JPred-P 2. Josh Choi, Michael Welch {joshchoi,

Size: px
Start display at page:

Download "JPred-P 2. Josh Choi, Michael Welch {joshchoi,"

Transcription

1 JPred-P 2 Josh Choi, Michael Welch {joshchoi, mjwelch}@cs.ucla.edu 1. Introduction Precondition and postcondition checking on methods aids the development process by explicitly notifying the programmer of what is causing a runtime method failure, and helps eliminate difficult to detect runtime errors that may not cause an immediate program termination. JPred provides predicate dispatch support in a backwards-compatible extension to Java. Using JPred, a programmer can annotate method declarations with predicates, which are used to dynamically dispatch method calls. Our work, JPred-P 2, complements JPred by adding precondition and postcondition checking to JPred s method declarations. Our work can also be used as a base for extending JPred s static checking capabilities. The rest of this paper is laid out as follows. Section 2 presents motivation for our extension. In Section 3 we briefly discuss JPred and the annotations added in JPred-P 2, while Section 4 describes the semantics and implementation of JPred-P 2 in detail. We describe our evaluation techniques and results in Section 5, and conclude the paper, including some ideas on further work to be done to extend JPred-P 2, in Section Motivation Programmers often use comments around a method declaration to describe the method s preconditions and postconditions. While these comments provide good documentation for a reader of the code, they do not provide any runtime guarantees that the caller will meet those preconditions. As a result, the method may fail to ensure the postconditions to the caller. Such failures can result in program errors, either in the form of a runtime crash, or in some semantic misbehavior of the program. While runtime exceptions are undesirable, the latter case is often considered worse, since its results are unpredictable and sometimes undetectable. To avoid potentially unpredictable runtime errors, we have implemented JPred-P 2, a set of method annotations for Java that allows the programmer to explicitly declare preconditions and postconditions of a method. These conditions will be dynamically verified at the runtime method invocation. Failure to meet preconditions or postconditions results in an explicit runtime error, avoiding the situation of unpredictable errors. Our extension to Java is written as a complement 1 to JPred [1] using the Polyglot extensible Java compiler [2]. 3. Overview In this section, we will briefly discuss JPred[1] and how the precondition and postcondition annotations and checks of JPred-P 2 serve as a direct complement to JPred. JPred is a backwards-compatible extension language to Java for dynamic dispatch. It allows the programmer to specify predicates for method dispatch, and provides modular 1 While JPred-P 2 is implemented as part of the JPred compiler framework, it is not necessary to use any of JPred s features to use our annotations.

2 static checking using CVC Lite [3] to ensure absence of ambiguity and incompleteness. The reader is encouraged to read [1] for a complete discussion of JPred. JPred-P 2 adds to JPred s method declaration when clause by supporting two additional predicate statements: requires and ensures. A requires predicate clause indicates a requisite precondition predicate for the method that must be true at runtime invocation. Figure 1 shows a simple example of a method with a requires clause. An ensures predicate clause indicates what is guaranteed to be true upon return to the caller. Figure 2 shows an example of a method with an ensures clause. Both requires and ensures predicates may contain numeric or Boolean literals, as well as reference any variable that is in the static scope of the method declaration, namely any formal parameters or static member variables of the class. The method s local variables cannot be used in precondition or postcondition predicates. 2 QuickTimeª and a QuickTimeª and a 4. Implementation JPred-P 2 is implemented as part of the JPred compiler, which is written using the Polyglot compiler framework [4]. Polyglot is an extensible Java compiler, written in Java, which produces Java source code that can be compiled on any standard Java compiler, such as javac. Implementation of JPred-P 2 required several design choices and additions to JPred, which we will now discuss in more detail. Our extension to JPred requires modification to the source grammar in order to accept method declarations which contain any combination of requires, ensures, and 2 And for good reason. A local variable is undefined at the time it would require precondition verification, and is out of scope where the postcondition is enforced.

3 when predicates. During parsing, method declarations that contain any such predicates are parsed into PredJPredMethodDecl nodes, with the applicable predicate expressions stored as PredicateNode objects, within the Abstract Syntax Tree (AST). Method declarations that contain no predicates are parsed and handled by the default Polyglot methods. Once parsing has completed, Polyglot make several passes over the AST. A majority of our work is done though visits to PredJPredMethodDecl nodes. During the code generation phase, JPred-P 2 inserts dynamic checks on the precondition and postcondition predicates using if-else statements. For example, the code for a basic precondition shown in Figure 1 is translated into the code shown in Figure 3. Likewise, the code segment from Figure 2 is translated into the code shown in Figure 4. We chose to use simple println() and exit() calls, rather than throwing Java exceptions, due to time constraints. Throwing an exception would require the programmer to explicitly decide and declare that they will either throw the exception from the method, or they will catch it within the method. If they did neither, we would be required to make a decision for them during compile time. If we chose to throw the exception, the source code would show no throws clause on the method declaration, and yet require the caller to catch the possible exception. If we instead chose to catch the exception within the method, our resulting error handling code would be the same error report and exit as with the if-else style we use now. QuickTimeª and a

4 5. Evaluation To evaluate the effectiveness of our precondition and postcondition checks, we have written several small test classes and compiled them using the JPred-P 2 compiler. We focus here on a simple test case to demonstrate using the JPred-P 2 compiler to process JPred-P 2 code to standard Java code, using javac to generate bytecode, and execution of the resulting class using the standard Java JVM. Figure 5(a) shows the input JPred-P 2 source code file. Figure 5(b) shows the resultant Java source file (with un-necessary Polyglot constants removed for brevity). Figure 5(c) shows the results of excuting the class with the standard Sun JVM [6]. We next consider the overhead incurred by using JPred-P 2. Specifically, there are two overheads to consider. We have briefly evaluated the additional compile time necessary for JPred-P 2 compared to standard JPred code. Currently we perform one additional pass over the AST, and have added a few extra nodes that must be visited on existing passes. The running time of the compiler does not change noticeably with our added passes. Runtime overhead is difficult to measure in practice, due to inconsistent background factors of the system. It is our belief, however, that the single additional if-else clause inserted by JPred-P 2 precondition and postcondition checks do not produce any significant overhead, and that performance is comparable to JPred s. It is also worth noting that any omitted clauses will produce no additional overhead.

5

6

7 6. Conclusion and Future Work JPred-P 2 offers a Java developer a simple and straightforward method for enforcing preconditions and postconditions. By adding requires and ensures clauses to the language, JPred-P 2 is able to insert runtime checks automatically. Evaluation shows that our simple runtime checks using if-else statements are able to precisely enforce the specified requirements. Where an un-annotated program would generate a runtime exception, we similarly terminate the program with a more specific error message. We also terminate the program with a specific condition error where an un-annotated program may silently fail and produce unpredictable results. This enables the softwaretesting phase to catch such errors much easier. The experience of developing JPred-P 2 has taught us several important lessons. Perhaps the most noticeable hurdle we had to combat was the lack of sufficient documentation in Polyglot. We found it very difficult to determine the control flow through Polyglot, making it a chore to determine where and when to add our additional code. As one particular example of our difficulties with Polyglot, we still do not know how to simply create a node corresponding to the statement int x; It seems in Polyglot, you must initialize the variable to a value, even though it is not required in Java. Unfortunately, the project became more of a compiler construction project than we initially anticipated. We would have enjoyed a project that allowed us to concentrate more on development of some of our initial goals, some of which is listed below as potential future work, rather than adding the prerequisite framework to the compiler. Perhaps in future quarters we can use the framework we have developed to continue some of the following (and noticeably more interesting) improvements. Another shortcoming worth noting is that currently, our postcondition checks are inserted during the PredJTranslator phase. Unfortunately this means we must walk through the entire method body, searching for return statements. Polyglot nests statements within statements. For example, an If-Else statement is considered only one statement at the highest level. If a return statement is nested within any of these statements, we currently miss them, and do not enforce postconditions on them. This kind of nested return statement can be avoided with proper coding, and so it is a nuisance, but not an insurmountable obstacle to using JPred-P 2. Looking back, a better design choice would have been to insert the proper code checks during entry to the AST node, not upon exit.

8 Our work, however, only scratches the surface of JPred-P 2 s potential. We feel there are several additions yet to be made to JPred-P 2. First, we feel it would likely be more useful to throw a runtime PreconditionNotMet or PostconditionNotMet exception. This would allow 3 the programmer to handle the exception in a catch block within the method or from within the caller around the method call, and potentially avoid terminating the program, or at least do so more gracefully. As mentioned earlier, throwing exceptions creates the difficulty of handling those exceptions. Our default choice would be to throw both PreconditionNotMet and PostconditionNotMet exceptions to the caller, who would be required to catch them accordingly. This provides the most useful scenario, since many different callers may call a given JPred-P 2 method, each with different error handling requirements. Next, it would be a useful to use requires notations to aid JPred s logical space checking. Currently, JPred requires the full logical space of all when clauses of a given set of methods to be complete. For example, consider Figure 5. Currently, JPred will fail, claiming that the method declarations are incomplete because the case when denom == 0 is not handled. But, with our given preconditions, we should notice that this case is not valid, and allow the method specification to be considered complete. We would also like to perform some static checking on preconditions and postconditions. Through some form of dataflow analysis, we believe it is possible to determine statically whether a given precondition or postcondition is always true, never true, or unknown. If a condition is always true, the runtime check can be removed. If it is never true, it can statically be detected as an error to the programmer. If it is unknown, then the runtime checks are necessary. Lastly, our original proposal called for a static validation of preconditions and postconditions under inheritance. In order to be sound, an overriding method s preconditions can be weakened, and its postconditions st rengthened [5]. Figure 6 shows an example of the necessary conditions for soundness. Verifying these conditions requires reading the annotations from the superclass, either through the source code or byte code. The predicate conditions must be read and converted to a JPred PredicateNode expression in order to use the theorem prover to perform a validity check on the implication. Unfortunately, this is out of the scope (and time constraints) of our current project, and we leave it as the subject of future work for JPred-P 2. 3 And require

9 QuickTimeª and a 8. References [1]. T. Millstein, Practical Predicate Dispatch [2]. N. Nystrom, M. Clarkson, and A. Myers, Polyglot: An Extensible Compiler Framework for Java, Proceedings of the 12 th International Conference on Compiler Construction, Warsaw, Poland, April 2003 [3]. CVC Lite home page, [4]. Polyglot home page, [5]. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata, Extended Static Checking for Java, ACM, PLDI 02, Berlin, Germany, June 17-19, 2002 [6]. Java Technology,

Objectives for this class meeting. 1. Conduct review of core concepts concerning contracts and pre/post conditions

Objectives for this class meeting. 1. Conduct review of core concepts concerning contracts and pre/post conditions CSE1720 Click to edit Master Week text 01, styles Lecture 02 Second level Third level Fourth level Fifth level Winter 2015! Thursday, Jan 8, 2015 1 Objectives for this class meeting 1. Conduct review of

More information

Static program checking and verification

Static program checking and verification Chair of Software Engineering Software Engineering Prof. Dr. Bertrand Meyer March 2007 June 2007 Slides: Based on KSE06 With kind permission of Peter Müller Static program checking and verification Correctness

More information

Introduction to Programming Using Java (98-388)

Introduction to Programming Using Java (98-388) Introduction to Programming Using Java (98-388) Understand Java fundamentals Describe the use of main in a Java application Signature of main, why it is static; how to consume an instance of your own class;

More information

Program Verification (6EC version only)

Program Verification (6EC version only) Program Verification (6EC version only) Erik Poll Digital Security Radboud University Nijmegen Overview Program Verification using Verification Condition Generators JML a formal specification language

More information

Formal Methods for Java

Formal Methods for Java Formal Methods for Java Lecture 1: Introduction Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg October 26, 2011 Jochen Hoenicke (Software Engineering) Formal Methods for Java October

More information

Program Correctness and Efficiency. Chapter 2

Program Correctness and Efficiency. Chapter 2 Program Correctness and Efficiency Chapter 2 Chapter Objectives To understand the differences between the three categories of program errors To understand the effect of an uncaught exception and why you

More information

1 Lexical Considerations

1 Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2013 Handout Decaf Language Thursday, Feb 7 The project for the course is to write a compiler

More information

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS PAUL L. BAILEY Abstract. This documents amalgamates various descriptions found on the internet, mostly from Oracle or Wikipedia. Very little of this

More information

Developing Reliable Software using Object-Oriented Formal Specification and Refinement [Extended abstract prepared 24 March 2003]

Developing Reliable Software using Object-Oriented Formal Specification and Refinement [Extended abstract prepared 24 March 2003] Developing Reliable Software using Object-Oriented Formal Specification and Refinement [Extended abstract prepared 24 March 2003] Dr. David Crocker Escher Technologies Ltd., Mallard House, Hillside Road,

More information

Reference Grammar Meta-notation: hfooi means foo is a nonterminal. foo (in bold font) means that foo is a terminal i.e., a token or a part of a token.

Reference Grammar Meta-notation: hfooi means foo is a nonterminal. foo (in bold font) means that foo is a terminal i.e., a token or a part of a token. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Fall 2002 Handout 7 Espresso Language Definition Wednesday, September 4 The project for the 18-unit

More information

CS 161 Computer Security

CS 161 Computer Security Wagner Spring 2014 CS 161 Computer Security 1/27 Reasoning About Code Often functions make certain assumptions about their arguments, and it is the caller s responsibility to make sure those assumptions

More information

Lexical Considerations

Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Fall 2005 Handout 6 Decaf Language Wednesday, September 7 The project for the course is to write a

More information

FreePascal changes: user documentation

FreePascal changes: user documentation FreePascal changes: user documentation Table of Contents Jochem Berndsen February 2007 1Introduction...1 2Accepted syntax...2 Declarations...2 Statements...3 Class invariants...3 3Semantics...3 Definitions,

More information

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics Recall Architecture of Compilers, Interpreters CMSC 330: Organization of Programming Languages Source Scanner Parser Static Analyzer Operational Semantics Intermediate Representation Front End Back End

More information

Chapter 3. Describing Syntax and Semantics

Chapter 3. Describing Syntax and Semantics Chapter 3 Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings of Programs:

More information

References: internet notes; Bertrand Meyer, Object-Oriented Software Construction; 10/14/2004 1

References: internet notes; Bertrand Meyer, Object-Oriented Software Construction; 10/14/2004 1 References: internet notes; Bertrand Meyer, Object-Oriented Software Construction; 10/14/2004 1 Assertions Statements about input to a routine or state of a class Have two primary roles As documentation,

More information

CMSC 330: Organization of Programming Languages. Operational Semantics

CMSC 330: Organization of Programming Languages. Operational Semantics CMSC 330: Organization of Programming Languages Operational Semantics Notes about Project 4, Parts 1 & 2 Still due today (7/2) Will not be graded until 7/11 (along with Part 3) You are strongly encouraged

More information

Programming Languages Third Edition. Chapter 9 Control I Expressions and Statements

Programming Languages Third Edition. Chapter 9 Control I Expressions and Statements Programming Languages Third Edition Chapter 9 Control I Expressions and Statements Objectives Understand expressions Understand conditional statements and guards Understand loops and variation on WHILE

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Weiss Chapter 1 terminology (parenthesized numbers are page numbers)

Weiss Chapter 1 terminology (parenthesized numbers are page numbers) Weiss Chapter 1 terminology (parenthesized numbers are page numbers) assignment operators In Java, used to alter the value of a variable. These operators include =, +=, -=, *=, and /=. (9) autoincrement

More information

Pace University. Fundamental Concepts of CS121 1

Pace University. Fundamental Concepts of CS121 1 Pace University Fundamental Concepts of CS121 1 Dr. Lixin Tao http://csis.pace.edu/~lixin Computer Science Department Pace University October 12, 2005 This document complements my tutorial Introduction

More information

Assertions & Design-by-Contract using JML Erik Poll University of Nijmegen

Assertions & Design-by-Contract using JML Erik Poll University of Nijmegen Assertions & Design-by-Contract using JML Erik Poll University of Nijmegen Erik Poll - JML p.1/39 Overview Assertions Design-by-Contract for Java using JML Contracts and Inheritance Tools for JML Demo

More information

Curriculum Map Grade(s): Subject: AP Computer Science

Curriculum Map Grade(s): Subject: AP Computer Science Curriculum Map Grade(s): 11-12 Subject: AP Computer Science (Semester 1 - Weeks 1-18) Unit / Weeks Content Skills Assessments Standards Lesson 1 - Background Chapter 1 of Textbook (Weeks 1-3) - 1.1 History

More information

CSE 12 Abstract Syntax Trees

CSE 12 Abstract Syntax Trees CSE 12 Abstract Syntax Trees Compilers and Interpreters Parse Trees and Abstract Syntax Trees (AST's) Creating and Evaluating AST's The Table ADT and Symbol Tables 16 Using Algorithms and Data Structures

More information

Decaf Language Reference

Decaf Language Reference Decaf Language Reference Mike Lam, James Madison University Fall 2016 1 Introduction Decaf is an imperative language similar to Java or C, but is greatly simplified compared to those languages. It will

More information

CSE 504: Compiler Design. Runtime Environments

CSE 504: Compiler Design. Runtime Environments Runtime Environments Pradipta De pradipta.de@sunykorea.ac.kr Current Topic Procedure Abstractions Mechanisms to manage procedures and procedure calls from compiler s perspective Runtime Environment Choices

More information

Verification Condition Generation via Theorem Proving

Verification Condition Generation via Theorem Proving Verification Condition Generation via Theorem Proving John Matthews Galois Connections Inc. J Strother Moore University of Texas at Austin Sandip Ray University of Texas at Austin Daron Vroon Georgia Institute

More information

Assertions, pre/postconditions

Assertions, pre/postconditions Programming as a contract Assertions, pre/postconditions Assertions: Section 4.2 in Savitch (p. 239) Specifying what each method does q Specify it in a comment before method's header Precondition q What

More information

6. Hoare Logic and Weakest Preconditions

6. Hoare Logic and Weakest Preconditions 6. Hoare Logic and Weakest Preconditions Program Verification ETH Zurich, Spring Semester 07 Alexander J. Summers 30 Program Correctness There are many notions of correctness properties for a given program

More information

Compiler Theory. (Semantic Analysis and Run-Time Environments)

Compiler Theory. (Semantic Analysis and Run-Time Environments) Compiler Theory (Semantic Analysis and Run-Time Environments) 005 Semantic Actions A compiler must do more than recognise whether a sentence belongs to the language of a grammar it must do something useful

More information

Good Coding Practices Spring 2018

Good Coding Practices Spring 2018 CS18 Integrated Introduction to Computer Science Fisler, Nelson Contents Good Coding Practices Spring 2018 1 Introduction 1 2 The Don ts 1 3 The Dos 4 4 CS 18-Specific Practices 5 5 Style 6 1 Introduction

More information

Generating Continuation Passing Style Code for the Co-op Language

Generating Continuation Passing Style Code for the Co-op Language Generating Continuation Passing Style Code for the Co-op Language Mark Laarakkers University of Twente Faculty: Computer Science Chair: Software engineering Graduation committee: dr.ing. C.M. Bockisch

More information

Defining Languages GMU

Defining Languages GMU Defining Languages CS463 @ GMU How do we discuss languages? We might focus on these qualities: readability: how well does a language explicitly and clearly describe its purpose? writability: how expressive

More information

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation Language Implementation Methods The Design and Implementation of Programming Languages Compilation Interpretation Hybrid In Text: Chapter 1 2 Compilation Interpretation Translate high-level programs to

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164 Spring 2009 P. N. Hilfinger CS 164: Final Examination (corrected) Name: Login: You have

More information

Lexical Considerations

Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2010 Handout Decaf Language Tuesday, Feb 2 The project for the course is to write a compiler

More information

Operational Semantics. One-Slide Summary. Lecture Outline

Operational Semantics. One-Slide Summary. Lecture Outline Operational Semantics #1 One-Slide Summary Operational semantics are a precise way of specifying how to evaluate a program. A formal semantics tells you what each expression means. Meaning depends on context:

More information

AXIOMS OF AN IMPERATIVE LANGUAGE PARTIAL CORRECTNESS WEAK AND STRONG CONDITIONS. THE AXIOM FOR nop

AXIOMS OF AN IMPERATIVE LANGUAGE PARTIAL CORRECTNESS WEAK AND STRONG CONDITIONS. THE AXIOM FOR nop AXIOMS OF AN IMPERATIVE LANGUAGE We will use the same language, with the same abstract syntax that we used for operational semantics. However, we will only be concerned with the commands, since the language

More information

Symbol Tables Symbol Table: In computer science, a symbol table is a data structure used by a language translator such as a compiler or interpreter, where each identifier in a program's source code is

More information

OCL Support in MOF Repositories

OCL Support in MOF Repositories OCL Support in MOF Repositories Joachim Hoessler, Michael Soden Department of Computer Science Technical University Berlin hoessler@cs.tu-berlin.de, soden@cs.tu-berlin.de Abstract From metamodels that

More information

Introduction to JML David Cok, Joe Kiniry, and Erik Poll Eastman Kodak Company, University College Dublin, and Radboud University Nijmegen

Introduction to JML David Cok, Joe Kiniry, and Erik Poll Eastman Kodak Company, University College Dublin, and Radboud University Nijmegen Introduction to JML David Cok, Joe Kiniry, and Erik Poll Eastman Kodak Company, University College Dublin, and Radboud University Nijmegen David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial p.1/30

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Operational Semantics CMSC 330 Summer 2018 1 Formal Semantics of a Prog. Lang. Mathematical description of the meaning of programs written in that language

More information

The Java Modeling Language JML

The Java Modeling Language JML The Java Modeling Language JML Néstor Cataño ncatano@puj.edu.co Faculty of Engineering Pontificia Universidad Javeriana The Java Modelling Language JML p.1/47 Lecture Plan 1. An Introduction to JML 2.

More information

Reference Grammar Meta-notation: hfooi means foo is a nonterminal. foo (in bold font) means that foo is a terminal i.e., a token or a part of a token.

Reference Grammar Meta-notation: hfooi means foo is a nonterminal. foo (in bold font) means that foo is a terminal i.e., a token or a part of a token. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Fall 2002 Handout 6 Decaf Language Definition Wednesday, September 4 The project for the 12-unit flavor

More information

Semantic Analysis. Lecture 9. February 7, 2018

Semantic Analysis. Lecture 9. February 7, 2018 Semantic Analysis Lecture 9 February 7, 2018 Midterm 1 Compiler Stages 12 / 14 COOL Programming 10 / 12 Regular Languages 26 / 30 Context-free Languages 17 / 21 Parsing 20 / 23 Extra Credit 4 / 6 Average

More information

Transformation of Java Card into Diet Java Card

Transformation of Java Card into Diet Java Card Semester Project Transformation of Java Card into Diet Java Card Erich Laube laubee@student.ethz.ch March 2005 Software Component Technology Group ETH Zurich Switzerland Prof. Peter Müller Supervisor:

More information

JML tool-supported specification for Java Erik Poll Radboud University Nijmegen

JML tool-supported specification for Java Erik Poll Radboud University Nijmegen JML tool-supported specification for Java Erik Poll Radboud University Nijmegen Erik Poll - JML p.1/41 Overview The specification language JML Tools for JML, in particular runtime assertion checking using

More information

Runtime Checking for Program Verification Systems

Runtime Checking for Program Verification Systems Runtime Checking for Program Verification Systems Karen Zee, Viktor Kuncak, and Martin Rinard MIT CSAIL Tuesday, March 13, 2007 Workshop on Runtime Verification 1 Background Jahob program verification

More information

CJC: An Extensible Checker for the CleanJava Annotation Language

CJC: An Extensible Checker for the CleanJava Annotation Language University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 5-1-2013 CJC: An Extensible Checker for the CleanJava Annotation Language Cesar Yeep

More information

Chapter 10 Classes Continued. Fundamentals of Java

Chapter 10 Classes Continued. Fundamentals of Java Chapter 10 Classes Continued Objectives Know when it is appropriate to include class (static) variables and methods in a class. Understand the role of Java interfaces in a software system and define an

More information

Compilers Crash Course

Compilers Crash Course Compilers Crash Course Prof. Michael Clarkson CSci 6907.85 Spring 2014 Slides Acknowledgment: Prof. Andrew Myers (Cornell) What are Compilers? Translators from one representation of program code to another

More information

Object Oriented Issues in VDM++

Object Oriented Issues in VDM++ Object Oriented Issues in VDM++ Nick Battle, Fujitsu UK (nick.battle@uk.fujitsu.com) Background VDMJ implemented VDM-SL first (started late 2007) Formally defined. Very few semantic problems VDM++ support

More information

Chapter 3 (part 3) Describing Syntax and Semantics

Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings

More information

JFlow: Practical Mostly-Static Information Flow Control

JFlow: Practical Mostly-Static Information Flow Control JFlow: Practical Mostly-Static Information Flow Control A.Myers and B.Liskov. A Decentralized Model for Information Flow Control (SOSP 1997). Andrew C. Myers and Barbara Liskov. Protecting privacy using

More information

Outlook on Composite Type Labels in User-Defined Type Systems

Outlook on Composite Type Labels in User-Defined Type Systems 34 (2017 ) Outlook on Composite Type Labels in User-Defined Type Systems Antoine Tu Shigeru Chiba This paper describes an envisioned implementation of user-defined type systems that relies on a feature

More information

Nested Classes in Java. Slides by: Alon Mishne Edited by: Eran Gilad, Eyal Moscovici April 2013

Nested Classes in Java. Slides by: Alon Mishne Edited by: Eran Gilad, Eyal Moscovici April 2013 Nested Classes in Java Slides by: Alon Mishne Edited by: Eran Gilad, Eyal Moscovici April 2013 1 In This Tutorial Explanation of the nested class concept. Access modifiers and nested classes. The types

More information

5 The Control Structure Diagram (CSD)

5 The Control Structure Diagram (CSD) 5 The Control Structure Diagram (CSD) The Control Structure Diagram (CSD) is an algorithmic level diagram intended to improve the comprehensibility of source code by clearly depicting control constructs,

More information

Chapter 3 Java Exception

Chapter 3 Java Exception Chapter 3 Java Exception J AVA C O S E @ Q Q. C O M Content A Notion of Exception Java Exceptions Exception Handling User-defined Exceptions How to Use Exception 2 COSE Java Exceptional Condition Divided

More information

A Third Look At Java. Chapter Seventeen Modern Programming Languages, 2nd ed. 1

A Third Look At Java. Chapter Seventeen Modern Programming Languages, 2nd ed. 1 A Third Look At Java Chapter Seventeen Modern Programming Languages, 2nd ed. 1 A Little Demo public class Test { public static void main(string[] args) { int i = Integer.parseInt(args[0]); int j = Integer.parseInt(args[1]);

More information

CSE P 501 Compilers. Static Semantics Hal Perkins Winter /22/ Hal Perkins & UW CSE I-1

CSE P 501 Compilers. Static Semantics Hal Perkins Winter /22/ Hal Perkins & UW CSE I-1 CSE P 501 Compilers Static Semantics Hal Perkins Winter 2008 1/22/2008 2002-08 Hal Perkins & UW CSE I-1 Agenda Static semantics Types Attribute grammars Representing types Symbol tables Note: this covers

More information

Project Compiler. CS031 TA Help Session November 28, 2011

Project Compiler. CS031 TA Help Session November 28, 2011 Project Compiler CS031 TA Help Session November 28, 2011 Motivation Generally, it s easier to program in higher-level languages than in assembly. Our goal is to automate the conversion from a higher-level

More information

Lecture Notes on Arrays

Lecture Notes on Arrays Lecture Notes on Arrays 15-122: Principles of Imperative Computation July 2, 2013 1 Introduction So far we have seen how to process primitive data like integers in imperative programs. That is useful,

More information

Object Ownership in Program Verification

Object Ownership in Program Verification Object Ownership in Program Verification Werner Dietl 1 and Peter Müller 2 1 University of Washington wmdietl@cs.washington.edu 2 ETH Zurich peter.mueller@inf.ethz.ch Abstract. Dealing with aliasing is

More information

Objectives. Problem Solving. Introduction. An overview of object-oriented concepts. Programming and programming languages An introduction to Java

Objectives. Problem Solving. Introduction. An overview of object-oriented concepts. Programming and programming languages An introduction to Java Introduction Objectives An overview of object-oriented concepts. Programming and programming languages An introduction to Java 1-2 Problem Solving The purpose of writing a program is to solve a problem

More information

Operational Semantics of Cool

Operational Semantics of Cool Operational Semantics of Cool Key Concepts semantics: the meaning of a program, what does program do? how the code is executed? operational semantics: high level code generation steps of calculating values

More information

Assoc. Prof. Marenglen Biba. (C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba. (C) 2010 Pearson Education, Inc. All rights reserved. Assoc. Prof. Marenglen Biba Exception handling Exception an indication of a problem that occurs during a program s execution. The name exception implies that the problem occurs infrequently. With exception

More information

Compilation 2012 Static Type Checking

Compilation 2012 Static Type Checking Compilation 2012 Jan Midtgaard Michael I. Schwartzbach Aarhus University The Type Checker The type checker has several tasks: determine the types of all expressions check that values and variables are

More information

Semantic Analysis Type Checking

Semantic Analysis Type Checking Semantic Analysis Type Checking Maryam Siahbani CMPT 379 * Slides are modified version of Schwarz s compiler course at Stanford 4/8/2016 1 Type Checking Type errors arise when operations are performed

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages CSE 307: Principles of Programming Languages Advanced Topics R. Sekar Topics 1 / 14 1. 2 / 14 Section 1 3 / 14 Semantics of Programs Syntax defines what programs are valid. Semantics defines what the valid

More information

Tail Calls. CMSC 330: Organization of Programming Languages. Tail Recursion. Tail Recursion (cont d) Names and Binding. Tail Recursion (cont d)

Tail Calls. CMSC 330: Organization of Programming Languages. Tail Recursion. Tail Recursion (cont d) Names and Binding. Tail Recursion (cont d) CMSC 330: Organization of Programming Languages Tail Calls A tail call is a function call that is the last thing a function does before it returns let add x y = x + y let f z = add z z (* tail call *)

More information

Contents. Figures. Tables. Examples. Foreword. Preface. 1 Basics of Java Programming 1. xix. xxi. xxiii. xxvii. xxix

Contents. Figures. Tables. Examples. Foreword. Preface. 1 Basics of Java Programming 1. xix. xxi. xxiii. xxvii. xxix PGJC4_JSE8_OCA.book Page ix Monday, June 20, 2016 2:31 PM Contents Figures Tables Examples Foreword Preface xix xxi xxiii xxvii xxix 1 Basics of Java Programming 1 1.1 Introduction 2 1.2 Classes 2 Declaring

More information

Programming Assignment 5 Interpreter and Static Analysis

Programming Assignment 5 Interpreter and Static Analysis Lund University Computer Science Niklas Fors, Görel Hedin, Christoff Bürger Compilers EDAN65 2016-09-24 Programming Assignment 5 Interpreter and Static Analysis The goal of this assignment is to implement

More information

Lecture Notes on Static Semantics

Lecture Notes on Static Semantics Lecture Notes on Static Semantics 15-411: Compiler Design Frank Pfenning Lecture 12 October 8, 2015 1 Introduction After lexing and parsing, a compiler will usually apply elaboration to translate the parse

More information

Extended Static Checking for Java

Extended Static Checking for Java Extended Static Checking for Java Cormac Flanagan Joint work with: Rustan Leino, Mark Lillibridge, Greg Nelson, Jim Saxe, and Raymie Stata Compaq Systems Research Center What is Static Checking? Annotated

More information

Exception Handling Introduction. Error-Prevention Tip 13.1 OBJECTIVES

Exception Handling Introduction. Error-Prevention Tip 13.1 OBJECTIVES 1 2 13 Exception Handling It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something. Franklin Delano Roosevelt O throw away the worser

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164 Spring 2005 P. N. Hilfinger Project #2: Static Analyzer for Pyth Due: Wednesday, 6 April

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Values and Types We divide the universe of values according to types A type is a set of values and

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

Automatic Generation of Program Specifications

Automatic Generation of Program Specifications Automatic Generation of Program Specifications Jeremy Nimmer MIT Lab for Computer Science http://pag.lcs.mit.edu/ Joint work with Michael Ernst Jeremy Nimmer, page 1 Synopsis Specifications are useful

More information

DOWNLOAD PDF CORE JAVA APTITUDE QUESTIONS AND ANSWERS

DOWNLOAD PDF CORE JAVA APTITUDE QUESTIONS AND ANSWERS Chapter 1 : Chapter-wise Java Multiple Choice Questions and Answers Interview MCQs Java Programming questions and answers with explanation for interview, competitive examination and entrance test. Fully

More information

Core JAVA Training Syllabus FEE: RS. 8000/-

Core JAVA Training Syllabus FEE: RS. 8000/- About JAVA Java is a high-level programming language, developed by James Gosling at Sun Microsystems as a core component of the Java platform. Java follows the "write once, run anywhere" concept, as it

More information

CSE 331 Software Design & Implementation

CSE 331 Software Design & Implementation CSE 331 Software Design & Implementation Hal Perkins Spring 2017 Exceptions and Assertions 1 Outline General concepts about dealing with errors and failures Assertions: what, why, how For things you believe

More information

Verification Condition Generation

Verification Condition Generation Verification Condition Generation Jorge Sousa Pinto Departamento de Informática / Universidade do Minho jsp@di.uminho.pt www.di.uminho.pt/~jsp Outline (1) - From Hoare Logic to VCGen algorithms: an architecture

More information

Analysis of Software Artifacts

Analysis of Software Artifacts Analysis of Software Artifacts Properties with ESC/Java Jonathan Aldrich 1 ESC/Java A checker for Java programs Finds null pointers, array dereferences Checks Hoare logic specifications Expressed in Java

More information

Practical Predicate Dispatch

Practical Predicate Dispatch Practical Predicate Dispatch Todd Millstein Computer Science Department University of California, Los Angeles todd@cs.ucla.edu ABSTRACT Predicate dispatch is an object-oriented (OO) language mechanism

More information

Anatomy of a Compiler. Overview of Semantic Analysis. The Compiler So Far. Why a Separate Semantic Analysis?

Anatomy of a Compiler. Overview of Semantic Analysis. The Compiler So Far. Why a Separate Semantic Analysis? Anatomy of a Compiler Program (character stream) Lexical Analyzer (Scanner) Syntax Analyzer (Parser) Semantic Analysis Parse Tree Intermediate Code Generator Intermediate Code Optimizer Code Generator

More information

In Our Last Exciting Episode

In Our Last Exciting Episode In Our Last Exciting Episode #1 Lessons From Model Checking To find bugs, we need specifications What are some good specifications? To convert a program into a model, we need predicates/invariants and

More information

Programming Languages Third Edition. Chapter 7 Basic Semantics

Programming Languages Third Edition. Chapter 7 Basic Semantics Programming Languages Third Edition Chapter 7 Basic Semantics Objectives Understand attributes, binding, and semantic functions Understand declarations, blocks, and scope Learn how to construct a symbol

More information

CS143 Final Fall 2009

CS143 Final Fall 2009 CS143 Final Fall 2009 Please read all instructions (including these) carefully. There are 4 questions on the exam, all with multiple parts. You have 2 hours to work on the exam. The exam is closed book,

More information

Testing Exceptions with Enforcer

Testing Exceptions with Enforcer Testing Exceptions with Enforcer Cyrille Artho February 23, 2010 National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Information Security (RCIS) Abstract Java library

More information

Compiler Errors. Flash CS4 Professional ActionScript 3.0 Language Reference. 1 of 18 9/6/2010 9:40 PM

Compiler Errors. Flash CS4 Professional ActionScript 3.0 Language Reference. 1 of 18 9/6/2010 9:40 PM 1 of 18 9/6/2010 9:40 PM Flash CS4 Professional ActionScript 3.0 Language Reference Language Reference only Compiler Errors Home All Packages All Classes Language Elements Index Appendixes Conventions

More information

Safe Instantiation in Generic Java

Safe Instantiation in Generic Java Safe Instantiation in Generic Java January 31, 2003 Abstract This paper presents the safe-instantiation principle a new design principle for evaluating extensions of Java with support for generic types.

More information

Static Type Checking. Static Type Checking. The Type Checker. Type Annotations. Types Describe Possible Values

Static Type Checking. Static Type Checking. The Type Checker. Type Annotations. Types Describe Possible Values The Type Checker Compilation 2007 The type checker has several tasks: determine the types of all expressions check that values and variables are used correctly resolve certain ambiguities by transformations

More information

Programming Languages and Compilers Qualifying Examination. Answer 4 of 6 questions.

Programming Languages and Compilers Qualifying Examination. Answer 4 of 6 questions. Programming Languages and Compilers Qualifying Examination Fall 2017 Answer 4 of 6 questions. GENERAL INSTRUCTIONS 1. Answer each question in a separate book. 2. Indicate on the cover of each book the

More information

UC Santa Barbara. CS189A - Capstone. Christopher Kruegel Department of Computer Science UC Santa Barbara

UC Santa Barbara. CS189A - Capstone. Christopher Kruegel Department of Computer Science UC Santa Barbara CS189A - Capstone Christopher Kruegel Department of Computer Science http://www.cs.ucsb.edu/~chris/ Design by Contract Design by Contract and the language that implements the Design by Contract principles

More information

Formal Specification and Verification

Formal Specification and Verification Formal Specification and Verification Proof Obligations Bernhard Beckert Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg Formal Specification and Verification:

More information

Induction and Semantics in Dafny

Induction and Semantics in Dafny 15-414 Lecture 11 1 Instructor: Matt Fredrikson Induction and Semantics in Dafny TA: Ryan Wagner Encoding the syntax of Imp Recall the abstract syntax of Imp: a AExp ::= n Z x Var a 1 + a 2 b BExp ::=

More information

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem:

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem: Expression evaluation CSE 504 Order of evaluation For the abstract syntax tree + + 5 Expression Evaluation, Runtime Environments + + x 3 2 4 the equivalent expression is (x + 3) + (2 + 4) + 5 1 2 (. Contd

More information

Lecture Notes on Ints

Lecture Notes on Ints Lecture Notes on Ints 15-122: Principles of Imperative Computation Frank Pfenning Lecture 2 August 26, 2010 1 Introduction Two fundamental types in almost any programming language are booleans and integers.

More information

JMLCUTE: Automated JML-Based Unit Test Case Generation

JMLCUTE: Automated JML-Based Unit Test Case Generation JMLCUTE: Automated JML-Based Unit Test Case Generation Rafael Baltazar Instituto Superior Tecnico, Lisboa, Portugal, rafael.baltazar@tecnico.ulisboa.pt Abstract. A formal specification is the detailed

More information