Routing II: Protocols (RIP, EIGRP, OSPF, PNNI, IS-IS): Brief Version

Size: px
Start display at page:

Download "Routing II: Protocols (RIP, EIGRP, OSPF, PNNI, IS-IS): Brief Version"

Transcription

1 Routing II: Protocols (RIP, EIGRP, OSPF, PNNI, IS-IS): Brief Version Rensselaer Polytechnic Institute Based in part upon slides of Prof. Raj Jain (OSU), S. Keshav (Cornell), J. Kurose (U Mass) 1

2 Overview RIP, RIPv2, EIGRP OSPF, PNNI, IS-IS: LS efficiency & robustness Link state distribution, DB synchronization, NBMAs etc Refs: Chap 16,14 Suggested Ref. Books: Interconnections by Perlman, OSPF by John Moy, Routing in Internet by Huitema. Reference: RFC 2328: OSPF Version 2: In HTML Reading: Notes for Protocol Design, E2e Principle, IP and Routing: In PDF Reading: Routing 101: Notes on Routing: In PDF In MS Word Reference: Tsuchiya, "The Landmark Hierarchy: A New Hierarchy for Routing in Very Large Networks" 2

3 RIP: Routing Information Protocol Uses hop count as metric (max: 16 is infinity) Tables (vectors) advertised to neighbors every 30 s. Each advertisement: upto 25 entries No advertisement for 180 sec: neighbor/link declared dead routes via neighbor invalidated new advertisements sent to neighbors A.k.a Triggered updates Link failure info quickly propagates to entire net 3

4 RIPv1 Problems (Continued) Recall: Poisoned Reverse: If Z routes through Y to get to X : Z tells Y its (Z s) distance to X is infinite (so Y won t route to X via Z) Poison reverse used to prevent ping-pong loops (infinite distance = 16 hops) Split horizon/poison reverse does not guarantee to solve count-to-infinity problem 16 = infinity => RIP for small networks only! Slow convergence RIPv1 does not support subnet masks (VLSMs) No authentication 4

5 RIPv2 Why? Installed base of RIP routers Key new features: VLSM support Authentication Multicasting 5

6 E-IGRP (Interior Gateway Routing Protocol) CISCO proprietary; successor of RIP (late 80s) Key idea: Loop-free routing via Distributed Updating Alg. (DUAL) based on diffusing computation Freeze entry to particular destination Diffuse a request for updates Other nodes may freeze/propagate the diffusing computation (tree formation) Unfreeze when updates received. Tradeoff: temporary un-reachability for some destinations 6

7 7 Link State Protocols Key: Create a network map at each node. 1. Node collects the state of its connected links and forms a Link State Packet (LSP) 2. Flood LSP => reaches every other node in the network and everyone now has a network map. 3. Given map, run Dijkstra s shortest path algorithm (SPF) => get paths to all destinations 4. Routing table = next-hops of these paths. 5. Hierarchical routing: organization of areas, and filtered control plane information flooded.

8 Link State Protocol Issues Reliable Flooding: sequence #s, age Neighbor discovery and Neighbor maintenance (hello) Efficiency in different types of networks: Broadcast LANs, NBMA, Pt-Mpt subnets Hierarchy of areas Area types: Normal, Stub, NSSA: filtering Advanced topics: incremental SPF algorithms 8

9 Reliable Flooding 9

10 Topology Dissemination A.k.a LSP distribution 1. Flood LSPs on links except incoming link Require at most 2E transfers for n/w with E edges 2. Sequence numbers to detect duplicates Why? Routers/links may go down/up Issue: wrap-around, larger sequence number is not the most recent! 10

11 Sequence Number Space Organization Circular space: S1 > S2 > S3 > S1 Accidental bit errors in switch memory caused this problem in ARPANET Lollipop sequence: Start with S0, increment till you reach circle and then view it as a circular space No ambiguity in lollipop handle Linear space: OSPFv2. If Smax reached, explicitly delete Smax LSA before wrapping around 11

12 Topology Dissemination (Continued) Checksum field: Drop packet if in error, get retransmission from neighbor Age field (similar to TTL) Number of seconds since LSA originated Periodically incremented after acceptance Originating router refreshes LSA after 30 min Delete if Age = MaxAge Low age field + large seq # => that LSA is flapping or frequently changing 12

13 Neighbor Relationships & LSA: Basic OSPF Models 13

14 Neighbor Discovery & Relationship OSPF routers periodically send out 'hello' packets Used to determine if neighbor is up HelloInterval = 10s (in example) Assumes neighbor dead if no response within RouterDeadInterval = 40s (in example) A.k.a: adjacency Note that adjacency is a software link abstraction Less reliable than a physical link Becomes an issue if large number of adjacencies need to be maintained 14

15 Hello: Packet Format 15

16 Neighbor Relationships Once an adjacency is established, information is traded Neighbor relationship: bi-directional Local topology information is packaged in a "link state announcement (LSA) Multiple types of LSAs: (details later) Initial DB synchronization New announcements sent ONCE, and only updated if there's a change, or every 45mins... 16

17 17 Database Synchronization LS Database (LSDB): collection of the Link State Advertisements (LSAs) accepted at a node. This is the map for Dijkstra algorithm When the connection between two neighbors comes up, the routers must wait for their LS DBs to be synchronized. Else routing loops and black holes due to inconsistency OSPF technique: Source sends only LSA headers, then Neighbor requests LSAs that are more recent. Those LSAs are sent over After sync, the neighbors are said to be fully adjacent

18 Recovering from a partition On partition, LSP databases can get out of synch Databases described by database descriptor records Restored link => talk to each other to update databases (determine missing and out-of-date LSPs) => selective synchronization 18

19 OSPF Router-LSA: Scenario 19

20 Router-LSA: 20

21 Issues in Mapping OSPF Hellos, LSAs, Dijkstra semantics onto Different Types of Sub-Networks 21

22 Recap: IP Subnet Model Each subnet assigned one or more address prefixes. Each address prefix is called an IP subnet IP routes to subnets, not to individual hosts Two hosts on different subnets have to go through routers Even if they are on the same physical network 22

23 IP Subnet Model (Contd) Two hosts or routers must be able to send packets directly to one another IFF they are on a common subnet => Two routers cannot exchange routing information directly unless they have one or more IP subnets in common => Two hosts on the same subnet cannot be indirectly connected through switches etc! All these issues will be strained as we study OSPF adjacency operation over different subnets 23

24 24 Broadcast Media: Adjacency Maintenance Issue: Hellos and LSAs optimized for pt-pt links Multiple (N) OSPF routers on a common subnet (bus) One physical link vs N*(N-1) adjacencies How many links to be counted for Dijkstra algo? How many Hellos to be exchanged on the shared bus?

25 Broadcast net: Adjacency Maintenance Ans: Each router is assumed to be linked to every other router Dijkstra algorithm views the bus as a full mesh, I.e. counts O(N 2 ) adjacencies. Hello protocol optimization: Each node multicasts Hello to (multicast address AllSPFRouters ) & piggybacks its acks LSA optimization: Since we have O(N 2 ) adjacencies for Dijkstra, should we create N Router LSAs, with a total of O(N 2 ) adjacency information? Or 1 new type of LSA to represent this bus? 25

26 26 Flooding Adjacencies : option 1 Using Router-LSAs O(N) Router-LSAs, with O(N 2 ) adjacency info Multicast of Router-LSAs does not solve O(N 2 ) DB synchronization issue

27 27 Flooding Adjacencies: option 2 New LSA-type: Network-LSA O(N) Router-LSAs + 1 network-lsa+ O(N) adjacencies Converted O(N 2 ) adjacency problem into O(N) problem

28 Recap: O(N 2 ) model O(N) model Question: Who creates the network-lsa? 28

29 29 Designated Router (DR) One router elected as a designated router (DR) Each router maintains flooding adjacency with the DR, I.e., DR responsible for collecting acks of LSAs DR informs each router of other routers on LAN DR generates the network-lsa on subnet s behalf after synchronizing with all routers

30 DR, BDR continued Backup DR (BDR) and takes over if DR dies It also has flooding adjacencies w/ other routers => Total: 2N 1 adjacencies Multicast-based optimization: LSAs from other networks & Hellos sent to AllSPFRouters LSA acks sent to AllDRRouters avoids separate copies to be sent to DR and BDR 30

31 DR election: DR, BDR continued First router on net = DR, second = BDR RouterPriority: [0, 127] indicated in Hello packet=> highest priority router becomes DR If network is partitioned and healed, the two DRs are reduced to one by looking at RouterPriority 31

32 Network-LSA Example: Summary DR 32

33 Non-Broadcast Subnets: OSPF Optimizations 33

34 What if subnet does not support broadcast? Non-Broadcast Multiple Access (NBMA) media NBMA segments may support > 2 routers Allow any two routers to communicate directly, But do not support data-link broadcast/mcast capability Eg:X.25, SMDS, Frame-Relay, ATM etc Issues: Connection-oriented (VC-based) communication Each VC is costly => setting up full mesh for Hellos is prohibitively expensive 34

35 OSPF models Two flooding adjacency models in OSPF: 1. Non-Broadcast Multiple Access (NBMA) model Simple extension of broadcast subnet model 2. Point-to-Multipoint (pt-mpt) Model Different tradeoffs 35

36 Preliminaries: NBMA Model Neighbor discovery: manually configured Dijkstra SPF views NBMA as a full mesh! DR and BDR only maintain VCs and Hellos with all routers on NBMA DB synchronization works same as broadcast subnet Flooding in NBMA always goes through DR Multicast not available to optimize LSA flooding. DR generates network-lsa just like broadcast subnet 36

37 Partial Mesh F-Relay: NBMA model 37

38 NBMA vs Pt-Mpt Subnet Model Key assumption in NBMA model: Each router on the subnet can communicate with every other (same as IP model) But this requires a full mesh of expensive PVCs at the lower layer! Many organizations have a hub-and-spoke PVC setup, a.k.a. partial mesh Conversion into NBMA model => multiple IP subnets, and complex configuration OSPF s pt-mpt subnet model breaks the rule that two routers on the same network must be able to talk directly Can turn partial PVC mesh into a single IP subnet 38

39 Partial Mesh F-Relay: pt-mpt model 39

40 40 Pt-Mpt Subnet Model Key: Partial mesh is viewed in Dijkstra as a partial mesh. Full mesh view not forced like in NBMA model. Neighbor relationships are not formed w/ nodes to which direct PVC does not exist. No DRs or BDRs! Just hellos over the PVCs. Make sure that the communication is bi-directional. Loss in efficiency because the DB synchronization has to be done between every peer. O(n^2) if full mesh. So, in true full PVC mesh situations, it is better to operate subnet as an NBMA

41 Hierarchical Routing 41

42 42 Why Hierarchy? Information hiding (filtered) => computation, bandwidth, storage saved => efficiency => scalability Address abstraction vs Topology Abstraction Multiple paths possible between two areas

43 Hierarchical OSPF 43

44 Configured area ID Area A set of address prefixes Do not have to be contiguous So a prefix can be in only one area A set of router IDs Router functions may be interior, inter-area, or external 44

45 Hierarchical OSPF Two-level hierarchy: local area, backbone. Link-state advertisements only in area each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. Two-level restriction avoids count-to-infinity issues in backbone routing. Area border routers (ABR): summarize distances to nets in own area, advertise to other Area Border routers. Backbone routers: uses a DV-style routing between backbone routers Boundary routers (AS-BRs): connect to other ASs (generate external records) 45

46 Sample Area Configuration /24 46

47 Summary-LSA Example 47

48 Stubbiness: A Means of Controlling External Routes 48

49 Normal Areas Flood AS-external-LSAs (type 5) across area-boundaries (AS flooding scope) ASBR-summary-LSAs (type 4) advertises location of ASBR (Area flooding scope) 49

50 Stub Areas AS-external-LSAs (type 5) not flooded into stub areas Default route to ABR for all non-area prefixes Summary-LSA flooded only optionally Paths may be inefficient, cannot place an ASBR in stub areas 50

51 Not-So-Stubby-Areas (NSSA) A subset of external LSAs may be flooded Use Type-7 LSAs for such external routes Used to import RIP domain routes and flood it externally, but keep default route for BGP routes 51

52 Recap: Some Key Differences External routes vs Summary LSAs External routes summarize routes outside the domain, while summary LSAs summarize routes outside an area. NSSA vs Stubby Areas: Both are special cases of OSPF hierarchies They differ in their treatment of external routes Stubby areas filter ALL external routes, while NSSAs selectively filter external routes. 52

53 Other Link State Protocols: IS-IS, PNNI 53

54 IS-IS Overview The Intermediate Systems to Intermediate System Routing Protocol (IS-IS): originally designed to route the ISO Connectionless Network Protocol (CLNP). (ISO10589 or RFC 1142) Adapted for routing IP in addition to CLNP (RFC1195) as Integrated or Dual IS-IS (1990) IS-IS is a Link State Protocol similar to the Open Shortest Path First (OSPF). OSPF supports only IP IS-IS competed neck-to-neck with OSPF. OSPF deployed in large enterprise networks IS-IS deployed in several large ISPs 54

55 55 Functional Comparison Protocols are recognizably similar in function and mechanism (common heritage) Link state algorithms Two level hierarchies Designated Router on LANs Widely deployed (ISPs vs enterprises) Multiple interoperable implementations OSPF more optimized by design (and therefore significantly more complex) IS-IS not designed from the start as an IP routing protocol (and is therefore a bit clunky in places)

56 IS-IS Terminology Intermediate system (IS) - Router Designated Intermediate System (DIS) - Designated Router Pseudonode - Broadcast link emulated as virtual node by DIS End System (ES) - Network Host or workstation Network Service Access Point (NSAP) - Network Layer Address Subnetwork Point of attachment (SNPA) - Datalink interface Packet data Unit (PDU) - Analogous to IP Packet Link State PDU (LSP) - Routing information packet Level 1 and Level 2 Area 0 and lower areas 56

57 Private Network to Node Interface (PNNI) Link State Routing Protocol for ATM Networks A hierarchy mechanism ensures that this protocol scales well for large world-wide ATM networks. A key feature of the PNNI hierarchy mechanism is its ability to automatically configure itself in networks in which the address structure reflects the topology 57

58 PNNI Features Scales to very large networks. Supports hierarchical routing. Supports QoS. Supports multiple routing metrics and attributes. Uses source routed connection setup. Operates in the presence of partitioned areas. Provides dynamic routing, responsive to changes in resource availability. Separates the routing protocol used within a peer group from that used among peer groups. Interoperates with external routing domains, not necessarily using PNNI. Supports both physical links and tunneling over PVCs. 58

59 PNNI Terminology 59

60 PNNI Terminology Peer group: A group of nodes at the same hierarchy Border node: one link crosses the boundary Logical group node: Representation of a group as a single point Child node: Any node at the next lower hierarchy level Parent node: LGN at the next higher hierarchy level Logical links: links between logical nodes Peer group leader (PGL): Represents a group at the next higher level. Node with the highest "leadership priority" and highest ATM address is elected as a leader. PGL acts as a logical group node. Uses same ATM address with a different selector value. Peer group ID: Address prefixes up to 13 bytes 60

61 Hierarchical Routing: PNNI 61

62 Source Routing Source specifies route as a list of all intermediate systems in the route. Abstracts out area hops. Designated Transit List (DTL) Source route across each level of hierarchy Entry switch of each peer group specifies complete route through that group Set of DTLs and manipulations implemented as a stack DTL example: next slide 62

63 DTL Example 63

64 64 Crank back and Alternate Path Routing If a call fails along a particular route: It is cranked back to the originator of the top DTL The originator finds another route or Cranks back to the generator of the higher level source route

65 Summary DV Protocols: RIP, EIGRP LS Protocols: OSPF, IS-IS, PNNI 65

Routing II: Protocols (RIP, EIGRP, OSPF, PNNI, IS-IS) + QoS Routing and Traffic Engineering

Routing II: Protocols (RIP, EIGRP, OSPF, PNNI, IS-IS) + QoS Routing and Traffic Engineering Routing II: Protocols (RIP, EIGRP, OSPF, PNNI, IS-IS) + QoS Routing and Traffic Engineering Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu Based in part upon slides of Prof. Raj Jain (OSU), S.

More information

Link State Routing. Link State Packets. Link State Protocol. Link State Protocols Basic ideas Problems and pitfalls

Link State Routing. Link State Packets. Link State Protocol. Link State Protocols Basic ideas Problems and pitfalls Link State Routing In particular OSPF Karst Koymans Informatics Institute University of Amsterdam (version 16.3, 2017/03/09 11:25:31) Tuesday, March 7, 2017 Link State Protocols Basic ideas Problems and

More information

Link State Routing. Link State Packets. Link State Protocol. Link State Protocols Basic ideas Problems and pitfalls

Link State Routing. Link State Packets. Link State Protocol. Link State Protocols Basic ideas Problems and pitfalls Link State Routing In particular OSPF Karst Koymans Informatics Institute University of Amsterdam (version 17.4, 2017/11/30 12:33:57) Tuesday, November 28, 2017 Link State Protocols Basic ideas Problems

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 OSPF Dynamic Routing Protocol Link State technology Runs over IP, protocol 89 Designed by IETF for TCP/IP Supports VLSM

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF 1 OSPF Open Shortest Path First Link state or SPF technology Developed by OSPF working group of IETF (RFC 1247) OSPFv2 standard described in RFC2328 Designed for: TCP/IP environment

More information

OSPF (Open Shortest Path First)

OSPF (Open Shortest Path First) OSPF (Open Shortest Path First) Open : specification publicly available RFC 1247, RFC 2328 Working group formed in 1988 Goals: Large, heterogeneous internetworks Uses the Link State algorithm Topology

More information

Routing Protocol - IS-IS

Routing Protocol - IS-IS Routing Protocol - IS-IS What is IS-IS? Intermediate System to Intermediate System intra-domain routing protocol :: IS, ES Is a Link State Protocol Is a dynamic routing protocol based on SPF routing algorithm

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 Agenda OSPF Primer OSPF in Service Provider Networks OSPF BCP - Adding Networks OSPF Command Summary 2 OSPF Primer 3

More information

OSPF (Open Shortest Path First)

OSPF (Open Shortest Path First) OSPF (Open Shortest Path First) Open : specification publicly available RFC 1247, RFC 2328 Working group formed in 1988 Goals: Large, heterogeneous internetworks Uses the Link State algorithm Topology

More information

DD2490 p Link-state routing and OSPF. Olof Hagsand KTH/CSC

DD2490 p Link-state routing and OSPF. Olof Hagsand KTH/CSC DD2490 p4 200 Link-state routing and OSPF Olof Hagsand KTH/CSC Literature RFC 232: Browse through Section. Section 2 gives a very good understanding of OSPF issues. The example is realistic (complex) and

More information

DD2490 p Link-state routing and OSPF. Olof Hagsand KTH/CSC

DD2490 p Link-state routing and OSPF. Olof Hagsand KTH/CSC DD2490 p4 2009 Link-state routing and OSPF Olof Hagsand KTH/CSC Literature RFC 232: Browse through Section. Section 2 gives a very good understanding of OSPF issues. The example is realistic (complex)

More information

Basic Idea. Routing. Example. Routing by the Network

Basic Idea. Routing. Example. Routing by the Network Basic Idea Routing Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

Routing by the Network

Routing by the Network Routing Basic Idea Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

DD2490 p Link state routing and OSPF. Olof Hagsand KTH/CSC

DD2490 p Link state routing and OSPF. Olof Hagsand KTH/CSC DD490 p4 00 Link state routing and OSPF Olof Hagsand KTH/CSC Literature RFC 3: Section except.. Section 3 (areas), but only last two paragraphs of 3.5 Link state routing Each router spreads information

More information

Introduction to OSPF OSPF. Link State Routing. Link State. Fast Convergence. Low Bandwidth Utilisation

Introduction to OSPF OSPF. Link State Routing. Link State. Fast Convergence. Low Bandwidth Utilisation Introduction to OSPF ISP/IP Workshops OSPF Open Shortest Path First Link state or SPF technology Developed by OSPF working group of IETF (RFC 47) Designed for TCP/IP Internet environment Fast convergence

More information

EECS 122, Lecture 16. Link Costs and Metrics. Traffic-Sensitive Metrics. Traffic-Sensitive Metrics. Static Cost Metrics.

EECS 122, Lecture 16. Link Costs and Metrics. Traffic-Sensitive Metrics. Traffic-Sensitive Metrics. Static Cost Metrics. EECS 122, Lecture 16 Kevin Fall kfall@cs.berkeley.edu edu Link Costs and Metrics Routing protocols compute shortest/cheapest paths using some optimization criteria Choice of criteria has strong effect

More information

Table of Contents 1 OSPF Configuration 1-1

Table of Contents 1 OSPF Configuration 1-1 Table of Contents 1 OSPF Configuration 1-1 Introduction to OSPF 1-1 Basic Concepts 1-2 OSPF Area Partition 1-4 Router Types 1-7 Classification of OSPF Networks 1-9 DR and BDR 1-9 OSPF Packet Formats 1-11

More information

BSCI. Section 5. Intermediate System-to- Intermediate System (IS-IS)

BSCI. Section 5. Intermediate System-to- Intermediate System (IS-IS) BSCI Section 5 Intermediate System-to- Intermediate System () Intermediate System-to-Intermediate System () is a routing protocol developed by the ISO. It is a link-state protocol and behaves much like

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

CSCD 433/533 Advanced Networks Spring 2016

CSCD 433/533 Advanced Networks Spring 2016 CSCD 433/533 Advanced Networks Spring 2016 Lecture 13 Router Algorithms and Design Chapter 5 1 Topics Router Algorithms Routing in General Hierarchical routing Interior Gateway Protocols OSPF mention of

More information

Table of Contents 1 Static Routing Configuration RIP Configuration 2-1

Table of Contents 1 Static Routing Configuration RIP Configuration 2-1 Table of Contents 1 Static Routing Configuration 1-1 Introduction 1-1 Static Route 1-1 Default Route 1-1 Application Environment of Static Routing 1-1 Configuring a Static Route 1-2 Configuration Prerequisites

More information

ABR (Area Border Router), 206, 216 access, dedicated networks, 23 access layer, three-layer hierarchical design model, 6

ABR (Area Border Router), 206, 216 access, dedicated networks, 23 access layer, three-layer hierarchical design model, 6 1358_fmi.book Page 460 Thursday, May 27, 2004 2:21 PM A ABR (Area Border Router), 206, 216 access, dedicated networks, 23 access layer, three-layer hierarchical design model, 6 access lists, scalable networks,

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

Unit 3: Dynamic Routing

Unit 3: Dynamic Routing Unit 3: Dynamic Routing Basic Routing The term routing refers to taking a packet from one device and sending it through the network to another device on a different network. Routers don t really care about

More information

OSPF. Unless otherwise noted, OSPF refers to OSPFv2 throughout this document.

OSPF. Unless otherwise noted, OSPF refers to OSPFv2 throughout this document. Open Shortest Path First () is a link state based interior gateway protocol developed by the working group of the Internet Engineering Task Force (IETF). At present, version 2 (RFC2328) is used. Introduction

More information

CCNP 1: Advanced Routing

CCNP 1: Advanced Routing Scope and Sequence CCNP 1: Advanced Routing Cisco Networking Academy Program Version 3.1 TABLE OF CONTENTS CCNP 1: ADVANCED ROUTING...1 TARGET AUDIENCE...3 PREREQUISITES...3 COURSE DESCRIPTION...3 COURSE

More information

Configuring OSPF. Cisco s OSPF Implementation

Configuring OSPF. Cisco s OSPF Implementation Configuring OSPF This chapter describes how to configure OSPF. For a complete description of the OSPF commands in this chapter, refer to the OSPF s chapter of the Network Protocols Reference, Part 1. To

More information

Symbols. Numerics I N D E X

Symbols. Numerics I N D E X I N D E X Symbols? (question mark), CLI help system, 126 Numerics A 2-router BGP topology, configuring, 279 284 4-router BGP topology, configuring, 266, 276 279 ABRs (area border routers), 9, 87, 95, 141

More information

Configuring OSPF network management 39 Enabling message logging 39 Enabling the advertisement and reception of opaque LSAs 40 Configuring OSPF to

Configuring OSPF network management 39 Enabling message logging 39 Enabling the advertisement and reception of opaque LSAs 40 Configuring OSPF to Contents Configuring OSPF 1 Introduction to OSPF 1 Basic concepts 1 OSPF areas 3 Router types 6 OSPF network classification 7 DR and BDR 8 OSPF packet formats 9 Supported OSPF features 17 Protocols and

More information

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190 Chapter 17 OSPF Protocol Overview The Open Shortest Path First (OSPF) protocol is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS). OSPF uses link-state information

More information

Logging neighbor state changes 38 Configuring OSPF network management 39 Enabling message logging 39 Enabling the advertisement and reception of

Logging neighbor state changes 38 Configuring OSPF network management 39 Enabling message logging 39 Enabling the advertisement and reception of Contents Configuring OSPF 1 Introduction to OSPF 1 Basic concepts 1 Area based OSPF network partition 3 Router types 6 OSPF network classification 7 DR and BDR 8 OSPF packet formats 9 Supported features

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

IT-Operation (2) OSPF. Who am I

IT-Operation (2) OSPF. Who am I IT-Operation (2) OSPF yasu@wide.ad.jp Who am I Name: Yasuhiro Ohara 3rd grade of doctoral course in KEIO Univ. Author of Zebra ospf6d One of WIDE 6Bone operators developer or researcher rather than operator

More information

Vendor: Alcatel-Lucent. Exam Code: 4A Exam Name: Alcatel-Lucent Interior Routing Protocols and High Availability.

Vendor: Alcatel-Lucent. Exam Code: 4A Exam Name: Alcatel-Lucent Interior Routing Protocols and High Availability. Vendor: Alcatel-Lucent Exam Code: 4A0-101 Exam Name: Alcatel-Lucent Interior Routing Protocols and High Availability Version: Demo QUESTION 1 When a router receives an IP packet, but does not find a match

More information

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services: NET 331 Computer Networks Lecture 12 Internet Routing Protocols Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson Education

More information

904 ASBRs (Autonomous System Boundary Routers)

904 ASBRs (Autonomous System Boundary Routers) I N D E X A ABRs (Area Border Routers), 292 LSA propagation, 294 Access layer, hierarchical designs, 42 access lists. See also IP access lists BGP-4, 557 controlling terminal access, 51 52 guidelines for

More information

Introduction to Routing

Introduction to Routing 1 Introduction to Routing Session 2 Presentation_ID.scr 1 Agenda Addressing Concepts Routing Protocols Statics and Defaults 3 ISO OSI Reference Model Routing Information Protocol (RIP and RIPv2) L7 L6

More information

Chapter 7: Routing Dynamically. Routing & Switching

Chapter 7: Routing Dynamically. Routing & Switching Chapter 7: Routing Dynamically Routing & Switching The Evolution of Dynamic Routing Protocols Dynamic routing protocols used in networks since the late 1980s Newer versions support the communication based

More information

IPv6 Routing: OSPFv3

IPv6 Routing: OSPFv3 Open Shortest Path First version 3 (OSPFv3) is an IPv4 and IPv6 link-state routing protocol that supports IPv6 and IPv4 unicast address families (AFs). Finding Feature Information, page 1 Prerequisites

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

Cabrillo College. Rick Graziani, Instructor

Cabrillo College. Rick Graziani, Instructor Cabrillo College CCNP Advanced Routing Ch. 5 - Multi-areas (Part I) Rick Graziani, Instructor Mar. 4, 2002 1 Multi-Area Part I Areas LSAs show ip ospf database (summary of link state database) show ip

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

CSc 450/550 Computer Networks Internet Routing

CSc 450/550 Computer Networks Internet Routing CSc 450/550 Computer Networks Internet Routing Jianping Pan Summer 2007 7/12/07 CSc 450/550 1 Review Internet Protocol (IP) IP header addressing class-based, classless, hierarchical, NAT routing algorithms

More information

Implementing Cisco IP Routing (ROUTE)

Implementing Cisco IP Routing (ROUTE) Implementing Cisco IP Routing (ROUTE) Foundation Learning Guide Foundation learning for the ROUTE 642-902 Exam Diane Teare Cisco Press 800 East 96th Street Indianapolis, IN 46240 Implementing Cisco IP

More information

Vanguard Managed Solutions

Vanguard Managed Solutions Vanguard Managed Solutions Vanguard Applications Ware IP and LAN Feature Protocols Open Shortest Path First (OSPF) Notice 2003 Vanguard Managed Solutions, LLC 575 West Street Mansfield, Massachusetts 02048

More information

OSPF. OSPF processs can be enabled on 2 levels

OSPF. OSPF processs can be enabled on 2 levels OSPF UDP port 89 Metic cost Link state protocol Flood the link state information in the entire topology Builds the topology table Stores in LSDB Runs SPF(Djsktra algorithm) for best path to reach destination

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

Operation Manual Routing Protocol. Table of Contents

Operation Manual Routing Protocol. Table of Contents Table of Contents Table of Contents Chapter 1 IP Routing Protocol Overview... 1-1 1.1 Introduction to IP Route and Routing Table... 1-1 1.1.1 IP Route... 1-1 1.1.2 Routing Table... 1-1 1.2 Routing Management

More information

Internet Routing Protocols Tuba Saltürk

Internet Routing Protocols Tuba Saltürk Internet Routing Protocols 15505068 Tuba Saltürk Outline Internet Routers Routing Protocol Interior Gateway Protocol (IGP) Distance- Vector Routing Protocol Routing Information Protocol (RIP) Interior

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 8: Network Routing Protocols Assistant Teacher Samraa Adnan Al-Asadi 1 Routing protocol features There are many ways to characterize routing protocols, including

More information

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan Internet Protocol: Routing Algorithms Srinidhi Varadarajan Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction for routing algorithms:

More information

CompSci 356: Computer Network Architectures. Lecture 12: Dynamic routing protocols: Link State Chapter Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 12: Dynamic routing protocols: Link State Chapter Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 12: Dynamic routing protocols: Link State Chapter 3.3.3 Xiaowei Yang xwy@cs.duke.edu Today Routing Information Protocol Link-state routing Algorithm

More information

9.1. Routing Protocols

9.1. Routing Protocols 9.1. Routing Protocols Each organization that has been assigned a network address from an ISP is considered an autonomous system (AS). That organization is free to create one large network, or divide the

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

TDC 363 Introduction to LANs

TDC 363 Introduction to LANs TDC 363 Introduction to LANs OSPF Greg Brewster DePaul University TDC 363 Greg Brewster, DePaul University 1 OSPF Link State Routing Algorithms Open Shortest Path First (OSPF) Message Types Operations

More information

IS-IS Operation. SANOG July, 2017 Gurgaon, INDIA

IS-IS Operation. SANOG July, 2017 Gurgaon, INDIA IS-IS Operation SANOG 30 14-18 July, 2017 Gurgaon, INDIA IS-IS Intermediate System to Intermediate System Designed for OSI networks to carry CLNS traffic (RFC1142 - ISO 10859) CLNP was to OSI, what IPv4/IPv6

More information

OSPF Demand Circuit Feature

OSPF Demand Circuit Feature OSPF Demand Circuit Feature Document ID: 5132 Contents Introduction Prerequisites Requirements Components Used Conventions How Is OSPF over Demand Circuit Different from a Normal Circuit? Suppressed Periodic

More information

Routing, Routing Algorithms & Protocols

Routing, Routing Algorithms & Protocols Routing, Routing Algorithms & Protocols Computer Networks Lecture 6 http://goo.gl/pze5o8 Circuit-Switched and Packet-Switched WANs 2 Circuit-Switched Networks Older (evolved from telephone networks), a

More information

Symbols. Numerics I N D E X

Symbols. Numerics I N D E X I N D E X Symbols %OSPF-4-BADLSATYPE error messages, 529 Numerics A 128-bit addressing scheme, IPv6, 5 2-way state, OSPF neighbors, 336 getting stuck, 398 400 32-bit addressing scheme, IPv4, 5 classes,

More information

Routing. Jens A Andersson Communication Systems

Routing. Jens A Andersson Communication Systems Routing Jens A Andersson Communication Systems R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 R5 10 Router A router is a type of internetworking device that passes data

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

IS-IS basic configuration 37 DIS election configuration 41 Configuring IS-IS route redistribution 45 IS-IS GR configuration example 49 IS-IS FRR

IS-IS basic configuration 37 DIS election configuration 41 Configuring IS-IS route redistribution 45 IS-IS GR configuration example 49 IS-IS FRR Contents Configuring IS-IS 1 IS-IS overview 1 Basic concepts 1 IS-IS area 3 IS-IS network type 5 IS-IS PDUs 6 Supported IS-IS features 13 Protocols and standards 15 IS-IS configuration task list 16 Configuring

More information

Chapter 7 Routing Protocols

Chapter 7 Routing Protocols Chapter 7 Routing Protocols Nonroutable Protocols In the early days of networking, networks were small collections of computers linked together For the purposes of sharing information and expensive peripherals

More information

This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and

This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and exclusive use by instructors in the CCNP: Building Scalable

More information

OSPFv2 deep dive. Михайловский Василий Cisco TAC Poland Ноябрь 17, 2015

OSPFv2 deep dive. Михайловский Василий Cisco TAC Poland Ноябрь 17, 2015 OSPFv2 deep dive Михайловский Василий vamikhai@cisco.com Cisco TAC Poland Ноябрь 17, 2015 Содержание TBD OSPFv2 transport Using IP-multicast 224.0.0.5 and 224.0.0.6; Protocol number 89; Unicast for immediate

More information

SEMESTER 2 Chapter 4 Distance Vector Routing Protocols V 4.0 RIP, IGRP, EIGRP

SEMESTER 2 Chapter 4 Distance Vector Routing Protocols V 4.0 RIP, IGRP, EIGRP SEMESTER 2 Chapter 4 Distance Vector Routing Protocols V 4.0 4.1.1 What are the three distance vector routing protocols? What are the key characteristics of RIP? What are the key characteristics of IGRP?

More information

Routing Protocol Type Primarily IGP or EGP RIP Distance-Vector IGP EIGRP OSPF IS-IS BGP

Routing Protocol Type Primarily IGP or EGP RIP Distance-Vector IGP EIGRP OSPF IS-IS BGP Appendix D Memory Tables Chapter 1 Table 1-2 Routing Protocol Characteristics Routing Protocol Type Primarily IGP or EGP RIP Distance-Vector IGP EIGRP OSPF IS-IS BGP Chapter 3 Table 3-2 Hexadecimal/Binary

More information

TDC 363 Introduction to LANs

TDC 363 Introduction to LANs TDC 363 Introduction to LANs Routing Protocols and RIP Greg Brewster DePaul University TDC 363 1 Dynamic Routing Routing Protocols Distance Vector vs. Link State Protocols RIPv1 & RIPv2 RIP Problems Slow

More information

Cisco Building Scaleable Cisco Internetworks (BSCI) Practice Test. Version https://certkill.com

Cisco Building Scaleable Cisco Internetworks (BSCI) Practice Test. Version https://certkill.com Cisco 642-901 642-901 Building Scaleable Cisco Internetworks (BSCI) Practice Test Version 2.12 QUESTION NO: 1 Cisco 642-901: Practice Exam A company has a BGP network and a BGP route of 196.27.125.0/24

More information

Part II. Chapter 3. Determining IP Routes

Part II. Chapter 3. Determining IP Routes Part II Chapter 3 Routers perform two main functions: switching and routing. The switching function is the process of moving packets from an inbound interface to an outbound interface. The switching function

More information

DD2490 p Lecture 4: OSPF. Link-state routing and Open Shortest Path First. Olof Hagsand KTH CSC

DD2490 p Lecture 4: OSPF. Link-state routing and Open Shortest Path First. Olof Hagsand KTH CSC DD2490 p4 20 Lecture 4: OSPF Link-state routing and Open Shortest Path First Olof Hagsand KTH CSC OSPF is the routing protocol that we deal with in most detail in this course. OSPF is a complex protocol,

More information

Routing Unicast routing protocols

Routing Unicast routing protocols Routing Unicast routing protocols Jens A Andersson Electrical and Information Technology R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 10 R5 1 Router A router is a type

More information

CCNA 3 (v v6.0) Chapter 5 Exam Answers % Full

CCNA 3 (v v6.0) Chapter 5 Exam Answers % Full CCNA 3 (v5.0.3 + v6.0) Chapter 5 Exam Answers 2017 100% Full ccnav6.com /ccna-3-v5-0-3-v6-0-chapter-5-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 3 (v5.0.3 + v6.0) Chapter 5 Exam Answers

More information

OSPF Commands. Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols IP2R-61

OSPF Commands. Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols IP2R-61 OSPF Commands Use the commands in this chapter to configure and monitor the Open Shortest Path First (OSPF) routing protocol. For OSPF configuration information and examples, refer to the Configuring OSPF

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

CompSci 356: Computer Network Architectures. Lecture 13: Dynamic routing protocols: Link State Chapter 3.3.3, Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 13: Dynamic routing protocols: Link State Chapter 3.3.3, Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 13: Dynamic routing protocols: Link State Chapter 3.3.3, 3.2.9 Xiaowei Yang xwy@cs.duke.edu Today Clarification on RIP Link-state routing Algorithm Protocol:

More information

Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) CHAPTER 42 Open Shortest Path First (OSPF) Background Open Shortest Path First (OSPF) is a routing protocol developed for Internet Protocol (IP) networks by the interior gateway protocol (IGP) working

More information

Passit4Sure.4A Questions 4A Alcatel-Lucent Interior Routing Protocols and High Availability

Passit4Sure.4A Questions 4A Alcatel-Lucent Interior Routing Protocols and High Availability Passit4Sure.4A0-101.300Questions Number: 4A0-101 Passing Score: 800 Time Limit: 120 min File Version: 7.5 http://www.gratisexam.com/ 4A0-101 Alcatel-Lucent Interior Routing Protocols and High Availability

More information

IP Routing Tecnologie e Protocolli per Internet II rev 1

IP Routing Tecnologie e Protocolli per Internet II rev 1 IP Routing Tecnologie e Protocolli per Internet II rev 1 Andrea Detti Electronic Engineering dept. E-mail: andrea.detti@uniroma2.it Some sources: Cisco CCNA Routing and Switching ICND1 and ICND2 Slide

More information

Configuring Networking Protocols

Configuring Networking Protocols 11 CHAPTER This chapter describes how to configure the ML-Series card for supported IP routing protocols. It is intended to provide enough information for a network administrator to get the protocols up

More information

Lab 4: Routing using OSPF

Lab 4: Routing using OSPF Network Topology:- Lab 4: Routing using OSPF Device Interface IP Address Subnet Mask Gateway/Clock Description Rate Fa 0/0 172.16.1.17 255.255.255.240 ----- R1 LAN R1 Se 0/0/0 192.168.10.1 255.255.255.252

More information

PrepAwayExam. High-efficient Exam Materials are the best high pass-rate Exam Dumps

PrepAwayExam.   High-efficient Exam Materials are the best high pass-rate Exam Dumps PrepAwayExam http://www.prepawayexam.com/ High-efficient Exam Materials are the best high pass-rate Exam Dumps Exam : 4A0-101 Title : Alcatel-Lucent Interior Routing Protocols and High Availability Vendor

More information

Chapter 8 Configuring OSPF

Chapter 8 Configuring OSPF Chapter 8 Configuring OSPF This chapter describes how to configure OSPF on HP routing switches using the CLI and Web management interface. To display OSPF configuration information and statistics, see

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 5565 Network Architecture and Protocols Lecture 20 Godmar Back Project 2B due in 2 parts: Apr 29 and May 6 Extra Credit Opportunities: Expand simulator (and your implementation) to introduce

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 14, 2013 1 Reading Quiz Hierarchical routing Our routing study thus far - idealization all routers identical network flat

More information

Distance Vector Routing Protocols

Distance Vector Routing Protocols Distance Vector Routing Protocols Routing Protocols and Concepts Chapter 4 Version 4.0 1 Objectives Identify the characteristics of distance vector routing protocols. Describe the network discovery process

More information

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load Dynamic Routing Overview Forwarding vs Routing forwarding: to select an output port based on destination address and routing table routing: process by which routing table is built Network as a Graph C

More information

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents Table of Contents Table of Contents Chapter 1 Static Routing Configuration... 1-1 1.1 Introduction... 1-1 1.1.1 Static Route... 1-1 1.1.2 Default Route... 1-1 1.1.3 Application Environment of Static Routing...

More information

Configuring OSPF. Finding Feature Information

Configuring OSPF. Finding Feature Information This module describes how to configure Open Shortest Path First (OSPF). OSPF is an Interior Gateway Protocol (IGP) developed by the OSPF working group of the Internet Engineering Task Force (IETF). OSPF

More information

CS555, Spring /5/2005. April 12, 2005 No classes attend Senior Design Projects conference. Chapter 4 roadmap. Internet AS Hierarchy

CS555, Spring /5/2005. April 12, 2005 No classes attend Senior Design Projects conference. Chapter 4 roadmap. Internet AS Hierarchy CS555, Spring 2005 April 12, 2005 No classes attend Senior Design Projects conference Network Layer 4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 VC and Datagram Networks 4.3 What

More information

Routing. Advanced Computer Networks: Routing 1

Routing. Advanced Computer Networks: Routing 1 Routing Advanced Computer Networks: Routing 1 Gateway To internet or wide area network Metropolitan Area Network (MAN) s s Organization Servers Backbone R S R R Departmental Server s R S R s S R s s s

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Hierarchical routing our routing study thus far - idealization

More information

Configuring OSPF. Finding Feature Information. Contents

Configuring OSPF. Finding Feature Information. Contents Configuring OSPF First Published: May 5, 2008 Last Updated: March 18 2011 This module describes how to configure Open Shortest Path First (OSPF). OSPF is an Interior Gateway Protocol (IGP) developed by

More information

Alcatel-lucent EXAM - 4A Alcatel-Lucent Interior Routing Protocols and High Availability. Buy Full Product.

Alcatel-lucent EXAM - 4A Alcatel-Lucent Interior Routing Protocols and High Availability. Buy Full Product. Alcatel-lucent EXAM - 4A0-101 Alcatel-Lucent Interior Routing Protocols and High Availability Buy Full Product http://www.examskey.com/4a0-101.html Examskey Alcatel-lucent 4A0-101 exam demo product is

More information

IS-IS Overview and Basic Configuration

IS-IS Overview and Basic Configuration This module provides a technical overview of the Integrated Intermediate System-to-Intermediate System (IS-IS) routing protocol. IS-IS is a link-state Interior Gateway Protocol (IGP). Link-state protocols

More information