EEC-682/782 Computer Networks I

Size: px
Start display at page:

Download "EEC-682/782 Computer Networks I"

Transcription

1 EEC-682/782 Computer Networks I Lecture 15 Wenbing Zhao w.zhao1@csuohio.edu (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline Review of last lecture The network layer in Internet The transport layer Transport service Elements of transport protocols -Wenbing Zhao 2 1

2 Review Essential topics of last lecture NAT ICMP, ARP, RARP, BOOTP, DHCP OSPF, BGP -Wenbing Zhao 3 NAT Network Address Translation Placement and operation of a NAT box. -Wenbing Zhao 4 2

3 Internet Control Message Protocol ICMP Internet Control Message Protocol When something unexpected occurs in Internet, the event is reported by routers using ICMP It is also used to test Internet Principal ICMP message types -Wenbing Zhao 5 ARP and RARP 32-bit Internet address ARP RARP 48-bit Ethernet address ARP find the mapping of IP addresses to data link layer addresses RARP - This protocol allows a newly-booted diskless-workstation (e.g., X terminal) to broadcast its Ethernet address and ask for its IP address RARP server responds to a RARP request with the assigned IP address -Wenbing Zhao 6 3

4 BOOTP Bootstrap Protocol Limitations of RARP RARP uses a link-layer broadcast, RARP requests are not forwarded by routers, therefore, an RARP server must be present on every network. The only thing returned by the RARP server is the IP address BOOTP uses UDP When a client is bootstrapping using BOOTP, the request is normally a link-layer broadcast and the destination IP address in the IP header is normally The source IP address is set to if client does not know its own IP address yet Recall that is a valid source IP address when a system is bootstrapping itself Port number: 67 for server, 68 for client -Wenbing Zhao 7 DHCP - Dynamic Host Configuration Protocol BOOTP drawbacks Requires manual configuration of tables mapping IP address to Ethernet address at the BOOTP server DHCP Allows both manual IP address assignment and automatic assignment. DHCP has largely replaced RARP and BOOTP A DHCP relay agent is needed on each LAN. The only piece of information the relay agent needs is the IP address of the DHCP server. To find its IP address, a newly-booted machine broadcasts a DHCP DISCOVER packet. The DHCP relay agent on its LAN receives all DHCP broadcasts. When it finds a DHCP DISCOVER packet, it sends the packet as a unicast packet to the DHCP server, possibly on a distant network IP address assignment is lease-based (to cope with client failure) -Wenbing Zhao 8 4

5 Internet Routing Protocols -Wenbing Zhao 9 OSPF Within area, each router has same link state database Each router periodically floods LINK STATE UPDATE packets to each of its adjacent routers Each router constructs the graph for its area and computes shortest path Backbone router also does: Accepts info from area border routers Computes best route from each area border router to every other area border router This info propagated back to area border routers which advertise it within their areas Using this info, router about to send interarea packet selects best exit router to backbone -Wenbing Zhao 10 5

6 The Exterior Gateway Routing Protocol Border Gateway Protocol (BGP) Used between autonomous systems Main concerns: politics, security, economic Uses distance vector routing except keeps track of exact path instead of cost to destination and periodically tells its neighbors that path -Wenbing Zhao 11 Transport Layer Goals: To provide efficient, reliable, cost-effective service to the transport layer users To allow application programs to be written using a standard set of primitives and to have programs work on a variety of networks To enhance the quality of service provided by the network layer below it -Wenbing Zhao 12 6

7 Services Provided to the Upper Layers Transport Entity - The hardware and/or software within the transport layer that does the work. The transport entity can be located in Operating system kernel, a separate user process, a library package bound into network applications, or conceivably on the network interface card TPDU: Transport Protocol Data Unit Services Provided to the Upper Layers The transport layer fulfills the key function of isolating the upper layers from the technology, design, and imperfections of the subnet For this reason, many people have traditionally made a distinction between layers 1 through 4 on the one hand and layer(s) above 4 on the other: Transport service provider -The bottom four layers Transport service user - the upper layer(s) -Wenbing Zhao 14 7

8 Transport Service Primitives Connection oriented Provides reliable service on top of unreliable network -Wenbing Zhao 15 Transport Service Primitives The nesting of TPDUs, packets, and frames. -Wenbing Zhao 16 8

9 Transport Service Primitives A state diagram for a simple connection management scheme. Transitions labeled in italics are caused by packet arrivals. The solid lines show the client's state sequence. The dashed lines show the server's state sequence. Berkeley Sockets Socket an endpoint to which connections can be attached from bottom (OS) and to which processes can be established from top Socket primitives for TCP -Wenbing Zhao 18 9

10 Berkeley Sockets Socket: Creates a new end point and allocates table space for it Parameters to call specify address format, socket type (e.g., reliable byte stream), protocol (typically TCP/IP) Bind: Each socket has name by which remote user can send connection request to socket Bind call attaches name to socket -Wenbing Zhao 19 Berkeley Sockets Listen: After a socket has been created, listen call allocates space to queue incoming calls in case several clients try to connect simultaneously Listen call is non-blocking Accept: Accept call is blocking, waits for incoming connection When TPDU requesting a connection arrives, new socket is created and file descriptor is returned for it Server can fork off process or thread to handle connection on new socket and wait for next connection on original socket -Wenbing Zhao 20 10

11 Berkeley Sockets Connect: Blocks the caller (default setting) and actively starts the connection process When it completes (appropriate TPDU is received from server), client is unblocked and connection is established Send Receive Close When both sides have executed Close, connection is released -Wenbing Zhao 21 Socket Programming Example Internet File Server Code available at Compilation flag in Linux is different from what s given in the textbook Setsockopt() on SO_REUSEADDR: This socket option tells the kernel that even if this port is busy (in the TIME_WAIT state), go ahead and reuse it anyway. If it is busy, but with another state, you will still get an address already in use error. It is useful if your server has been shut down, and then restarted right away while sockets are still active on its port. according to -Wenbing Zhao 22 11

12 Socket Programming Example: Internet File Server Client code using sockets. Socket Programming Example: Internet File Server Client code using sockets 12

13 Transport Protocol The transport service is implemented by a transport protocol used between two transport entities Relationship with data link protocols Similarities: deal with error control, sequencing, flow control Difference: operating environments (a) Environment of the data link layer (b) Environment of the transport layer -Wenbing Zhao 25 Connection Management Addressing Connection establishment Connection release -Wenbing Zhao 26 13

14 Addressing Transport Service Access Points (TSAPs) to which processes can attach and wait for connections to arrive Addressing A Scenario A time of day server process on host 2 attaches itself to TSAP 1522 to wait for an incoming call An application process on host 1 wants to find out the timeof-day, so it issues a CONNECT request specifying TSAP 1208 as the source and TSAP 1522 as the destination. This action results in a transport connection being established between the application process on host 1 and server 1 on host 2. The application process then sends over a request for the time. The time server process responds with the current time The transport connection is then released. -Wenbing Zhao 28 14

15 Connection Establishment Internet Initial Connection Protocol Each machine has process server through which services are requested Idle process server listens on its TSAP User issues connection request specifying TSAP address of process server Once connection established, user sends message to process server asking it to run a particular program Process server chooses idle TSAP Spawns new process with that TSAP address Sends that TSAP address to user Terminates connection Returns to listen on its TSAP User releases connection to process server, connects to new process New process executes requested program, terminates when done Connection Establishment Internet Initial Connection Protocol 15

16 Connection Establishment Name Server (directory server) User sets up connection to Name Server, sends message specifying service name Name Server sends back TSAP address User releases connection with Name Server, establishes new connection with desired service When new service is created, it must register with Name Server giving its service name TSAP address -Wenbing Zhao 31 Connection Establishment Problem of Delayed Duplicates Possible Solutions When TSAP address is needed, new unique address is generated based on current time. When connection is released, address is discarded forever Each connection has unique identifier, chosen by initiator of connection put in each TPDU. When connection request arrives, checked against table. When connection released, each transport entity updates its table marking connection obsolete Both have drawbacks -Wenbing Zhao 32 16

17 Coping with Delayed Duplicates Sequence number based approach When start, set sequence number = time on processor s local clock If sequence number and time increase indefinitely, no problem of delayed duplicates Problem Memory is finite so sequence numbers and time stamps must wrap around, so delayed duplicates is a problem Memory is lost if processor crashes. If processor recovers, it can send message in its new life with same sequence number as in previous life -Wenbing Zhao 33 Coping with Delayed Duplicates Essential: ensure each packet has finite life using hop count or time stamp In practice, a packet s life time, T, is multiple of its true life time so that the all its acks are also dead If we wait a time T after a packet is sent, we can be sure that all traces of it are now gone Requiring T dead time after a crash might not be practical -Wenbing Zhao 34 17

18 Coping with Delayed Duplicates Solution Tomlinson s Algorithm Assumptions: Processors can crash Processors do not write sequence numbers to stable storage because it s inefficient Processor s clock keeps running if it crashes Processor s clock increases faster than sequence numbers Processor s clock and sequence numbers are recycled (wrapped around), but clock is recycled as least as often as sequence numbers, e.g., every 1000 years If processor does not crash, it knows its sequence numbers Messages have a lifetime (T), e.g., 60 seconds -Wenbing Zhao 35 Connection Establishment Good case: Send old message at time 20 with sequence number 90 Sender crashes; old message discarded at 20+60=80 Recover at time 90 Send new message at time 90 with sequence number 90 Sequence Number 90 Clock Die 60 Message discarded Recover Real Time 18

19 Connection Establishment Bad case: Send old message at time 120 with sequence number 140 Sender crashes; recover at time 140 Send new message at time 140 with sequence number 140 Old message discarded at =180 Sequence Number Forbidden region 140 Clock Die Recover Message discarded Real Time Connection Establishment When a transport entity gets into the forbidden region, problems arise A transport entity can enter the forbidden region From underneath by sending too fast From left sooner or later -Wenbing Zhao 38 19

20 Connection Establishment Tomlinson s Algorithm: When sequence number becomes equal to clock+time_to_live, set sequence number equal to clock Applicable only for data TPDU after a connection has been set up Sequence Number Forbidden Region Clock Message discarded 60 Sequence number adjusted Real Time Connection Establishment Three-way handshake to establish a connection, need to agree on initial sequence numbers (instead of using clock). Again, need to prevent delayed duplicates Host 1 chooses sequence number x, sends it to host 2 in a control TPDU Host 2 replies with a control TPDU, acks x, announces its own sequence number y Host 1 sends its first data TPDU, using x, acks y -Wenbing Zhao 40 20

21 Connection Establishment Three-way handshake (abnormal scenarios) -Wenbing Zhao 41 Connection Release Asymmetric release is abrupt and may result in data loss -Wenbing Zhao 42 21

22 Connection Release Symmetric release to avoid data loss, each side must wait to disconnect until it is sure that other side is prepared to disconnect It works when each process has a fixed amount of data to send and clearly knows when it has sent it Cannot guarantee no message loss otherwise two army problem Connection Release Two army problem the only way to win is if both blue armies attach. If only one attacks, it will be destroyed Blue armies communicate by messengers, but messengers can be caught, and their messages can be lost If no message loss, wait for message from each army, attack if none objects If message loss, impossible to decide whether or not to attack 22

23 Connection Release In practice, three-way handshake works most of the time Host 1 sends DR (Disconnect Request), starts timer in case DR lost Host 2 sends DC (Disconnect Confirm), starts timer in case DC lost When DC arrives, host 1 sends ACK, deletes connection When ACK arrives, host 2 deletes connection -Wenbing Zhao 45 Connection Release If host 1 s ACK is lost Host 2 s timer saves the day -Wenbing Zhao 46 23

24 Connection Release If DC or DR is lost Host 1 will not receive DC Host 1 s timer times out Host 1 starts over -Wenbing Zhao 47 Connection Release All repeated attempts to retransmit DR fail After n tries, host 1 gives up, deletes connection Host 2 times out, deletes connection -Wenbing Zhao 48 24

25 Connection Release Three-way handshake can fail if initial DR and n retransmissions are all lost Host 1 gives up, deletes connection Host 2 knows nothing about attempts to disconnect, remains fully active Result: half-open connection To kill off half-open connection, need timer Rule: if no TPDUs arrive in some number of seconds, disconnect connection -Wenbing Zhao 49 Flow Control and Buffering Like DLL, sliding window to prevent fast transmitter overwhelming slow receiver With unreliable network service, sender must buffer all TPDUs sent until they are acknowledged With reliable network service If receiver has plenty of buffer space, sender does not need to buffer TPDUs sent If receiver does not have enough buffer space, sender must buffer all TPDUs sent because ACK from the network layer only means the network layer at the other end received them -Wenbing Zhao 50 25

26 Flow Control and Buffering Organization of buffers Same size TPDUs use pool of equal size buffers with one TPDU per buffer Variable size IPDUs Buffer size = max TPDU size wasted space within buffers Buffer size < max TPDU size some TPDUs need several buffers Variable size buffers better buffer utilzation, but more complex management One large circular buffer per connection better buffer utilization Flow Control and Buffering Source buffering vs. destination buffering Low bandwidth bursty traffic Acquire buffers dynamically Sender must keep TPDU until its is acked Better to buffer at sender High bandwidth traffic Better to buffer at receiver Receiver should allocate full window of buffers to allow data to be sent at max speed -Wenbing Zhao 52 26

27 Flow Control and Buffering Dynamic buffer allocation Initially, the sender requests certain number of buffers. The receiver then grants as many of these as it can afford. Every time the sender transmits a TPDU, it must decrement its allocation, stopping altogether when the allocation reaches zero. The receiver then separately piggybacks both acknowledgements and buffer allocations onto the reverse traffic -Wenbing Zhao 53 Flow Control and Buffering Dynamic buffer allocation. The arrows show the direction of transmission. An ellipsis ( ) indicates a lost TPDU. 27

28 Crash Recovery Router crash / recovery easy to handle How to cope with server host crash and recovery Problem is caused by the non-atomicity of sending ack and delivery of TPDU Problem like this in layer N can only be solved by N+1 Different combinations of client and server strategy 28

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 15 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture The network layer

More information

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao EEC-484/584 Computer Networks Lecture 16 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review Services provided by transport layer

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 16 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

Jaringan Komputer. The Transport Layer

Jaringan Komputer. The Transport Layer Jaringan Komputer Transport Layer The Transport Layer The heart of the whole protocol hierarchy Task: To provide reliable, cost-effective data transport from the source machine to the destination machine,

More information

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24 Lecture 20 Overview Last Lecture Transport Control Protocol (1) This Lecture Transport Control Protocol (2) Source: chapters 23, 24 Next Lecture Internet Applications Source: chapter 26 COSC244 & TELE202

More information

Upper Layer Services. Berkeley Sockets Example of Socket Programming: Internet File Server

Upper Layer Services. Berkeley Sockets Example of Socket Programming: Internet File Server The Transport Layer Chapter 6 Transport Service Upper Layer Services Transport Service Primitives Berkeley Sockets Example of Socket Programming: Internet File Server Services Provided to the Upper Layers

More information

The OSI Reference Model. EECC694 - Shaaban

The OSI Reference Model. EECC694 - Shaaban The OSI Reference Model #1 lec #11 Spring2000 4-18-2000 The Transport Layer Provides reliable end-to-end service to processes in the application layer: Connection-oriented or connection-less services.

More information

Chapter 6. The Transport Layer. The Transport Service. Services Provided to the Upper Layers. Transport Service Primitives (3) 10/7/2010

Chapter 6. The Transport Layer. The Transport Service. Services Provided to the Upper Layers. Transport Service Primitives (3) 10/7/2010 The Transport Service Chapter 6 The Transport Layer Services Provided to the Upper Layers Transport Service Primitives Berkeley Sockets An Example of Socket Programming: An Internet File Server Services

More information

Telecommunication Protocols Laboratory Course. Lecture 3

Telecommunication Protocols Laboratory Course. Lecture 3 Telecommunication Protocols Laboratory Course Lecture 3 Course map Last time: we discussed protocols of the Medium Access Control (MAC) sub-layer Deal with broadcast channels and their (multi-party) protocols

More information

THE TRANSPORT LAYER UNIT IV

THE TRANSPORT LAYER UNIT IV THE TRANSPORT LAYER UNIT IV The Transport Layer: The Transport Service, Elements of Transport Protocols, Congestion Control,The internet transport protocols: UDP, TCP, Performance problems in computer

More information

Elements of Transport Protocols

Elements of Transport Protocols CEN445 Network Protocols and Algorithms Chapter 6 Transport Layer 6.2 Elements of Transport Protocols Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

COMPUTER NETWORKS - UNIT 4 Y3/S5

COMPUTER NETWORKS - UNIT 4 Y3/S5 UNIT IV TRANSPORT LAYER Transport layer - Services - Berkeley Sockets -Example Elements of Transport protocols Addressing - Connection Establishment - Connection Release - Flow Control and Buffering Multiplexing

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 13 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of lecture 12 Routing Congestion

More information

6.2 Elements of Transport Protocols

6.2 Elements of Transport Protocols CEN445 Network Protocols and Algorithms Chapter 6 Transport Layer 6.2 Elements of Transport Protocols Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences

More information

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP CS 5520/ECE 5590NA: Network Architecture I Spring 2008 Lecture 13: UDP and TCP Most recent lectures discussed mechanisms to make better use of the IP address space, Internet control messages, and layering

More information

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control Chapter 6 What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control OSI Model Hybrid Model Software outside the operating system Software inside

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 2 Wenbing Zhao wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Misc. Interested in research? Secure

More information

Chapter 12 Network Protocols

Chapter 12 Network Protocols Chapter 12 Network Protocols 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems Interconnection (OSI) Transmission Control Protocol/Internetworking Protocol (TCP/IP)

More information

CSE 461 The Transport Layer

CSE 461 The Transport Layer CSE 461 The Transport Layer The Transport Layer Focus How do we (reliably) connect processes? This is the transport layer Topics Naming end points UDP: unreliable transport TCP: reliable transport Connection

More information

Transport Layer Chapter 6

Transport Layer Chapter 6 Transport Service Transport Layer Chapter 6 Elements of Transport Protocols Congestion Control Internet Protocols UDP Internet Protocols TCP Performance Issues Delay-Tolerant Networking Revised: August

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

The Transport Layer. Why is there a transport layer? Addressing

The Transport Layer. Why is there a transport layer? Addressing The Transport Layer Provides logical communication between processes network layer: data transfer between end systems transport layer: data transfer between processes Two types of transport service is

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 11, 2018

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 11, 2018 CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet IP IP packet IP

More information

Applied Networks & Security

Applied Networks & Security Applied Networks & Security TCP/IP Protocol Suite http://condor.depaul.edu/~jkristof/it263/ John Kristoff jtk@depaul.edu IT 263 Spring 2006/2007 John Kristoff - DePaul University 1 ARP overview datalink

More information

Chapter 09 Network Protocols

Chapter 09 Network Protocols Chapter 09 Network Protocols Copyright 2011, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems

More information

QUIZ: Longest Matching Prefix

QUIZ: Longest Matching Prefix QUIZ: Longest Matching Prefix A router has the following routing table: 10.50.42.0 /24 Send out on interface Z 10.50.20.0 /24 Send out on interface A 10.50.24.0 /22 Send out on interface B 10.50.20.0 /22

More information

CSE 461 Connections. David Wetherall

CSE 461 Connections. David Wetherall CSE 461 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 25, 2018

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 25, 2018 CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet IP IP packet IP

More information

CMPE 150 Winter 2009

CMPE 150 Winter 2009 CMPE 150 Winter 2009 Lecture 16 March 3, 2009 P.E. Mantey CMPE 150 -- Introduction to Computer Networks Instructor: Patrick Mantey mantey@soe.ucsc.edu http://www.soe.ucsc.edu/~mantey/ / t / Office: Engr.

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Outline EEC-682/782 Computer Networks I. Midterm 1 Statistics. Midterm 1 Statistics. High 99, Low 34, Average 66

Outline EEC-682/782 Computer Networks I. Midterm 1 Statistics. Midterm 1 Statistics. High 99, Low 34, Average 66 Outline EEC-682/782 Computer Networks I Lecture 12 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

6.2 Elements of Transport Protocols

6.2 Elements of Transport Protocols Page 1 of 26 [ Team LiB ] 6.2 Elements of Transport Protocols The transport service is implemented by a transport protocol used between the two transport entities. In some ways, transport protocols resemble

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

by Douglas Comer, Purdue University

by Douglas Comer, Purdue University One Byte at a Time Bootstrapping with BOOTP and DHCP by Douglas Comer, Purdue University The process of starting a computer system is known as bootstrapping. In most systems, the initial bootstrap sequence

More information

Transport Protocols & TCP TCP

Transport Protocols & TCP TCP Transport Protocols & TCP CSE 3213 Fall 2007 13 November 2007 1 TCP Services Flow control Connection establishment and termination Congestion control 2 1 TCP Services Transmission Control Protocol (RFC

More information

TCPIP Protocol Suite & Utilities. Revision no.: PPT/2K403/02

TCPIP Protocol Suite & Utilities. Revision no.: PPT/2K403/02 TCPIP Protocol Suite & Utilities Revision no.: PPT/2K403/02 Comparing the TCP/IP protocol Suite, the OSI Model, and the DoD Model Comparing the TCP/IP protocol Suite, the OSI Model, and the DoD Model (contd.)

More information

Data Link Control Protocols

Data Link Control Protocols Protocols : Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 Y12S1L07, Steve/Courses/2012/s1/its323/lectures/datalink.tex,

More information

Introduction to Networks and the Internet

Introduction to Networks and the Internet Introduction to Networks and the Internet CMPE 80N Announcements Project 2. Reference page. Library presentation. Internet History video. Spring 2003 Week 7 1 2 Today Internetworking (cont d). Fragmentation.

More information

Finish Network Layer Start Transport Layer. CS158a Chris Pollett Apr 25, 2007.

Finish Network Layer Start Transport Layer. CS158a Chris Pollett Apr 25, 2007. Finish Network Layer Start Transport Layer CS158a Chris Pollett Apr 25, 2007. Outline OSPF BGP IPv6 Transport Layer Services Sockets Example Socket Program OSPF We now look at routing in the internet.

More information

CSC 634: Networks Programming

CSC 634: Networks Programming CSC 634: Networks Programming Lecture 03: Review of Basic Networking Concepts (TCP/UDP) Instructor: Haidar M. Harmanani Recap 7-Layer OSI Model 7 6 5 4 3 2 1 Application Presentation (kinds of compression)

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 18 th class; 7 th Oct 2011 Instructor: Sridhar Iyer IIT Bombay Reliable Transport We have already designed a reliable communication protocol for an analogy

More information

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis Session 8. TCP/IP Dongsoo S. Kim (dskim@iupui.edu) Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis IP Packet 0 4 8 16 19 31 Version IHL Type of Service Total Length Identification

More information

Network Protocols. Sarah Diesburg Operating Systems CS 3430

Network Protocols. Sarah Diesburg Operating Systems CS 3430 Network Protocols Sarah Diesburg Operating Systems CS 3430 Protocol An agreement between two parties as to how information is to be transmitted A network protocol abstracts packets into messages Physical

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Lecture 11: IP routing, IP protocols

Lecture 11: IP routing, IP protocols Lecture 11: IP routing, IP protocols Contents Routing principles Local datagram delivery ICMP Protocol UDP Protocol TCP/IP Protocol Assuring requirements for streaming TPC Building and terminating TCP

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

Computer Networks. Routing

Computer Networks. Routing Computer Networks Routing Topics Link State Routing (Continued) Hierarchical Routing Broadcast Routing Sending distinct packets Flooding Multi-destination routing Using spanning tree Reverse path forwarding

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

Outline. EEC-484/584 Computer Networks. Data Link Layer Design Issues. Framing. Lecture 6. Wenbing Zhao Review.

Outline. EEC-484/584 Computer Networks. Data Link Layer Design Issues. Framing. Lecture 6. Wenbing Zhao Review. EEC-484/584 Computer Networks Lecture 6 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline Review Data Link Layer Design Issues Error

More information

Transport Protocols and TCP: Review

Transport Protocols and TCP: Review Transport Protocols and TCP: Review CSE 6590 Fall 2010 Department of Computer Science & Engineering York University 1 19 September 2010 1 Connection Establishment and Termination 2 2 1 Connection Establishment

More information

19: Networking. Networking Hardware. Mark Handley

19: Networking. Networking Hardware. Mark Handley 19: Networking Mark Handley Networking Hardware Lots of different hardware: Modem byte at a time, FDDI, SONET packet at a time ATM (including some DSL) 53-byte cell at a time Reality is that most networking

More information

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk Date: January 17 th 2006 at 14:00 18:00 SOLUTIONS 1. General (5p) a) Draw the layered

More information

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork UNIT - II Internetworking An internetwork is a collection of individual networks, connected by intermediate networking devices, that functions as a single large network. different kinds of network technologies

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University Computer Network Programming The Transport Layer Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University The Transport Layer The Big Picture Overview of TCP/IP protocols TCP Packet Exchanges

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Sliding

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

The Transport Layer. The need for the transport layer

The Transport Layer. The need for the transport layer The Transport Layer Aims To explain:- The need for the transport layer A simple exemplar Transport in IP and ATM Outcomes To understand the need for the layer and the solution adopted adopted when internetworking

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

Internetworking Part 2

Internetworking Part 2 CMPE 344 Computer Networks Spring 2012 Internetworking Part 2 Reading: Peterson and Davie, 3.2, 4.1 19/04/2012 1 Aim and Problems Aim: Build networks connecting millions of users around the globe spanning

More information

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 22-3 UNICAST ROUTING PROTOCOLS 22.2 A routing

More information

TCP/IP Networking. Part 4: Network and Transport Layer Protocols

TCP/IP Networking. Part 4: Network and Transport Layer Protocols TCP/IP Networking Part 4: Network and Transport Layer Protocols Orientation Application Application protocol Application TCP TCP protocol TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access

More information

TCP/IP Performance ITL

TCP/IP Performance ITL TCP/IP Performance ITL Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25, HDLC etc. ATM 4/30/2002 Hans Kruse & Shawn Ostermann,

More information

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP Outline Connecting to the access network: DHCP and mobile IP, LTE Transport layer: UDP and TCP IETF TCP/IP protocol suite User application, e.g., http with Mozilla Communication for each process on computer

More information

Outline. CS5984 Mobile Computing

Outline. CS5984 Mobile Computing CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline Review Transmission Control Protocol (TCP) Based on Behrouz Forouzan, Data Communications and Networking,

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich Operating Systems and Networks Network Lecture 8: Transport Layer Adrian Perrig Network Security Group ETH Zürich I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services.

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services. Operating Systems and s Lecture 8: Transport Layer I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it Adrian Perrig Security Group ETH Zürich 2 Where we are in the

More information

What is the difference between unicast and multicast? (P# 114)

What is the difference between unicast and multicast? (P# 114) 1 FINAL TERM FALL2011 (eagle_eye) CS610 current final term subjective all solved data by eagle_eye MY paper of CS610 COPUTER NETWORKS There were 30 MCQs Question no. 31 (Marks2) Find the class in 00000001.001011.1001.111

More information

Chapter 5 (Week 10) The Network Layer (CONTINUATION) ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP

Chapter 5 (Week 10) The Network Layer (CONTINUATION) ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP Chapter 5 (Week 10) The Network Layer (CONTINUATION) ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP. 397-480 1 5.1. NETWORK LAYER DESIGN ISSUES 5.2. ROUTING ALGORITHMS 5.3. CONGESTION CONTROL

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 14: TCP Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu Northeastern

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

1.What are the services provided by the transport layer to the upper layers?

1.What are the services provided by the transport layer to the upper layers? 1.What are the services provided by the transport layer to the upper layers? Services provided to the upper layer: The ultimate goal of the transport layer is to provide efficient, reliable, and cost-effective

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

TCP over wireless links

TCP over wireless links CSc 450/550 Computer Communications & Networks TCP over wireless links Jianping Pan (stand-in for Dr. Wu) 1/31/06 CSc 450/550 1 TCP over wireless links TCP a quick review on how TCP works Wireless links

More information

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance EECS 122, Lecture 19 Today s Topics: More on Reliable Delivery Round-Trip Timing Flow Control Intro to Congestion Control Kevin Fall, kfall@cs cs.berkeley.eduedu Reliable Delivery Stop and Wait simple

More information

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Internet Protocol (IP) Lecture 2: Prof. Shervin Shirmohammadi CEG

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Internet Protocol (IP) Lecture 2: Prof. Shervin Shirmohammadi CEG Lecture 2: Internet Protocol (IP) Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 2-1 Network Layer Provides the upper layers with independence from the data

More information

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22 23-3 TCP 23.22 TCP is a connection-oriented protocol; it creates a virtual connection between two TCPs to send data. In addition, TCP uses flow and error control mechanisms at the transport level. Topics

More information

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ Networking for Data Acquisition Systems Fabrice Le Goff - 14/02/2018 - ISOTDAQ Outline Generalities The OSI Model Ethernet and Local Area Networks IP and Routing TCP, UDP and Transport Efficiency Networking

More information

Module 25 TCP Timers and delayed duplicates problem in TCP

Module 25 TCP Timers and delayed duplicates problem in TCP Computer Networks and ITCP/IP Protocols 1 Module 25 TCP Timers and delayed duplicates problem in TCP Introduction TCP uses timers for many cases. We have seen a case where it needs a retransmission timer

More information

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link.

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link. Internet Layers Application Application Transport Transport Network Network Network Network Link Link Link Link Ethernet Fiber Optics Physical Layer Wi-Fi ARP requests and responses IP: 192.168.1.1 MAC:

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322 1 Local & Metropolitan Area Networks ACOE322 Lecture 5 TCP/IP Protocol suite and IP addressing 1 0. INTRODUCTION We shall cover in this topic: 1. The relation of TCP/IP with internet and OSI model 2. Internet

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY 23.2 The transport

More information

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network This Lecture BUS0 - Computer Facilities Network Management Switching networks Circuit switching Packet switching gram approach Virtual circuit approach Routing in switching networks Faculty of Information

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP)

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP) Lecture (07) OSI layer 4 protocols TCP/UDP protocols By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Fall2014, Computer Networks II Introduction Most data-link protocols notice errors then discard frames

More information

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine Computer Science Department 1 / 33 1 COS 140: Foundations

More information

Switching & ARP Week 3

Switching & ARP Week 3 Switching & ARP Week 3 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 Many Slides courtesy of Tony Chen 1 Ethernet Using Switches In the last few years, switches have quickly

More information

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2. CS 356: Computer Network Architectures Lecture 14: Switching hardware, IP auxiliary functions, and midterm review [PD] chapter 3.4.1, 3.2.7 Xiaowei Yang xwy@cs.duke.edu Switching hardware Software switch

More information

Chapter 6. The Network Layer

Chapter 6. The Network Layer Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I

Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I Hello and welcome to today s lecture on TCP/IP. (Refer Slide

More information