Part 5: Total Order Broadcast

Size: px
Start display at page:

Download "Part 5: Total Order Broadcast"

Transcription

1 Dependable Distributed Systems 2 Part 5: Total Order Broadcast Prof Dr. Felix Freiling (based on slides by Rachid Guerraoui, EPFL)

2 Looking Back Asynchronous system model with reliable channels best-effort/reliable/uniform broadcast without failure detectors with or without FIFO/causal order regular/uniform consensus FLP impossibility algorithms with failure detectors weakest failure detectors for consensus Today: back to broadcast 2

3 Consensus Agreement Validity Termination Consensus is a fundamental agreement abstraction (well-studied in the literature) "smallest common agreement problem" stronger agreement abstractions derived from solutions to consensus 3

4 Total Order Broadcast Reliable broadcast with total order all processes see the same delivery order sometimes also called atomic broadcast broadcast() deliver() deliver () broadcast() 4

5 Overview Intuitions: what total order broadcast can be used for? Specifications of total order broadcast Consensus-based total order algorithm 5

6 Uniform Reliable Broadcast Properties: "Safety" and "Liveness" plus Agreement or Uniform Agreement Non-Uniform Reliable Broadcast can be constructed in the obvious way broadcast(m) deliver(m) 6

7 Broadcast Properties URB1. Validity: If pi and pj are correct, then every message broadcast by pi is eventually delivered by pj URB2. No duplication: No message is delivered more than once URB3. No creation: No message is delivered unless it was broadcast URB4. Uniform Agreement: For any message m, if a process delivers m, then every correct process delivers m 7

8 Ordered Reliable Broadcast None, FIFO, causal best-effort FIFO best-effort causal besteffort reliable FIFO reliable causal reliable uniform reliable FIFO uniform reliable causal uniform reliable 8

9 Partial and Total Orders In (uniform) reliable broadcast, the processes are free to deliver messages in any order they wish In causal broadcast, the processes need to deliver messages according to causal order The order imposed by causal broadcast is however partial: some messages might be delivered in different order by the processes 9

10 p1 Reliable Broadcast m3 p2 m3 p3 m3 m3 10

11 p1 Causal Broadcast m3 p2 m3 p3 m3 m3 11

12 Total vs. FIFO/Causal Order In total order broadcast, the processes must deliver messages according to the same order (i.e., the order is now total) Note that this order does not need to respect causality (or even FIFO ordering) Total order is orthogonal to FIFO/causal order Total order broadcast can be made to respect causal (or FIFO) ordering 12

13 Total Order Broadcast? (1/4) FIFO, causal, total? p1 m3 m3 p2 p3 m3 m3 13

14 Total Order Broadcast? (2/4) FIFO, causal, total? p1 m3 p2 m3 p3 m3 m3 14

15 Total Order Broadcast? (3/4) FIFO, causal, total, uniform? p1 m3 p2 m3 p3 m3 15

16 Total Order Broadcast? (4/4) FIFO, causal, total, uniform? p1 m3 p2 p3 m3 m3 16

17 Applications (1/2) A replicated service where the replicas need to treat the requests in the same order to preserve consistency replica 1 replica 2 replica 3 17

18 Applications (2/2) A notification service where the subscribers need to get notifications in the same order 18

19 Overview Intuitions: what total order broadcast can bring? Now: Specifications of total order broadcast two variants: regular and uniform Consensus-based algorithm 19

20 Total order broadcast (tob) Events Request: <tobroadcast, m> Indication: <todeliver, src, m> Properties: RB1, RB2, RB3, RB4 Total order property 20

21 Total order broadcast (utob) Events Request: <utobroadcast, m> Indication: <utodeliver, src, m> Properties: URB1, URB2, URB3, URB4 Uniform Total order property 21

22 (Uniform) Total order broadcast Validity: If pi and pj are correct, then every message broadcast by pi is eventually delivered by pj No duplication: No message is delivered more than once No creation: No message is delivered unless it was broadcast (Uniform) Agreement: For any message m. If a correct (any) process delivers m, then every correct process delivers m 22

23 (Uniform) Total order broadcast (cont.) Total order: Let pi and pj be any two correct processes that deliver a message m. If pi delivers a message m before m, then pj delivers m before m. Uniform Total order: Let pi and pj be any two processes that deliver a message m. If pi delivers a message m before m, then pj delivers m before m. order with respect to any delivered message m 23

24 Exercise Compare the following two properties: Uniform Total order: Let pi and pj be any two processes that deliver a message m. If pi delivers a message m before m, then pj delivers m before m. Naive total order: Let pi and pj be any two processes that deliver two messages m and m. If pi delivers m before m, then pj delivers m before m. Safety/Liveness? UTO NTO? 24

25 Overview Intuitions: what total order broadcast can bring? Specifications of total order broadcast Now: Consensus-based algorithm for Uniform total order broadcast 25

26 Uniform Consensus In the uniform consensus problem, the processes propose values and need to agree on one among these values UC1. Validity: Any value decided is a value proposed UC2. Uniform Agreement: No two processes decide differently UC3. Termination: Every correct process eventually decides UC4. Integrity: Every process decides at most once 26

27 Uniform Consensus Events Request: <ucpropose, v> Indication: <ucdecide, v > Properties: UC1, UC2, UC3, UC4 27

28 Modules of a process indication request request indication (R-U)Consensus 28

29 Algorithm Idea We use uniform reliable broadcast (URB) as a transport mechanism for uniform total order broadcast We use uniform consensus (UC) to agree on total order messages are disseminated using URB delivered (but unordered) messages are stored in a buffer periodically we use UC to agree on a set of to-bedelivered messages (sequence of rounds) deliver these messages in a predefined order 29

30 Algorithm Implements: UniformTotalOrder (uto). Uses: Uniform ReliableBroadcast (urb). Uniform Consensus (ucons); upon event < Init > do unordered = delivered = { }; wait := false; sn := 1; 30

31 Algorithm upon event < utobroadcast, m> do trigger < urbbroadcast, m>; upon event <urbdeliver,sm,m> and (m not in delivered) do unordered := unordered U {(sm,m)}; upon (unordered not empty) and not(wait) do wait := true: trigger < ucpropose, unordered> sn ; 31

32 Algorithm upon event <ucdecide,decided> sn do unordered := unordered \ decided; ordered := deterministicsort(decided); for all (sm,m) in ordered: trigger < utodeliver,sm,m>; delivered := delivered U {m}; sn : = sn + 1; wait := false; 32

33 Example p1 utob() p2 utob(m4) p3 utob(m3) p4 utob() consensus p1 p2 p3 p4,,m3,m3 m3,m4 m3,m4 m3,m4 m3,m4 utod() utod() utod(m3,m4) 33

34 Correctness (1/3) Validity: If pi and pj are correct, then every message broadcast by pi is eventually delivered by pj No duplication: No message is delivered more than once 34

35 Correctness (2/3) No creation: No message is delivered unless it was broadcast Uniform Agreement: For any message m. If any process delivers m, then every correct process delivers m 35

36 Correctness (3/3) Uniform Total order: Let pi and pj be any two processes that deliver a message m. If pi delivers a message m before m, then pj delivers m before m. 36

37 Adding FIFO/causal Order How can we add FIFO order? exchange URB with FIFO uniform reliable broadcast? How add causal order? Exchange URB with causal URB? 37

38 Adding FIFO Order Replace URB with a FIFO URB primitive Local deliveries will respect FIFO order let message be sent by process p before cannot be proposed to consensus unless has been todelivered or is proposed at the same time Take care that deterministicsort respects FIFO order too 38

39 Adding Causal Order Replace URB with a causal URB primitive Same type of argument as for FIFO let message -> is not delivered unless has been delivered cannot be proposed to consensus unless has been todelivered or is proposed at the same time Look out for deterministicsort 39

40 Total Order total order can be added to any type of reliable broadcast reliable FIFO reliable causal reliable total order reliable total order FIFO reliable total order causal reliable 40

41 Total Broadcast in Context So we can build total order broadcast using consensus! Can we build total order broadcast using just reliable broadcast (without consensus)? How can we prove that this is impossible? 41

42 Building Consensus out of Atomic Broadcast We can construct consensus using atomic broadcast? need to map invocations of Propose and Decide to invocations of tobroadcast and todeliver Idea: whenever a process Proposes a value, this value is tobroadcast to everybody other processes receive proposed values using todeliver they decide on the first value received 42

43 Construction Idea propose(x) y,z,x decide(y) propose(y) y,z,x decide(y) decide(y) propose(z) y,z,x Agreement? Validity? Termination? 43

44 Proof Consensus Agreement: follows from total order and URB Agreement Consensus Validity: algorithm does not introduce new values URB doesn't either (no creation property) Termination: follows mainly from URB Termination 44

45 Equivalences 1. One can build consensus with total order broadcast 2. One can build total order broadcast with consensus and reliable broadcast Therefore, consensus and total order broadcast are equivalent problems in a system with reliable channels 45

46 Questions What is the weakest failure detector for total order broadcast? Majority of correct processes? Minority? Given an eventuallp perfect failure detector: can you implement total order broadcast? Can you do it with? 46

47 Summary Total order (atomic) broadcast reliable broadcast with total delivery order consensus-based algorithm Equivalence to consensus Coming next: Other (strong) coordination problems Non-blocking atomic commit Terminating reliable broadcast and their relation to consensus... 47

Distributed systems. Total Order Broadcast

Distributed systems. Total Order Broadcast Distributed systems Total Order Broadcast Prof R. Guerraoui Distributed Programming Laboratory Overview! Intuitions: what total order broadcast can bring?! Specifications of total order broadcast! Consensus-based

More information

Distributed Algorithms Reliable Broadcast

Distributed Algorithms Reliable Broadcast Distributed Algorithms Reliable Broadcast Alberto Montresor University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents

More information

Distributed systems. Consensus

Distributed systems. Consensus Distributed systems Consensus Prof R. Guerraoui Distributed Programming Laboratory Consensus B A C 2 Consensus In the consensus problem, the processes propose values and have to agree on one among these

More information

Distributed systems. Causal Broadcast

Distributed systems. Causal Broadcast Distributed systems Causal Broadcast Prof R. Guerraoui Distributed Programming Laboratory 1 Overview Intuitions: why causal broadcast? Specifications of causal broadcast Algorithms: A non-blocking algorithm

More information

Distributed Algorithms Failure detection and Consensus. Ludovic Henrio CNRS - projet SCALE

Distributed Algorithms Failure detection and Consensus. Ludovic Henrio CNRS - projet SCALE Distributed Algorithms Failure detection and Consensus Ludovic Henrio CNRS - projet SCALE ludovic.henrio@cnrs.fr Acknowledgement The slides for this lecture are based on ideas and materials from the following

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement 12.1 Introduction 12.2 Distributed Mutual Exclusion 12.4 Multicast Communication 12.3 Elections 12.5 Consensus and Related Problems AIM: Coordination and/or Agreement Collection

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement 1 Introduction 2 Distributed Mutual Exclusion 3 Multicast Communication 4 Elections 5 Consensus and Related Problems AIM: Coordination and/or Agreement Collection of algorithms

More information

CS505: Distributed Systems

CS505: Distributed Systems Department of Computer Science CS505: Distributed Systems Lecture 14: More Agreement Problems Uniform Reliable Broadcast Terminating Reliable Broadcast Leader Election Uniform Reliable Broadcast By now

More information

Distributed algorithms

Distributed algorithms Distributed algorithms Prof R. Guerraoui lpdwww.epfl.ch Exam: Written Reference: Book - Springer Verlag http://lpd.epfl.ch/site/education/da - Introduction to Reliable (and Secure) Distributed Programming

More information

Distributed Algorithms Benoît Garbinato

Distributed Algorithms Benoît Garbinato Distributed Algorithms Benoît Garbinato 1 Distributed systems networks distributed As long as there were no machines, programming was no problem networks distributed at all; when we had a few weak computers,

More information

Basic vs. Reliable Multicast

Basic vs. Reliable Multicast Basic vs. Reliable Multicast Basic multicast does not consider process crashes. Reliable multicast does. So far, we considered the basic versions of ordered multicasts. What about the reliable versions?

More information

Fault-Tolerant Distributed Services and Paxos"

Fault-Tolerant Distributed Services and Paxos Fault-Tolerant Distributed Services and Paxos" INF346, 2015 2015 P. Kuznetsov and M. Vukolic So far " " Shared memory synchronization:" Wait-freedom and linearizability" Consensus and universality " Fine-grained

More information

R. Guerraoui Distributed Programming Laboratory lpdwww.epfl.ch

R. Guerraoui Distributed Programming Laboratory lpdwww.epfl.ch - Shared Memory - R. Guerraoui Distributed Programming Laboratory lpdwww.epfl.ch R. Guerraoui 1 The application model P2 P1 Registers P3 2 Register (assumptions) For presentation simplicity, we assume

More information

Byzantine Failures. Nikola Knezevic. knl

Byzantine Failures. Nikola Knezevic. knl Byzantine Failures Nikola Knezevic knl Different Types of Failures Crash / Fail-stop Send Omissions Receive Omissions General Omission Arbitrary failures, authenticated messages Arbitrary failures Arbitrary

More information

Intuitive distributed algorithms. with F#

Intuitive distributed algorithms. with F# Intuitive distributed algorithms with F# Natallia Dzenisenka Alena Hall @nata_dzen @lenadroid A tour of a variety of intuitivedistributed algorithms used in practical distributed systems. and how to prototype

More information

CSE 5306 Distributed Systems. Fault Tolerance

CSE 5306 Distributed Systems. Fault Tolerance CSE 5306 Distributed Systems Fault Tolerance 1 Failure in Distributed Systems Partial failure happens when one component of a distributed system fails often leaves other components unaffected A failure

More information

Distributed Algorithms (PhD course) Consensus SARDAR MUHAMMAD SULAMAN

Distributed Algorithms (PhD course) Consensus SARDAR MUHAMMAD SULAMAN Distributed Algorithms (PhD course) Consensus SARDAR MUHAMMAD SULAMAN Consensus (Recapitulation) A consensus abstraction is specified in terms of two events: 1. Propose ( propose v )» Each process has

More information

Distributed Algorithms (PhD course) Consensus SARDAR MUHAMMAD SULAMAN

Distributed Algorithms (PhD course) Consensus SARDAR MUHAMMAD SULAMAN Distributed Algorithms (PhD course) Consensus SARDAR MUHAMMAD SULAMAN Consensus The processes use consensus to agree on a common value out of values they initially propose Reaching consensus is one of

More information

Coordination 2. Today. How can processes agree on an action or a value? l Group communication l Basic, reliable and l ordered multicast

Coordination 2. Today. How can processes agree on an action or a value? l Group communication l Basic, reliable and l ordered multicast Coordination 2 Today l Group communication l Basic, reliable and l ordered multicast How can processes agree on an action or a value? Modes of communication Unicast 1ç è 1 Point to point Anycast 1è

More information

Distributed Algorithms

Distributed Algorithms Distributed Algorithms Communication Channels in Practice 24.10.2016 1 Processes/Channels Processes communicate by message passing through communication channels Messages are uniquely identified and the

More information

Consensus Problem. Pradipta De

Consensus Problem. Pradipta De Consensus Problem Slides are based on the book chapter from Distributed Computing: Principles, Paradigms and Algorithms (Chapter 14) by Kshemkalyani and Singhal Pradipta De pradipta.de@sunykorea.ac.kr

More information

Secure Distributed Programming

Secure Distributed Programming Secure Distributed Programming Christian Cachin* Rachid Guerraoui Luís Rodrigues Tutorial at CCS 2011 A play in three acts Abstractions and protocols for Reliable broadcast Shared memory Consensus In asynchronous

More information

Semi-Passive Replication in the Presence of Byzantine Faults

Semi-Passive Replication in the Presence of Byzantine Faults Semi-Passive Replication in the Presence of Byzantine Faults HariGovind V. Ramasamy Adnan Agbaria William H. Sanders University of Illinois at Urbana-Champaign 1308 W. Main Street, Urbana IL 61801, USA

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Fault Tolerance Jia Rao http://ranger.uta.edu/~jrao/ 1 Failure in Distributed Systems Partial failure Happens when one component of a distributed system fails Often leaves

More information

A Case Study of Agreement Problems in Distributed Systems : Non-Blocking Atomic Commitment

A Case Study of Agreement Problems in Distributed Systems : Non-Blocking Atomic Commitment A Case Study of Agreement Problems in Distributed Systems : Non-Blocking Atomic Commitment Michel RAYNAL IRISA, Campus de Beaulieu 35042 Rennes Cedex (France) raynal @irisa.fr Abstract This paper considers

More information

Correct-by-Construction Attack- Tolerant Systems. Robert Constable Mark Bickford Robbert van Renesse Cornell University

Correct-by-Construction Attack- Tolerant Systems. Robert Constable Mark Bickford Robbert van Renesse Cornell University Correct-by-Construction Attack- Tolerant Systems Robert Constable Mark Bickford Robbert van Renesse Cornell University Definition Attack-tolerant distributed systems change their protocols on-the-fly in

More information

Formal Development of Fault Tolerant Transactions for a Replicated Database using Ordered Broadcasts

Formal Development of Fault Tolerant Transactions for a Replicated Database using Ordered Broadcasts Formal Development of Fault Tolerant Transactions for a Replicated Database using Ordered Broadcasts Divakar Yadav and Michael Butler Dependable Systems and Software Engineering School of Electronics and

More information

A General Characterization of Indulgence

A General Characterization of Indulgence A General Characterization of Indulgence R. Guerraoui 1,2 N. Lynch 2 (1) School of Computer and Communication Sciences, EPFL (2) Computer Science and Artificial Intelligence Laboratory, MIT Abstract. An

More information

A Dual Digraph Approach for Leaderless Atomic Broadcast

A Dual Digraph Approach for Leaderless Atomic Broadcast A Dual Digraph Approach for Leaderless Atomic Broadcast (Extended Version) Marius Poke Faculty of Mechanical Engineering Helmut Schmidt University marius.poke@hsu-hh.de Colin W. Glass Faculty of Mechanical

More information

The UNIVERSITY of EDINBURGH. SCHOOL of INFORMATICS. CS4/MSc. Distributed Systems. Björn Franke. Room 2414

The UNIVERSITY of EDINBURGH. SCHOOL of INFORMATICS. CS4/MSc. Distributed Systems. Björn Franke. Room 2414 The UNIVERSITY of EDINBURGH SCHOOL of INFORMATICS CS4/MSc Distributed Systems Björn Franke bfranke@inf.ed.ac.uk Room 2414 (Lecture 13: Multicast and Group Communication, 16th November 2006) 1 Group Communication

More information

Eventual Consistency Today: Limitations, Extensions and Beyond

Eventual Consistency Today: Limitations, Extensions and Beyond Eventual Consistency Today: Limitations, Extensions and Beyond Peter Bailis and Ali Ghodsi, UC Berkeley - Nomchin Banga Outline Eventual Consistency: History and Concepts How eventual is eventual consistency?

More information

Using Optimistic Atomic Broadcast in Transaction Processing Systems

Using Optimistic Atomic Broadcast in Transaction Processing Systems Using Optimistic Atomic Broadcast in Transaction Processing Systems Bettina Kemme Fernando Pedone Gustavo Alonso André Schiper Matthias Wiesmann School of Computer Science McGill University Montreal, Canada,

More information

Replicated State Machine in Wide-area Networks

Replicated State Machine in Wide-area Networks Replicated State Machine in Wide-area Networks Yanhua Mao CSE223A WI09 1 Building replicated state machine with consensus General approach to replicate stateful deterministic services Provide strong consistency

More information

Abstractions for Distributed Programming

Abstractions for Distributed Programming Rachid Guerraoui, Luís Rodrigues Abstractions for Distributed Programming (Preliminary Draft) October 12, 2003 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

More information

Specifying and Proving Broadcast Properties with TLA

Specifying and Proving Broadcast Properties with TLA Specifying and Proving Broadcast Properties with TLA William Hipschman Department of Computer Science The University of North Carolina at Chapel Hill Abstract Although group communication is vitally important

More information

Coordinating distributed systems part II. Marko Vukolić Distributed Systems and Cloud Computing

Coordinating distributed systems part II. Marko Vukolić Distributed Systems and Cloud Computing Coordinating distributed systems part II Marko Vukolić Distributed Systems and Cloud Computing Last Time Coordinating distributed systems part I Zookeeper At the heart of Zookeeper is the ZAB atomic broadcast

More information

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski Distributed Systems 09. State Machine Replication & Virtual Synchrony Paul Krzyzanowski Rutgers University Fall 2016 1 State machine replication 2 State machine replication We want high scalability and

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Distributed Mutual Exclusion 3. Elections 4. Multicast Communication 5. Consensus and related problems

More information

CSE 486/586 Distributed Systems

CSE 486/586 Distributed Systems CSE 486/586 Distributed Systems Mutual Exclusion Steve Ko Computer Sciences and Engineering University at Buffalo CSE 486/586 Recap: Consensus On a synchronous system There s an algorithm that works. On

More information

Eventual Consistency Today: Limitations, Extensions and Beyond

Eventual Consistency Today: Limitations, Extensions and Beyond Eventual Consistency Today: Limitations, Extensions and Beyond Peter Bailis and Ali Ghodsi, UC Berkeley Presenter: Yifei Teng Part of slides are cited from Nomchin Banga Road Map Eventual Consistency:

More information

Consensus in Distributed Systems. Jeff Chase Duke University

Consensus in Distributed Systems. Jeff Chase Duke University Consensus in Distributed Systems Jeff Chase Duke University Consensus P 1 P 1 v 1 d 1 Unreliable multicast P 2 P 3 Consensus algorithm P 2 P 3 v 2 Step 1 Propose. v 3 d 2 Step 2 Decide. d 3 Generalizes

More information

Two-Phase Atomic Commitment Protocol in Asynchronous Distributed Systems with Crash Failure

Two-Phase Atomic Commitment Protocol in Asynchronous Distributed Systems with Crash Failure Two-Phase Atomic Commitment Protocol in Asynchronous Distributed Systems with Crash Failure Yong-Hwan Cho, Sung-Hoon Park and Seon-Hyong Lee School of Electrical and Computer Engineering, Chungbuk National

More information

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi 1 Lecture Notes 1 Basic Concepts Anand Tripathi CSci 8980 Operating Systems Anand Tripathi CSci 8980 1 Distributed Systems A set of computers (hosts or nodes) connected through a communication network.

More information

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs 1 Anand Tripathi CSci 8980 Operating Systems Lecture Notes 1 Basic Concepts Distributed Systems A set of computers (hosts or nodes) connected through a communication network. Nodes may have different speeds

More information

EECS 498 Introduction to Distributed Systems

EECS 498 Introduction to Distributed Systems EECS 498 Introduction to Distributed Systems Fall 2017 Harsha V. Madhyastha Replicated State Machines Logical clocks Primary/ Backup Paxos? 0 1 (N-1)/2 No. of tolerable failures October 11, 2017 EECS 498

More information

Consensus, impossibility results and Paxos. Ken Birman

Consensus, impossibility results and Paxos. Ken Birman Consensus, impossibility results and Paxos Ken Birman Consensus a classic problem Consensus abstraction underlies many distributed systems and protocols N processes They start execution with inputs {0,1}

More information

Practice: Large Systems Part 2, Chapter 2

Practice: Large Systems Part 2, Chapter 2 Practice: Large Systems Part 2, Chapter 2 Overvie Introduction Strong Consistency Crash Failures: Primary Copy, Commit Protocols Crash-Recovery Failures: Paxos, Chubby Byzantine Failures: PBFT, Zyzzyva

More information

Generating Fast Indulgent Algorithms

Generating Fast Indulgent Algorithms Generating Fast Indulgent Algorithms Dan Alistarh 1, Seth Gilbert 2, Rachid Guerraoui 1, and Corentin Travers 3 1 EPFL, Switzerland 2 National University of Singapore 3 Université de Bordeaux 1, France

More information

Introduction to Reliable and Secure Distributed Programming

Introduction to Reliable and Secure Distributed Programming Introduction to Reliable and Secure Distributed Programming Bearbeitet von Christian Cachin, Rachid Guerraoui, Luís Rodrigues 1. Auflage 2011. Buch. xix, 367 S. Hardcover ISBN 978 3 642 15259 7 Format

More information

Paxos and Raft (Lecture 21, cs262a) Ion Stoica, UC Berkeley November 7, 2016

Paxos and Raft (Lecture 21, cs262a) Ion Stoica, UC Berkeley November 7, 2016 Paxos and Raft (Lecture 21, cs262a) Ion Stoica, UC Berkeley November 7, 2016 Bezos mandate for service-oriented-architecture (~2002) 1. All teams will henceforth expose their data and functionality through

More information

Atomic Broadcast in Asynchronous Crash-Recovery Distributed Systems

Atomic Broadcast in Asynchronous Crash-Recovery Distributed Systems Atomic Broadcast in Asynchronous Crash-Recovery Distributed Systems Luís Rodrigues Michel Raynal DI FCUL TR 99 7 Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Campo Grande,

More information

Consensus a classic problem. Consensus, impossibility results and Paxos. Distributed Consensus. Asynchronous networks.

Consensus a classic problem. Consensus, impossibility results and Paxos. Distributed Consensus. Asynchronous networks. Consensus, impossibility results and Paxos Ken Birman Consensus a classic problem Consensus abstraction underlies many distributed systems and protocols N processes They start execution with inputs {0,1}

More information

ATOMIC Broadcast is one of the most important agreement

ATOMIC Broadcast is one of the most important agreement 1206 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003 Atomic Broadcast in Asynchronous Crash-Recovery Distributed Systems and Its Use in Quorum-Based Replication

More information

CSE 486/586 Distributed Systems Reliable Multicast --- 1

CSE 486/586 Distributed Systems Reliable Multicast --- 1 Distributed Systems Reliable Multicast --- 1 Steve Ko Computer Sciences and Engineering University at Buffalo Last Time Global states A union of all process states Consistent global state vs. inconsistent

More information

Research Report. (Im)Possibilities of Predicate Detection in Crash-Affected Systems. RZ 3361 (# 93407) 20/08/2001 Computer Science 27 pages

Research Report. (Im)Possibilities of Predicate Detection in Crash-Affected Systems. RZ 3361 (# 93407) 20/08/2001 Computer Science 27 pages RZ 3361 (# 93407) 20/08/2001 Computer Science 27 pages Research Report (Im)Possibilities of Predicate Detection in Crash-Affected Systems Felix C. Gärtner and Stefan Pleisch Department of Computer Science

More information

CSE 486/586 Distributed Systems

CSE 486/586 Distributed Systems CSE 486/586 Distributed Systems Reliable Multicast (part 1) Slides by Steve Ko Computer Sciences and Engineering University at Buffalo CSE 486/586 Last Time Global state A union of all process states Consistent

More information

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf Distributed systems Lecture 6: distributed transactions, elections, consensus and replication Malte Schwarzkopf Last time Saw how we can build ordered multicast Messages between processes in a group Need

More information

Beyond FLP. Acknowledgement for presentation material. Chapter 8: Distributed Systems Principles and Paradigms: Tanenbaum and Van Steen

Beyond FLP. Acknowledgement for presentation material. Chapter 8: Distributed Systems Principles and Paradigms: Tanenbaum and Van Steen Beyond FLP Acknowledgement for presentation material Chapter 8: Distributed Systems Principles and Paradigms: Tanenbaum and Van Steen Paper trail blog: http://the-paper-trail.org/blog/consensus-protocols-paxos/

More information

A MODULAR FRAMEWORK TO IMPLEMENT FAULT TOLERANT DISTRIBUTED SERVICES. P. Nicolas Kokkalis

A MODULAR FRAMEWORK TO IMPLEMENT FAULT TOLERANT DISTRIBUTED SERVICES. P. Nicolas Kokkalis A MODULAR FRAMEWORK TO IMPLEMENT FAULT TOLERANT DISTRIBUTED SERVICES by P. Nicolas Kokkalis A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

Recap. CSE 486/586 Distributed Systems Paxos. Paxos. Brief History. Brief History. Brief History C 1

Recap. CSE 486/586 Distributed Systems Paxos. Paxos. Brief History. Brief History. Brief History C 1 Recap Distributed Systems Steve Ko Computer Sciences and Engineering University at Buffalo Facebook photo storage CDN (hot), Haystack (warm), & f4 (very warm) Haystack RAID-6, per stripe: 10 data disks,

More information

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Consistency and Replication Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Reasons for Replication Reliability/Availability : Mask failures Mask corrupted data Performance: Scalability

More information

Consensus in the Presence of Partial Synchrony

Consensus in the Presence of Partial Synchrony Consensus in the Presence of Partial Synchrony CYNTHIA DWORK AND NANCY LYNCH.Massachusetts Institute of Technology, Cambridge, Massachusetts AND LARRY STOCKMEYER IBM Almaden Research Center, San Jose,

More information

Introduction to Distributed Algorithms

Introduction to Distributed Algorithms Rachid Guerraoui, Luís Rodrigues Introduction to Distributed Algorithms (Preliminary Draft) November 22, 2004 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

More information

Distributed Coordination with ZooKeeper - Theory and Practice. Simon Tao EMC Labs of China Oct. 24th, 2015

Distributed Coordination with ZooKeeper - Theory and Practice. Simon Tao EMC Labs of China Oct. 24th, 2015 Distributed Coordination with ZooKeeper - Theory and Practice Simon Tao EMC Labs of China {simon.tao@emc.com} Oct. 24th, 2015 Agenda 1. ZooKeeper Overview 2. Coordination in Spring XD 3. ZooKeeper Under

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance 1 Fault Tolerance Basic Concepts Being fault tolerant is strongly related to

More information

Lecture 1: Introduction to distributed Algorithms

Lecture 1: Introduction to distributed Algorithms Distributed Algorithms M.Tech., CSE, 2016 Lecture 1: Introduction to distributed Algorithms Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Consensus and related problems

Consensus and related problems Consensus and related problems Today l Consensus l Google s Chubby l Paxos for Chubby Consensus and failures How to make process agree on a value after one or more have proposed what the value should be?

More information

Failures, Elections, and Raft

Failures, Elections, and Raft Failures, Elections, and Raft CS 8 XI Copyright 06 Thomas W. Doeppner, Rodrigo Fonseca. All rights reserved. Distributed Banking SFO add interest based on current balance PVD deposit $000 CS 8 XI Copyright

More information

Distributed Systems (ICE 601) Fault Tolerance

Distributed Systems (ICE 601) Fault Tolerance Distributed Systems (ICE 601) Fault Tolerance Dongman Lee ICU Introduction Failure Model Fault Tolerance Models state machine primary-backup Class Overview Introduction Dependability availability reliability

More information

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov Outline 1. Introduction to Byzantine Fault Tolerance Problem 2. PBFT Algorithm a. Models and overview b. Three-phase protocol c. View-change

More information

Distributed Algorithms. Partha Sarathi Mandal Department of Mathematics IIT Guwahati

Distributed Algorithms. Partha Sarathi Mandal Department of Mathematics IIT Guwahati Distributed Algorithms Partha Sarathi Mandal Department of Mathematics IIT Guwahati Thanks to Dr. Sukumar Ghosh for the slides Distributed Algorithms Distributed algorithms for various graph theoretic

More information

Distributed Commit in Asynchronous Systems

Distributed Commit in Asynchronous Systems Distributed Commit in Asynchronous Systems Minsoo Ryu Department of Computer Science and Engineering 2 Distributed Commit Problem - Either everybody commits a transaction, or nobody - This means consensus!

More information

Fault Tolerance. Distributed Software Systems. Definitions

Fault Tolerance. Distributed Software Systems. Definitions Fault Tolerance Distributed Software Systems Definitions Availability: probability the system operates correctly at any given moment Reliability: ability to run correctly for a long interval of time Safety:

More information

05 Indirect Communication

05 Indirect Communication 05 Indirect Communication Group Communication Publish-Subscribe Coulouris 6 Message Queus Point-to-point communication Participants need to exist at the same time Establish communication Participants need

More information

Virtual Synchrony. Ki Suh Lee Some slides are borrowed from Ken, Jared (cs ) and JusBn (cs )

Virtual Synchrony. Ki Suh Lee Some slides are borrowed from Ken, Jared (cs ) and JusBn (cs ) Virtual Synchrony Ki Suh Lee Some slides are borrowed from Ken, Jared (cs6410 2009) and JusBn (cs614 2005) The Process Group Approach to Reliable Distributed CompuBng Ken Birman Professor, Cornell University

More information

Message-Efficient Uniform Timed Reliable Broadcast Yu Ma and Scott D. Stoller 21 September Introduction In distributed database systems,

Message-Efficient Uniform Timed Reliable Broadcast Yu Ma and Scott D. Stoller 21 September Introduction In distributed database systems, Message-Efficient Uniform Timed Reliable Broadcast Yu Ma and Scott D. Stoller 21 September 1998 1. Introduction In distributed database systems, atomic commitment protocols ensure that transactions leave

More information

Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors. Michel Raynal, Julien Stainer

Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors. Michel Raynal, Julien Stainer Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors Michel Raynal, Julien Stainer Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors

More information

COMMUNICATION IN DISTRIBUTED SYSTEMS

COMMUNICATION IN DISTRIBUTED SYSTEMS Distributed Systems Fö 3-1 Distributed Systems Fö 3-2 COMMUNICATION IN DISTRIBUTED SYSTEMS Communication Models and their Layered Implementation 1. Communication System: Layered Implementation 2. Network

More information

Transactions. CS 475, Spring 2018 Concurrent & Distributed Systems

Transactions. CS 475, Spring 2018 Concurrent & Distributed Systems Transactions CS 475, Spring 2018 Concurrent & Distributed Systems Review: Transactions boolean transfermoney(person from, Person to, float amount){ if(from.balance >= amount) { from.balance = from.balance

More information

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Fault Tolerance Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Basic Concepts Process Resilience Reliable

More information

Outline. Introduction. 2 Proof of Correctness. 3 Final Notes. Precondition P 1 : Inputs include

Outline. Introduction. 2 Proof of Correctness. 3 Final Notes. Precondition P 1 : Inputs include Outline Computer Science 331 Correctness of Algorithms Mike Jacobson Department of Computer Science University of Calgary Lectures #2-4 1 What is a? Applications 2 Recursive Algorithms 3 Final Notes Additional

More information

Today: Fault Tolerance

Today: Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Initial Assumptions. Modern Distributed Computing. Network Topology. Initial Input

Initial Assumptions. Modern Distributed Computing. Network Topology. Initial Input Initial Assumptions Modern Distributed Computing Theory and Applications Ioannis Chatzigiannakis Sapienza University of Rome Lecture 4 Tuesday, March 6, 03 Exercises correspond to problems studied during

More information

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ)

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ) Data Consistency and Blockchain Bei Chun Zhou (BlockChainZ) beichunz@cn.ibm.com 1 Data Consistency Point-in-time consistency Transaction consistency Application consistency 2 Strong Consistency ACID Atomicity.

More information

Recovering from a Crash. Three-Phase Commit

Recovering from a Crash. Three-Phase Commit Recovering from a Crash If INIT : abort locally and inform coordinator If Ready, contact another process Q and examine Q s state Lecture 18, page 23 Three-Phase Commit Two phase commit: problem if coordinator

More information

Efficient Reductions for Wait-Free Termination Detection in Faulty Distributed Systems

Efficient Reductions for Wait-Free Termination Detection in Faulty Distributed Systems Aachen Department of Computer Science Technical Report Efficient Reductions for Wait-Free Termination Detection in Faulty Distributed Systems Neeraj Mittal, S. Venkatesan, Felix Freiling and Lucia Draque

More information

Consistency. CS 475, Spring 2018 Concurrent & Distributed Systems

Consistency. CS 475, Spring 2018 Concurrent & Distributed Systems Consistency CS 475, Spring 2018 Concurrent & Distributed Systems Review: 2PC, Timeouts when Coordinator crashes What if the bank doesn t hear back from coordinator? If bank voted no, it s OK to abort If

More information

Remote Invocation. 1. Introduction 2. Remote Method Invocation (RMI) 3. RMI Invocation Semantics

Remote Invocation. 1. Introduction 2. Remote Method Invocation (RMI) 3. RMI Invocation Semantics Remote Invocation Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Remote Method Invocation (RMI) 3. RMI Invocation Semantics From the First Lecture (Architectural Models)...

More information

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Practical Byzantine Consensus CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Scenario Asynchronous system Signed messages s are state machines It has to be practical CS 138

More information

6.852: Distributed Algorithms Fall, Class 21

6.852: Distributed Algorithms Fall, Class 21 6.852: Distributed Algorithms Fall, 2009 Class 21 Today s plan Wait-free synchronization. The wait-free consensus hierarchy Universality of consensus Reading: [Herlihy, Wait-free synchronization] (Another

More information

Applications of Paxos Algorithm

Applications of Paxos Algorithm Applications of Paxos Algorithm Gurkan Solmaz COP 6938 - Cloud Computing - Fall 2012 Department of Electrical Engineering and Computer Science University of Central Florida - Orlando, FL Oct 15, 2012 1

More information

Shared Memory Seif Haridi

Shared Memory Seif Haridi Shared Memory Seif Haridi haridi@kth.se Real Shared Memory Formal model of shared memory No message passing (No channels, no sends, no delivers of messages) Instead processes access a shared memory Models

More information

The Alpha of Indulgent Consensus

The Alpha of Indulgent Consensus The Computer Journal Advance Access published August 3, 2006 Ó The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions, please

More information

Ruminations on Domain-Based Reliable Broadcast

Ruminations on Domain-Based Reliable Broadcast Ruminations on Domain-Based Reliable Broadcast Svend Frølund Fernando Pedone Hewlett-Packard Laboratories Palo Alto, CA 94304, USA Abstract A distributed system is no longer confined to a single administrative

More information

Concepts. Techniques for masking faults. Failure Masking by Redundancy. CIS 505: Software Systems Lecture Note on Consensus

Concepts. Techniques for masking faults. Failure Masking by Redundancy. CIS 505: Software Systems Lecture Note on Consensus CIS 505: Software Systems Lecture Note on Consensus Insup Lee Department of Computer and Information Science University of Pennsylvania CIS 505, Spring 2007 Concepts Dependability o Availability ready

More information

High Throughput Total Order Broadcast for Cluster Environments

High Throughput Total Order Broadcast for Cluster Environments High Throughput Total Order Broadcast for Cluster Environments Rachid Guerraoui IC EPFL, Switzerland CSAIL MIT, USA Ron R. Levy IC EPFL, Switzerland Bastian Pochon IC EPFL, Switzerland Vivien Quéma INRIA,

More information

The objective. Atomic Commit. The setup. Model. Preserve data consistency for distributed transactions in the presence of failures

The objective. Atomic Commit. The setup. Model. Preserve data consistency for distributed transactions in the presence of failures The objective Atomic Commit Preserve data consistency for distributed transactions in the presence of failures Model The setup For each distributed transaction T: one coordinator a set of participants

More information

Run-Time Switching Between Total Order Algorithms

Run-Time Switching Between Total Order Algorithms Run-Time Switching Between Total Order Algorithms José Mocito and Luís Rodrigues University of Lisbon {jmocito,ler}@di.fc.ul.pt Abstract. Total order broadcast protocols are a fundamental building block

More information

Last time. Distributed systems Lecture 6: Elections, distributed transactions, and replication. DrRobert N. M. Watson

Last time. Distributed systems Lecture 6: Elections, distributed transactions, and replication. DrRobert N. M. Watson Distributed systems Lecture 6: Elections, distributed transactions, and replication DrRobert N. M. Watson 1 Last time Saw how we can build ordered multicast Messages between processes in a group Need to

More information