Chapter 6 Transport Layer

Size: px
Start display at page:

Download "Chapter 6 Transport Layer"

Transcription

1 Chapter 6 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

2 Chapter 6: Transport Layer Our goals: understand principles behind transport layer services: multiplexing/demultipl exing flow control congestion control learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control

3 Chapter 6 outline 6.1 Transport-layer services 6.2 Multiplexing and demultiplexing 6.3 Connectionless transport: UDP 6.4 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 6.5 TCP congestion control

4 Transport services and protocols provide logical communication between app processes running on different hosts transport protocols run on end systems send side: breaks app messages into segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer more than one transport protocol available to apps Internet: TCP and UDP application transport network data link physical application transport network data link physical

5 Transport vs. network layer network layer: logical comm. between hosts transport layer: logical comm. between processes relies on and enhances network layer services Household analogy: 12 kids sending letters to 12 kids processes = kids app messages = letters in envelopes hosts = houses transport protocol = Ann and Bill who demux to in-house siblings network-layer protocol = postal service

6 Internet transport-layer protocols reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP Simple extension of besteffort IP services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical

7 Chapter 6 outline 6.1 Transport-layer services 6.2 Multiplexing and demultiplexing 6.3 Connectionless transport: UDP 6.4 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 6.5 TCP congestion control

8 Multiplexing/demultiplexing Demultiplexing at rcv host: delivering received segments to correct socket = socket = process Multiplexing at send host: gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) application P3 P1 P1 application P2 P4 application transport transport transport network network network link link link physical physical host 1 host 2 host 3 physical

9 How demultiplexing works host receives IP datagrams each datagram has source IP address, destination IP address each datagram carries 1 transport-layer segment each segment has source, 32 bits source port # dest port # other header fields destination port number host uses IP addresses & port numbers to direct segment to appropriate socket application data (message) TCP/UDP segment format

10 Connectionless demultiplexing recall: create sockets with host-local port numbers: DatagramSocket mysocket1 = new DatagramSocket(12534); DatagramSocket mysocket2 = new DatagramSocket(12535); recall: when creating datagram to send into UDP socket, must specify when host receives UDP segment: checks destination port number in segment directs UDP segment to socket with that port number (dest IP address, dest port number)

11 Connectionless demux (cont) DatagramSocket serversocket = new DatagramSocket(6428); P2 P3 P1 P1 SP: 6428 DP: 9157 SP: 6428 DP: 5775 SP: 9157 SP: 5775 client IP: A DP: 6428 server IP: C DP: 6428 Client IP:B SP provides return address

12 Connection-oriented demux TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number recv host uses all four values to direct segment to appropriate socket server host may support many simultaneous TCP sockets: each socket identified by its own 4-tuple web servers have different sockets for each connecting client

13 Connection-oriented demux (cont) P1 P4 P5 P6 P2 P1 P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 SP: 9157 client IP: A DP: 80 S-IP: A D-IP:C server IP: C DP: 80 S-IP: B D-IP:C client IP:B

14 Connection-oriented demux: Threaded Web Server P1 P4 P2 P1 P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 SP: 9157 client IP: A DP: 80 S-IP: A D-IP:C server IP: C DP: 80 S-IP: B D-IP:C client IP:B

15 Chapter 6 outline 6.1 Transport-layer services 6.2 Multiplexing and demultiplexing 6.3 Connectionless transport: UDP 6.4 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 6.5 TCP congestion control

16 Applications and the underlying transport protocols

17 UDP: User Datagram Protocol [RFC 768] no frills, bare bones Internet transport protocol best effort service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired

18 UDP: more often used for streaming multimedia apps loss tolerant rate sensitive other UDP uses DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! Length, in bytes of UDP segment, including header 32 bits source port # dest port # length Application data (message) checksum UDP segment format

19 UDP checksum Goal: detect errors (e.g., flipped bits) in transmitted segment Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1 s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected

20 Internet Checksum Example Note: when adding numbers, a carryout from the most significant bit needs to be added to the result Example: add two 16-bit integers wraparound sum checksum

21 Chapter 6 outline 6.1 Transport-layer services 6.2 Multiplexing and demultiplexing 6.3 Connectionless transport: UDP 6.4 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 6.5 TCP congestion control

22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 socket door point-to-point: one sender, one receiver reliable, in-order byte steam: pipelined: TCP congestion and flow control set window size send & receive buffers application writes data TCP send buffer segment application reads data TCP receive buffer full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) inits sender, receiver state before data exchange flow controlled: socket door sender will not overwhelm receiver

23 TCP segment structure URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window Urg data pnter Options (variable length) application data (variable length) counting by bytes of data (not segments!) # bytes rcvr willing to accept

24 TCP seq. # s and ACKs Seq. # s: byte stream number of first byte in segment s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn t say, - up to implementor User types C host ACKs receipt of echoed C Host A Host B simple telnet scenario host ACKs receipt of C, echoes back C time

25 TCP reliable data transfer TCP creates rdt service on top of IP s unreliable service pipelined segments cumulative acks retransmissions are triggered by: timeout events duplicate acks

26 TCP sender events data rcvd from app: Create segment with seq # seq # is byte-stream number of first data byte in segment start timer if not already running timeout: retransmit segment that caused timeout restart timer Ack rcvd: If acknowledges previously unacked segments update what is known to be acked start timer if there are outstanding segments

27 TCP: retransmission scenarios Host A Host B Host A Host B timeout X loss Seq=92 timeout SendBase = 100 time lost ACK scenario SendBase = 100 SendBase = 120 SendBase = 120 Seq=92 timeout time premature timeout

28 TCP retransmission scenarios (more) Host A Host B timeout X loss SendBase = 120 time Cumulative ACK scenario

29 TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Arrival of in-order segment with expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. #. Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediate send ACK, provided that segment starts at lower end of gap

30 Fast Retransmit time-out period often relatively long: long delay before resending lost packet detect lost segments via duplicate ACKs. sender often sends many segments back-toback if segment is lost, there will likely be many duplicate ACKs. if sender receives 3 ACKs for the same data, fast retransmit: resend segment before timer expires

31 Host A Host B X timeout time Figure 3.37 Resending a segment after triple duplicate ACK

32 TCP Flow Control receive side of TCP connection has a receive buffer: flow control sender won t overflow receiver s buffer by transmitting too much, too fast app process may be slow at reading from buffer speed-matching service: matching the send rate to the receiving app s drain rate

33 TCP Flow control: how it works (suppose TCP receiver discards out-of-order segments) spare room in buffer = RcvWindow rcvr advertises spare room by including value of RcvWindow in segments sender limits unacked data to RcvWindow guarantees receive buffer doesn t overflow

34 The receiver can temporarily shut down the window Window size = 0 receiver asks the sender to stop transmitting data

35 TCP Connection Management Recall: TCP sender, receiver establish connection before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) client: connection initiator Socket clientsocket = new Socket("hostname","port number"); server: contacted by client Socket connectionsocket = welcomesocket.accept(); Three way handshake: Step 1: client host sends TCP SYN segment to server specifies initial seq # no data Step 2: server host receives SYN, replies with SYNACK segment server allocates buffers specifies server initial seq. # Step 3: client receives SYNACK, replies with ACK segment, which may contain data

36 Three-way handshake

37 SYN Flood Attack Denial of Service (DoS) attack known as the SYN flood attack. the attacker(s) send a large number of TCP SYN segments, without completing the third handshake step. With this deluge of SYN segments, the server s connection resources become exhausted as they are allocated; legitimate clients are then denied service. The attack can be amplified by sending the SYNs from multiple sources, creating a DDoS (Distributed Denial of Service) SYN flood attack

38 SYN Flood Attack An effective defense known as SYN cookies [RFC 4987] When receiving a SYN segment, the server, instead of allocating resources for this SYN, it creates an TCP sequence number ( cookie ) TCP sequence number= hash (IP addrs of S and D, port numbers of SYN segment, and a secret number only known to the server) A legitimate client will return an ACK segment. When the server receives this ACK, it must verify that the ACK corresponds to some SYN sent earlier. But how is this done if the server maintains no memory about SYN segments? Run the same hash function using same fields in ACK segment and the secret key. If the result of the function plus one is the same as the acknowledgment, the server concludes that the ACK corresponds to an earlier SYN segment and is hence valid. The server then allocate resources.

39 TCP Connection Management (cont.) Closing a connection: client server client closes socket: clientsocket.close(); close Step 1: client end system sends TCP FIN control segment to server close Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN. timed wait closed

40 TCP Connection Management (cont.) Step 3: client receives FIN, replies with ACK. Enters timed wait - will respond with ACK to received FINs closing client server closing Step 4: server, receives ACK. Connection closed. timed wait closed closed

41 TCP Connection Management (cont) TCP server lifecycle TCP client lifecycle

42 Chapter 6 outline 6.1 Transport-layer services 6.2 Multiplexing and demultiplexing 6.3 Connectionless transport: UDP 6.4 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 6.5 TCP congestion control

43 Congestion: Congestion Control informally: too many sources sending too much data too fast for network to handle Congestion occurs when total arrival rate from all flows exceeds a router s output link capacity different from flow control! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) To alleviate congestion, the sending nodes should slow down the rate of transmission. How? by reducing the window. The window size is the number of bytes that are allowed to be in flight simultaneously

44 Two broad approaches: Congestion Control 1- End-end congestion control: no explicit feedback from network - congestion inferred from end-system observed loss, delay - approach taken by TCP 2- Network-assisted congestion control: routers provide feedback to end systems indicating congestion, used in Asynchronous Transfer Mode (ATM)

45 Congestion Control Receiver window (rwnd) is used to ensure that receiver s buffer will not overflow (flow control) Congestion window (cwnd) is used to ensure that the sender will not overflow the intermediate routers buffers between source and destination (congestion control) The actual window size = min(rwnd, cwnd) to avoid overflowing the receiver or the routers That means max-in-flight bytes min(rwnd, cwnd)

46 TCP Congestion Control Additive increase, multiplicative decrease (AIMD) approach: increase transmission rate (window size), probing for usable bandwidth, until loss occurs additive increase: increase cwnd by 1 MSS every RTT until loss detected multiplicative decrease: cut cwnd in half after loss saw tooth behavior: probing for bandwidth cwnd: congestion window size 24 Kbytes 16 Kbytes 8 Kbytes congestion window time time

47 TCP Congestion Control: details sender limits transmission: LastByteSent-LastByteAcked roughly, rate = cwnd RTT cwnd Bytes/sec cwnd is dynamic, function of perceived network congestion How does sender perceive congestion? loss event = timeout or 3 duplicate acks TCP sender reduces rate (cwnd) after loss event three mechanisms: AIMD slow start conservative after timeout events

48 1. TCP Slow Start when connection begins, increase rate exponentially until first loss event: initially cwnd = 1 MSS double cwnd every RTT RTT Host A Host B done by incrementing cwnd for every ACK received - Discover available bandwidth fast - desirable to quickly ramp up to respectable rate - When cwnd > threshold, move to congestion avoidance phase to slow down the sending rate time

49 2. Congestion avoidance phase - When Cwnd is above a threshold - Cwnd is incremented by one segment every RTT (= for every window of ACKs it receives) linear increase - Cwnd continues to increase (linearly) until loss is detected - TCP spends most of its time in this phase cwnd threshold RTTs

50 3. Reaction to congestion phase At any time, when congestion occurs, decrease the window size. How TCP recognizes congestion? Two congestion indication mechanisms 1. Three duplicated ACKs: Duplicate ACKs means the receiver got all packets up to the gap and is actually receiving packets at least network capable of delivering some segments. Could be due to temporary congestion - Reduce Cwnd but not aggressively - Congestion threshold = cwnd/2 and new cwnd = threshold - Stay in congestion avoidance phase

51 3. Reaction to congestion phase 2. Timeout No response from receiver - more likely due to significant congestion reduce cwnd aggressively - Congestion threshold = cwnd/2 and new cwnd = 1 max. segment size (MSS) - Go back to slow start phase Most of the time the window will be like a sawtooth Additive Increase/Multiplicative Decrease (AIMD): cwnd increases by 1 every RTT, cwnd decreases by a factor of two with every loss, and repeat

52 Examples

53 Chapter 6: Summary principles behind transport layer services: multiplexing, demultiplexing flow control congestion control instantiation and implementation in the Internet UDP TCP

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page:

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page: CSE 3214: Computer Networks Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides are

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

CSE 4213: Computer Networks II

CSE 4213: Computer Networks II Next CSE 4213: Computer Networks II The layer Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/4213 These slides are adapted

More information

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure Correcting mistakes Go-back-N: big picture: sender can have up to N unacked packets in pipeline rcvr only sends cumulative acks doesn t ack packet if there s a gap sender has r for oldest unacked packet

More information

CNT 6885 Network Review on Transport Layer

CNT 6885 Network Review on Transport Layer CNT 6885 Network Review on Transport Layer Jonathan Kavalan, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida User Datagram Protocol [RFC 768] no frills,

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 6 Transport Layer (cont d) Transport Layer 3-1 Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty,

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer These slides are adapted from the original slides provided by J.Kurose and K.W Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking:

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition

More information

Lecture 5. Transport Layer. Transport Layer 1-1

Lecture 5. Transport Layer. Transport Layer 1-1 Lecture 5 Transport Layer Transport Layer 1-1 Agenda The Transport Layer (TL) Introduction to TL Protocols and Services Connectionless and Connection-oriented Processes in TL Unreliable Data Transfer User

More information

Transport Layer: outline

Transport Layer: outline Transport Layer: outline Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP Segment structure

More information

Lecture 8. TCP/IP Transport Layer (2)

Lecture 8. TCP/IP Transport Layer (2) Lecture 8 TCP/IP Transport Layer (2) Outline (Transport Layer) Principles behind transport layer services: multiplexing/demultiplexing principles of reliable data transfer learn about transport layer protocols

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Lec 8: Transport Layer Service Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose

More information

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, steam: r Development of reliable protocol r Sliding window protocols

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, steam: r Development of reliable protocol r Sliding window protocols Outline r Development of reliable protocol r Sliding window protocols m Go-Back-N, Selective Repeat r Protocol performance r Sockets, UDP, TCP, and IP r UDP operation r TCP operation m connection management

More information

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, Development of reliable protocol Sliding window protocols

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, Development of reliable protocol Sliding window protocols Outline Development of reliable protocol Sliding window protocols Go-Back-N, Selective Repeat Protocol performance Sockets, UDP, TCP, and IP UDP operation TCP operation connection management flow control

More information

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment

More information

RSC Part III: Transport Layer 3. TCP

RSC Part III: Transport Layer 3. TCP RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking: A Top Down

More information

CS 4390 Computer Networks. Transport Services and Protocols

CS 4390 Computer Networks. Transport Services and Protocols CS 4390 Computer Networks UT D data Session 07 Transport Layer Overview and UDP Adapted from Computer Networking a Top-Down Approach 1996-2012 by J.F Kurose and K.W. Ross, All Rights Reserved Transport

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Lecturer

More information

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length)

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length) Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connectionoriented transport: TCP segment

More information

Chapter 3- parte B outline

Chapter 3- parte B outline Chapter 3- parte B outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport:

More information

Transport Layer: Outline

Transport Layer: Outline Transport Layer: Outline Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP Segment structure

More information

By Ossi Mokryn, Based also on slides from: the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and Ross

By Ossi Mokryn, Based also on slides from: the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and Ross Transport Layer By Ossi Mokryn, Based also on slides from: the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and Ross Transport Layer Connectionless and connection oriented

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Foundations of Telematics

Foundations of Telematics Foundations of Telematics Chapter 3 Transport Layer Acknowledgement: These slides have been prepared by J.F. Kurose and K.W. Ross Foundations of Telematics (AMW SS 2010): 03 Transport Layer 1 Chapter 3:

More information

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 ocket door point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set window

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 5 Transport Layer Transport Layer 3-1 Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students,

More information

10 minutes survey (anonymous)

10 minutes survey (anonymous) 10 minutes survey (anonymous) v Comments/Suggestions to my lecture/lab/ homework/exam v If you like this course, which part do you like? v If you don t like it, which part do you not like? Thanks! Transport

More information

CMSC 332 Computer Networks Transport Layer

CMSC 332 Computer Networks Transport Layer CMSC 332 Computer Networks Transport Layer Professor Szajda Announcements Project I - I ll test against various clients (still possibly an issue in spec). Project 2 will be posted soon (but first, I want

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

Transport Layer. Chapter 3: Transport Layer

Transport Layer. Chapter 3: Transport Layer Transport Layer EECS 3214 Slides courtesy of J.F Kurose and K.W. Ross, All Rights Reserved 29-Jan-18 1-1 Chapter 3: Transport Layer our goals: understand principles behind layer services: multiplexing,

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Intro, Mutliplexing/Demultiplexing, UDP Sec 3.1 3.4 Prof. Lina Battestilli Fall 2017 Chapter 3: Transport Layer our goals: understand principles

More information

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 4 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 1 due this Friday Office hour on Feb

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

The Transport Layer: TCP & Reliable Data Transfer

The Transport Layer: TCP & Reliable Data Transfer The Transport Layer: TCP & Reliable Data Transfer Smith College, CSC 249 February 15, 2018 1 Chapter 3: Transport Layer q TCP Transport layer services: v Multiplexing/demultiplexing v Connection management

More information

Lecture 11. Transport Layer (cont d) Transport Layer 1

Lecture 11. Transport Layer (cont d) Transport Layer 1 Lecture 11 Transport Layer (cont d) Transport Layer 1 Agenda The Transport Layer (continue) Connection-oriented Transport (TCP) Flow Control Connection Management Congestion Control Introduction to the

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.10 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Transport services and protocols

More information

Computer Networking: A Top Down Approach

Computer Networking: A Top Down Approach Computer Networking: A Top Down Approach Seventh Edition Chapter 3 Transport Layer Slides in this presentation contain hyperlinks. JAWS users should be able to get a list of links by using INSERT+F7 Transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Part b Connection-Oriented Transport Transport Layer 3-1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4

More information

Computer Networks & Security 2016/2017

Computer Networks & Security 2016/2017 Computer Networks & Security 2016/2017 Transport Layer (04) Dr. Tanir Ozcelebi Courtesy: Kurose & Ross Courtesy: Forouzan TU/e Computer Science Security and Embedded Networked Systems Transport Layer Our

More information

Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking

Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking Last time Router internals Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking Mobility Home, visited s Home, foreign agents Permanent, care-of

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9 1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3

More information

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Transport Layer Derek Leonard Hendrix College October 15, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 3: Roadmap 3.1 Transport-layer

More information

COSC4377. Useful Linux Tool: screen

COSC4377. Useful Linux Tool: screen Lecture 10 Useful Linux Tool: screen Alternative to having multiple ssh/putty screens, you can have multiple virtual screens within the same session. To open a screen session: ~$ screen To suspend the

More information

CSEN 503 Introduction to Communication Networks. Mervat AbuElkheir Hana Medhat Ayman Dayf. ** Slides are attributed to J. F.

CSEN 503 Introduction to Communication Networks. Mervat AbuElkheir Hana Medhat Ayman Dayf. ** Slides are attributed to J. F. CSEN 503 Introduction to Communication Networks Mervat AbuElkheir Hana Medhat Ayman Dayf ** Slides are attributed to J. F. Kurose Chapter 3 outline Transport-layer services Multiplexing and demultiplexing

More information

CSC 4900 Computer Networks: Transport Layer

CSC 4900 Computer Networks: Transport Layer CSC 4900 Computer Networks: Transport Layer Professor Henry Carter Fall 2017 Last Time... Sockets programming API TCP and UDP look different. Remember, there is no connect() in UDP - just start sending

More information

TCP : Fundamentals of Computer Networks Bill Nace

TCP : Fundamentals of Computer Networks Bill Nace TCP 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Lab #1 due now! Reminder: Paper Review

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Connection Oriented Transport: TCP Sec 3.5 Prof. Lina Battestilli Fall 2017 Transport Layer Chapter 3 Outline 3.1 Transport-layer Services

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross TCP: Overview RFCs: 793,1122,1323, 2018, 2581 point-to-point:

More information

TCP reliable data transfer. Chapter 3 outline. TCP sender events: TCP sender (simplified) TCP: retransmission scenarios. TCP: retransmission scenarios

TCP reliable data transfer. Chapter 3 outline. TCP sender events: TCP sender (simplified) TCP: retransmission scenarios. TCP: retransmission scenarios Chapter 3 outline TCP reliable 3.2 principles of reliable 3.3 connection-oriented flow 3.4 principles of congestion 3.5 TCP congestion TCP creates rdt service on top of IP s unreliable service pipelined

More information

COMP 431 Internet Services & Protocols. Transport Layer Protocols & Services Outline. The Transport Layer Reliable data delivery & flow control in TCP

COMP 431 Internet Services & Protocols. Transport Layer Protocols & Services Outline. The Transport Layer Reliable data delivery & flow control in TCP COMP 431 Internet Services & Protocols Transport Layer Protocols & Services Outline The Transport Layer Reliable data delivery & flow control in TCP Jasleen Kaur Fundamental transport layer services» Multiplexing/Demultiplexing»

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross TCP: Overview RFCs: 793,1122,1323,

More information

CSC 4900 Computer Networks: TCP

CSC 4900 Computer Networks: TCP CSC 4900 Computer Networks: TCP Professor Henry Carter Fall 2017 Project 2: mymusic You will be building an application that allows you to synchronize your music across machines. The details of which are

More information

LECTURE 3 - TRANSPORT LAYER

LECTURE 3 - TRANSPORT LAYER LECTURE 3 - TRANSPORT LAYER 1 GOALS (1) Understand principles behind transport layer services: multiplexing, demultiplexing reliable data transfer ow control congestion control GOALS (2) Learn about Internet

More information

CS 4390 Computer Networks. Pointers to Corresponding Section of Textbook

CS 4390 Computer Networks. Pointers to Corresponding Section of Textbook CS 4390 Computer Networks UT D application transport network data link physical Session 10 Transmission Control Protocol (TCP) An Overview Adapted from Computer Networking a Top-Down Approach 1996-2012

More information

CSCD 330 Network Programming Winter 2015

CSCD 330 Network Programming Winter 2015 CSCD 330 Network Programming Winter 2015 Lecture 11a Transport Layer Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Chapter 3 Sections

More information

CS Lecture 1 Review of Basic Protocols

CS Lecture 1 Review of Basic Protocols CS 557 - Lecture 1 Review of Basic Protocols IP - RFC 791, 1981 TCP - RFC 793, 1981 Spring 2013 These slides are a combination of two great sources: Kurose and Ross Textbook slides Steve Deering IETF Plenary

More information

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet:

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet: Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Transport layer: Outline

Transport layer: Outline Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

Distributed Systems. 5. Transport Protocols

Distributed Systems. 5. Transport Protocols Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

Distributed Systems. 5. Transport Protocols. Werner Nutt

Distributed Systems. 5. Transport Protocols. Werner Nutt Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Dr. Nils

More information

CSC 8560 Computer Networks: TCP

CSC 8560 Computer Networks: TCP CSC 8560 Computer Networks: TCP Professor Henry Carter Fall 2017 Project 2: mymusic You will be building an application that allows you to synchronize your music across machines. The details of which are

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer Our goals: understand principles behind transport layer services: multiplexing/ demultiplexing reliable data transfer flow control congestion control learn about transport layer

More information

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Announcement Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Should have completed at least part II of project 1 Homework 2 will be out next week Review of Previous

More information

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall TCP Kai Shen 10/19/2009 CSC 257/457 - Fall 2009 1 TCP: Overview connection-oriented: handshaking (exchange of control msgs) to initialize sender, receiver state before data exchange pipelined: multiple

More information

Fall 2012: FCM 708 Bridge Foundation I

Fall 2012: FCM 708 Bridge Foundation I Fall 2012: FCM 708 Bridge Foundation I Prof. Shamik Sengupta Instructor s Website: http://jjcweb.jjay.cuny.edu/ssengupta/ Blackboard Website: https://bbhosted.cuny.edu/ Intro to Computer Networking Transport

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 463/612 Networks and Distributed Processing Spring 2017 Transport Layer IV Dmitri Loguinov Texas A&M University March 9, 2017 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

The Transport Layer Reliable data delivery & flow control in TCP. Transport Layer Protocols & Services Outline

The Transport Layer Reliable data delivery & flow control in TCP. Transport Layer Protocols & Services Outline CPSC 360 Network Programming The Transport Layer Reliable data delivery & flow control in TCP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: The notes used in this course are substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W. Ross, 1996-2007

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 1 Lab2 and Homework questions Available on course website 2 Chapter 3 outline 3.1 transport-layer

More information

Lecture 9: Transpor Layer Overview and UDP

Lecture 9: Transpor Layer Overview and UDP Lecture 9: Transpor Layer Overview and UDP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose

More information

Transport protocols. Transport Layer 3-1

Transport protocols. Transport Layer 3-1 Transport protocols 1 Transport services and protocols provide logical communication between app processes running on different hosts application transport network data link physical transport protocols

More information

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless : UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented : TCP segment structure reliable

More information

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

TCP: Overview RFCs: 793,1122,1323, 2018, 2581 TCP: Overview RFCs: 793,1122,1323, 2018, 2581 point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set window size full

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Transport Layer Dmitri Loguinov Texas A&M University February 22, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

Development of reliable protocol Sliding window protocols. C = channel capacity in bps I = interrupt/service time + propagation delay

Development of reliable protocol Sliding window protocols. C = channel capacity in bps I = interrupt/service time + propagation delay Outline Development of reliable protocol Sliding window protocols Go-Back-N, Selective Repeat Protocol performance Sockets, UDP, TCP, and IP UDP operation TCP operation connection management flow control

More information

The Transport Layer Reliable data delivery & flow control in TCP. Transport Layer Protocols & Services Outline

The Transport Layer Reliable data delivery & flow control in TCP. Transport Layer Protocols & Services Outline CPSC 852 Internetworking The Transport Layer Reliable data delivery & flow control in TCP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 1b: The Transport Layer in the Internet January 17, 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu 01/17/06

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Transport

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2013/2014 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.11 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

Go-Back-N. Pipelining: increased utilization. Pipelined protocols. GBN: sender extended FSM

Go-Back-N. Pipelining: increased utilization. Pipelined protocols. GBN: sender extended FSM Pipelined protocols Pipelining: sender allows multiple, in-flight, yet-to-be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver Pipelining: increased utilization

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 10 Transport Layer Continued Spring 2018 Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Last Time.

More information

Mid Term Exam Results

Mid Term Exam Results Mid Term Exam Results v Grade Count Percentage v 20-29 1 2.38% v 40-49 2 4.76% v 50-59 5 11.90% v 60-69 18 42.86% v 70-80 16 38.10% Please hand the paper back to me after this class since we have to update

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL e MZ Prof.ssa Chiara Petrioli a.a. 2016/2017 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and

More information

TCP (Part 2) Session 10 INST 346 Technologies, Infrastructure and Architecture

TCP (Part 2) Session 10 INST 346 Technologies, Infrastructure and Architecture TCP (Part 2) Session 10 INST 346 Technologies, Infrastructure and Architecture Muddiest Points Reading pseudocode Reading finite state diagrams What parts of rdt are in TCP? Goals for Today Finish up TCP

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Winter 2019 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information