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012 CSE 473 Introduction to Computer Networks Jon Turner Exam 2 Your name here: 11/7/2012 1. (10 points). The diagram at right shows a DHT with 16 nodes. Each node is labeled with the first value in its range

More information

TCP Westwood: Efficient Transport for High-speed wired/wireless Networks

TCP Westwood: Efficient Transport for High-speed wired/wireless Networks TCP Westwood: Efficient Transport for High-speed wired/wireless Networks Mario Gerla, Medy Sanadidi, Ren Wang and Massimo Valla UCLA Computer Science 1 Outline 1. TCP Overview 2. Bandwidth Estimation and

More information

The War Between Mice and Elephants

The War Between Mice and Elephants The War Between Mice and Elephants (by Liang Guo and Ibrahim Matta) Treating Short Connections fairly against Long Connections when they compete for Bandwidth. Advanced Computer Networks CS577 Fall 2013

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

Congestion Collapse in the 1980s

Congestion Collapse in the 1980s Congestion Collapse Congestion Collapse in the 1980s Early TCP used fixed size window (e.g., 8 packets) Initially fine for reliability But something happened as the ARPANET grew Links stayed busy but transfer

More information

CS 638 Lab 6: Transport Control Protocol (TCP)

CS 638 Lab 6: Transport Control Protocol (TCP) CS 638 Lab 6: Transport Control Protocol (TCP) Joe Chabarek and Paul Barford University of Wisconsin Madison jpchaba,pb@cs.wisc.edu The transport layer of the network protocol stack (layer 4) sits between

More information

Effect of SCTP Multistreaming over Satellite Links

Effect of SCTP Multistreaming over Satellite Links Effect of SCTP Multistreaming over Satellite Links Mohammed Atiquzzaman (Co-author: William Ivancic (NASA)) School of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq

More information

Notes on using RED for Queue Management and Congestion Avoidance

Notes on using RED for Queue Management and Congestion Avoidance Notes on using RED for Queue Management and Congestion Avoidance Van Jacobson van@ee.lbl.gov Network Research Group Berkeley National Laboratory Berkeley, CA 94720 NANOG 13 Dearborn, MI June 8, 1998 c

More information

Network Research and Linux at the Hamilton Institute, NUIM.

Network Research and Linux at the Hamilton Institute, NUIM. Network Research and Linux at the Hamilton Institute, NUIM. David Malone 4 November 26 1 What has TCP ever done for Us? Demuxes applications (using port numbers). Makes sure lost data is retransmitted.

More information

Congestion Control For Coded TCP. Doug Leith

Congestion Control For Coded TCP. Doug Leith Congestion Control For Coded TCP Doug Leith Outline Why do error-correction coding at the transport layer? Congestion control on lossy paths Implementation & performance measurements Why error-correction

More information

Computer Networking. Queue Management and Quality of Service (QOS)

Computer Networking. Queue Management and Quality of Service (QOS) Computer Networking Queue Management and Quality of Service (QOS) Outline Previously:TCP flow control Congestion sources and collapse Congestion control basics - Routers 2 Internet Pipes? How should you

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-6 Router Congestion Control TCP & Routers RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED TCP Congestion Control 15-744: Computer Networking L-4 TCP Congestion Control RED Assigned Reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [TFRC] Equation-Based Congestion Control

More information

PCC: Performance-oriented Congestion Control

PCC: Performance-oriented Congestion Control PCC: Performance-oriented Congestion Control Michael Schapira Hebrew University of Jerusalem and Compira Labs (co-founder and chief scientist) Performance-oriented Congestion Control PCC: Re-architecting

More information

TCP Congestion Control Beyond Bandwidth-Delay Product for Mobile Cellular Networks

TCP Congestion Control Beyond Bandwidth-Delay Product for Mobile Cellular Networks TCP Congestion Control Beyond Bandwidth-Delay Product for Mobile Cellular Networks Wai Kay Leong, Zixiao Wang, Ben Leong The 13th International Conference on emerging Networking EXperiments and Technologies

More information

TCP Westwood and Easy Red to Improve Fairness in High-speed Networks. PfHsn 2002 Berlin, 22 April 2002

TCP Westwood and Easy Red to Improve Fairness in High-speed Networks. PfHsn 2002 Berlin, 22 April 2002 TCP Westwood and Easy Red to Improve Fairness in High-speed Networks L. A. Grieco, S. Mascolo Dipartimento di Elettrotecnica ed Elettronica Politecnico di Bari, Italy PfHsn 2002 Berlin, 22 April 2002 Outline

More information

Performance Analysis of the Intertwined Effects between Network Layers for g Transmissions

Performance Analysis of the Intertwined Effects between Network Layers for g Transmissions Performance Analysis of the Intertwined Effects between Network Layers for 802.11g Transmissions Jon Gretarsson, Feng Li, Mingzhe Li, Ashish Samant, Huahui Wu, Mark Claypool and Robert Kinicki WPI Computer

More information

The Case for Informed Transport Protocols

The Case for Informed Transport Protocols The Case for Informed Transport Protocols Stefan Savage Neal Cardwell Tom Anderson University of Washington Our position Wide-area network performance: is important is limited by inefficient congestion

More information

The Case for Comprehensive

The Case for Comprehensive IETF AQM and Packet Scheduling Working Group Jul 22, 2014! The Case for Comprehensive Dave Taht! bufferbloat.net! Queue Management Are these Non-AQM/PS WG Problems? Layer 2! Non-AQM but latency saving

More information