DATA-DRIVEN TASKS THEIR IMPLEMENTATION AND SAĞNAK TAŞIRLAR, VIVEK SARKAR DEPARTMENT OF COMPUTER SCIENCE. RICE UNIVERSITY

Size: px
Start display at page:

Download "DATA-DRIVEN TASKS THEIR IMPLEMENTATION AND SAĞNAK TAŞIRLAR, VIVEK SARKAR DEPARTMENT OF COMPUTER SCIENCE. RICE UNIVERSITY"

Transcription

1 1 DATA-DRIVEN TASKS AND THEIR IMPLEMENTATION SAĞNAK TAŞIRLAR, VIVEK SARKAR DEPARTMENT OF COMPUTER SCIENCE. RICE UNIVERSITY

2 Fork/Join graphs constraint -ism 2 Fork/Join models restrict task graphs to be series-parallel Can not describe without hampering -ism Fork/Join models constrain control and data dependences Tasks can only be created after all data dependences satisfied Necessitates ordering task creation to conform to that restriction May hamper performance

3 Macro-dataflow for intuitive -ism 3 Kernel based programming TaskA TaskB TaskC Build a task graph of kernel instantiations main TaskA TaskB TaskC TaskB TaskA Restrict dependences to true dependences race-freedom, determinism Provides productivity single-assignment data

4 Futures [Baker & Hewitt 1977] 4 future = (storage, resolvingprocess, waitingtasks) addressf TaskF TaskG TaskH TaskJ Future F = {stmt 1 ; ; return v;}!!!!!task g = {stmt; F.get(); ;}!

5 5 Data-Driven Futures (DDFs) & Data-Driven Tasks (DDTs) DataDrivenFuture = (storage, waitingtasks) Creation Create an empty Data-Driven Future (DDF) object Resolution ( put ) (resolvingprocess) Resolve what value a DDF is referring to Data-Driven Tasks (DDTs) ( async await( ) ) A task provides a consumer list of DDFs on declaration A task can only read DDFs that it is registered to Difference from futures: Creation of container (DDF) and computation (DDT) are separate events

6 DDF/DDT Code Sample 6 DataDrivenFuture left = new DataDrivenFuture (); DataDrivenFuture right = new DataDrivenFuture(); finish { async await ( left ) useleftchild(left); // Task 1 async await ( right ) userightchild(right); // Task 2 async await ( left, right ) usebothchildren( left, right ); // Task 3 } async left.put(leftchildcreator()); // Task 4 async right.put(rightchildcreator()); // Task 5 Task4 Task1 Task3 Task5 Task2

7 DDTs provide 7 Non-series-parallel task dependence graph support Less restricted parallelism Better scheduling opportunities DDTB DDF DDTD DDTA DDTF DDTC DDTE Single assignment (SA) Race-freedom on DDF accesses Determinism if all shared data is expressed as DDFs SA-value lifetime restriction Smaller than graph lifetime DDF creator: Provides DDF reference to producers and consumers DDF lifetime depends on Creator lifetime Resolver lifetime Consumers lifetimes

8 Data-Driven Scheduling 8 Steps register self to items wrapped into DDFs DDFleft PlaceHolderleft Valueleft Task1 DDFleft DDFright PlaceHolderright Valueright Task3 Task2 TaskC DDFleft DDF left = new DDF(); DDF right = new DDF(); async await (left) use(left); // Task 1 async await (right) use(right); // Task 2 async await (left,right) use(left,right); // Task 3 async builder(left); // Task 4 DDFright ready queue Task 43 Task 52 Task5 Task4 DDFright Task 1 resolve resolve DDFright DDFleft async builder(right); // Task 5

9 Mapping Macro-Dataflow to Task-Parallelism 9 Control & data dependences as first level constructs Task-parallel frameworks have them coupled e.g., OpenMP, Cilk Kernel instantiations may have multiple predecessors Need to wait for all Staged readiness concepts Created ( control dependence satisfied ) Data dependences satisfied Schedulable / Ready DDTs provide a natural implementation for Macro- Dataflow Every kernel instantiation is a DDT Data dependences between DDTs are expressed through DDFs Provides race freedom

10 Experimental Results 10 Compared DDT implementation with four macrodata schedulers from past work that used Concurrent Collections (CnC) CnC uses global data collections to synchronize tasks DDT/DDF results obtained at task-parallel level without allocating global data collections CnC can be automatically translated to DDFs (ongoing work)

11 Blocking Schedulers 11 Use Java wait/notify for premature data access Blocking granularity Instance level vs Collection level (fine-grain vs. coarsegrain) A blocked task blocks an entire worker thread Need to create more worker threads to avoid deadlock Worker C Get (key c ) step 1 wait ItemCollection Θ key α key β value α value β time Worker D Put(key c,value c ) notify step 2

12 Delayed async Scheduling 12 Every kernel instantiation is a guarded execution Guard condition is the availability of input data Task can be created eagerly before input data is available Promoted to ready when data provided pop Popped Task Value left = new Value (); Value right = new Value (); finish { async when ( left.isready() ) useleftchild(left); // Task 1 async when ( right.isready()) userightchild(right); // Task 2 async when ( right.isready() && left.isready() ) async 1 async 2 async 3 async 4 usebothchildren( left, right ); // Task 3 async left.put(leftchildcreator()); // Task async 5 4 push async right.put(rightchildcreator()); // Task 5 } Work Sharing Ready Task Queue No Schedule Yes Delayed? Is true? Evaluate guard Requeue Yes No

13 Data Driven Rollback & Replay 13 Throw exception to unwind Insert step 1 to waitlist c Worker C step 1 Get (key c ) step 3 step 1 Get (key c ) Get (key d ) ItemCollection Θ key a key b value a value b waitlist a waitlist b key c empty value c waitlist c Put(key c,value c ) Worker D step 2 Re-execute steps in waitlist c on Put() step 1

14 Experimental Setup 14 4-socket Xeon quad-core Intel E GHz Shared 3MB L2 cache per pair of cores. Main memory 32 GBs. #worker threads:16 8-way SMT 8-core Niagara Sun UltraSPARC T2 Shared 4MB L2 cache #worker threads: bit Sun Hotspot JDK 1.6 JVM GCC for JNI 30 runs for statistical soundness Read Serial as single-threaded execution of code

15 Cholesky decomposition 15 12,000 10,081 10,010 Serial Parallel 10,305 10,309 Execution in milli-secs 10,000 8,000 6,000 4,000 2,472 8,748 2,000 1, Coarse Grain Blocking Fine Grain Blocking Delayed Async Data Driven Rollback&Replay Data Driven Futures Tasks Average execution times and 90% confidence interval of 30 runs of single threaded and 16- threaded executions for blocked Cholesky decomposition CnC application with Habanero- Java steps on 16-core Xeon with input matrix size and with tile size

16 Black-Scholes formula ( PARSEC ) 16 40,000 35,000 Serial Parallel 33,871 33,966 34,311 34,121 34,729 Execution in milli-secs 30,000 25,000 20,000 15,000 10,000 5,000 4,300 4,309 4,279 5,061 2,353 0 Coarse Grain Blocking Fine Grain Blocking Delayed Async Data Driven Rollback&Replay Data Driven Futures Tasks Average execution times and 90% confidence interval of 30 runs of single threaded and 16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java steps on 16-core Xeon with input size 1,000,000 and with tile size 62,500

17 Rician Denoising ( Medical Imaging ) , , ,666 Serial Parallel 483,770 Execution in milli-secs 400, , , , ,000 81,502 58,313 53,569 53,817 0 Coarse Grain Blocking * Fine Grain Blocking * Delayed Async * Data Driven Futures Tasks Average execution times and 90% confidence interval of 30 runs of single threaded and 16-threaded executions for blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with input image size and with tile size * Explicit memory management required for non-ddt schedules to avoid out-of-memory exception

18 Heart Wall Tracking Dependence Graph 18 IterationJ IterationJ+1 Step3 Step3 Step1 Step6 Step8 Step1 Step6 Step8 Step4 Step10 Step4 Step10 Step2 Step2 Step5 Step7 Step9 Step5 Step7 Step9

19 Heart Wall Tracking ( Rodinia ) , , ,248 Serial Parallel 157, ,159 Execution in milli-secs 140, , ,000 80,000 60,000 40,000 47,989 20,000 11,076 9,897 0 Delayed Async Data Driven Rollback&Replay Data Driven Futures Tasks Minimum execution times of 13 runs of single threaded and 16-threaded executions for Heart Wall Tracking CnC application with C steps on Xeon with 104 frames

20 Related Work 20 Futures Can build arbitrary task graphs get()/force() is usually a blocking operation future task creation is bound to container at creation time Dataflow Typically blocks on one datum (Ivar) at a time, unlike async await ( ) Nabbit ( Cilk library ) Can build arbitrary task graphs, more explicit than DDTs No garbage collection and unwinding of task graph Concurrent Collections ( CnC ) Globalized data collections and general tags (keys) makes memory management challenging DDTs can be used to obtain more efficient implementations of CnC

21 Conclusions 21 Data-Driven Futures and Data-Driven Tasks help build arbitrary task graphs and extend task-parallel frameworks introduce the more-intuitive macro-dataflow to programmers on task-parallel frameworks support Data-Driven scheduling that outperforms alternative schedulers in both execution time and memory requirements help to implement blocking in tasks without blocking workers

22 Future Work 22 Compile Concurrent Collections down to DDTs Compiler optimizations to move DDF allocations to further reduce lifetimes Hierarchical DDTs for granularity optimizations Work-stealing support for DDTs Use DDTs to implement all blocking synchronizations without blocking worker, i.e. replace each waiting continuation as a DDT Locality aware scheduling with DDTs For a hands-on trial, visit

SCHEDULING MACRO-DATAFLOW PROGRAMS TASK-PARALLEL RUNTIME SYSTEMS SAĞNAK TAŞIRLAR

SCHEDULING MACRO-DATAFLOW PROGRAMS TASK-PARALLEL RUNTIME SYSTEMS SAĞNAK TAŞIRLAR 1 SCHEDULING MACRO-DATAFLOW PROGRAMS ON TASK-PARALLEL RUNTIME SYSTEMS SAĞNAK TAŞIRLAR Thesis 2 Our thesis is that advances in task parallel runtime systems can enable a macro-dataflow programming model,

More information

CnC-HC. a programming model for CPU-GPU hybrid parallelism. Alina Sbîrlea, Zoran Budimlic, Vivek Sarkar Rice University

CnC-HC. a programming model for CPU-GPU hybrid parallelism. Alina Sbîrlea, Zoran Budimlic, Vivek Sarkar Rice University CnC-HC a programming model for CPU-GPU hybrid parallelism Alina Sbîrlea, Zoran Budimlic, Vivek Sarkar Rice University Acknowledgements CnC-CUDA: Declarative Programming for GPUs, Max Grossman, Alina Simion-Sbirlea,

More information

RICE UNIVERSITY. Scheduling Macro-DataFlow Programs on Task-Parallel Runtime Systems. by Sagnak Ta Irlar

RICE UNIVERSITY. Scheduling Macro-DataFlow Programs on Task-Parallel Runtime Systems. by Sagnak Ta Irlar RICE UNIVERSITY Scheduling Macro-DataFlow Programs on Task-Parallel Runtime Systems by Sagnak Ta Irlar A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science APPROVED,

More information

A Case for Cooperative Scheduling in X10's Managed Runtime

A Case for Cooperative Scheduling in X10's Managed Runtime A Case for Cooperative Scheduling in X10's Managed Runtime X10 Workshop 2014 June 12, 2014 Shams Imam, Vivek Sarkar Rice University Task-Parallel Model Worker Threads Please ignore the DP on the cartoons

More information

Lecture 15: Data-Driven Tasks, Point-to-Point Synchronization with Phasers

Lecture 15: Data-Driven Tasks, Point-to-Point Synchronization with Phasers COMP 322: Fundamentals of Parallel Programming Lecture 15: Data-Driven Tasks, Point-to-Point Synchronization with Phasers Zoran Budimlić and Mack Joyner {zoran, mjoyner}@rice.edu http://comp322.rice.edu

More information

COMP 322 / ELEC 323: Fundamentals of Parallel Programming

COMP 322 / ELEC 323: Fundamentals of Parallel Programming COMP 322 / ELEC 323: Fundamentals of Parallel Programming Lecture 18: Abstract vs. Real Performance an under the hood look at HJlib Instructors: Vivek Sarkar, Mack Joyner Department of Computer Science,

More information

ABSTRACT. Optimized Event-Driven Runtime Systems for Programmability and Performance

ABSTRACT. Optimized Event-Driven Runtime Systems for Programmability and Performance ABSTRACT Optimized Event-Driven Runtime Systems for Programmability and Performance by Sağnak Taşırlar Modern parallel programming models perform their best under the particular patterns they are tuned

More information

Runtime Support for Scalable Task-parallel Programs

Runtime Support for Scalable Task-parallel Programs Runtime Support for Scalable Task-parallel Programs Pacific Northwest National Lab xsig workshop May 2018 http://hpc.pnl.gov/people/sriram/ Single Program Multiple Data int main () {... } 2 Task Parallelism

More information

Concurrent Collections

Concurrent Collections Concurrent Collections Zoran Budimlić 1 Michael Burke 1 Vincent Cavé 1 Kathleen Knobe 2 Geoff Lowney 2 Ryan Newton 2 Jens Palsberg 3 David Peixotto 1 Vivek Sarkar 1 Frank Schlimbach 2 Sağnak Taşırlar 1

More information

Multithreading: Exploiting Thread-Level Parallelism within a Processor

Multithreading: Exploiting Thread-Level Parallelism within a Processor Multithreading: Exploiting Thread-Level Parallelism within a Processor Instruction-Level Parallelism (ILP): What we ve seen so far Wrap-up on multiple issue machines Beyond ILP Multithreading Advanced

More information

Habanero-Java Library: a Java 8 Framework for Multicore Programming

Habanero-Java Library: a Java 8 Framework for Multicore Programming Habanero-Java Library: a Java 8 Framework for Multicore Programming PPPJ 2014 September 25, 2014 Shams Imam, Vivek Sarkar shams@rice.edu, vsarkar@rice.edu Rice University https://wiki.rice.edu/confluence/display/parprog/hj+library

More information

PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES

PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES Anish Athalye and Patrick Long Mentors: Austin Clements and Stephen Tu 3 rd annual MIT PRIMES Conference Sequential

More information

All routines were built with VS2010 compiler, OpenMP 2.0 and TBB 3.0 libraries were used to implement parallel versions of programs.

All routines were built with VS2010 compiler, OpenMP 2.0 and TBB 3.0 libraries were used to implement parallel versions of programs. technologies for multi-core numeric computation In order to compare ConcRT, OpenMP and TBB technologies, we implemented a few algorithms from different areas of numeric computation and compared their performance

More information

Chapel Introduction and

Chapel Introduction and Lecture 24 Chapel Introduction and Overview of X10 and Fortress John Cavazos Dept of Computer & Information Sciences University of Delaware www.cis.udel.edu/~cavazos/cisc879 But before that Created a simple

More information

Ohua: Implicit Dataflow Programming for Concurrent Systems

Ohua: Implicit Dataflow Programming for Concurrent Systems Ohua: Implicit Dataflow Programming for Concurrent Systems Sebastian Ertel Compiler Construction Group TU Dresden, Germany Christof Fetzer Systems Engineering Group TU Dresden, Germany Pascal Felber Institut

More information

Overview of research activities Toward portability of performance

Overview of research activities Toward portability of performance Overview of research activities Toward portability of performance Do dynamically what can t be done statically Understand evolution of architectures Enable new programming models Put intelligence into

More information

Effective Performance Measurement and Analysis of Multithreaded Applications

Effective Performance Measurement and Analysis of Multithreaded Applications Effective Performance Measurement and Analysis of Multithreaded Applications Nathan Tallent John Mellor-Crummey Rice University CSCaDS hpctoolkit.org Wanted: Multicore Programming Models Simple well-defined

More information

for Task-Based Parallelism

for Task-Based Parallelism for Task-Based Parallelism School of EEECS, Queen s University of Belfast July Table of Contents 2 / 24 Thread-Based Programming Hard for programmer to reason about thread interleavings and concurrent

More information

Overview: Emerging Parallel Programming Models

Overview: Emerging Parallel Programming Models Overview: Emerging Parallel Programming Models the partitioned global address space paradigm the HPCS initiative; basic idea of PGAS the Chapel language: design principles, task and data parallelism, sum

More information

HPX. High Performance ParalleX CCT Tech Talk Series. Hartmut Kaiser

HPX. High Performance ParalleX CCT Tech Talk Series. Hartmut Kaiser HPX High Performance CCT Tech Talk Hartmut Kaiser (hkaiser@cct.lsu.edu) 2 What s HPX? Exemplar runtime system implementation Targeting conventional architectures (Linux based SMPs and clusters) Currently,

More information

Scheduler Activations. CS 5204 Operating Systems 1

Scheduler Activations. CS 5204 Operating Systems 1 Scheduler Activations CS 5204 Operating Systems 1 Concurrent Processing How can concurrent processing activity be structured on a single processor? How can application-level information and system-level

More information

Static Data Race Detection for SPMD Programs via an Extended Polyhedral Representation

Static Data Race Detection for SPMD Programs via an Extended Polyhedral Representation via an Extended Polyhedral Representation Habanero Extreme Scale Software Research Group Department of Computer Science Rice University 6th International Workshop on Polyhedral Compilation Techniques (IMPACT

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

Efficient Work Stealing for Fine-Grained Parallelism

Efficient Work Stealing for Fine-Grained Parallelism Efficient Work Stealing for Fine-Grained Parallelism Karl-Filip Faxén Swedish Institute of Computer Science November 26, 2009 Task parallel fib in Wool TASK 1( int, fib, int, n ) { if( n

More information

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle Dynamic Fine Grain Scheduling of Pipeline Parallelism Presented by: Ram Manohar Oruganti and Michael TeWinkle Overview Introduction Motivation Scheduling Approaches GRAMPS scheduling method Evaluation

More information

Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 5)

Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 5) Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 5) ILP vs. Parallel Computers Dynamic Scheduling (Section 3.4, 3.5) Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C) Hardware

More information

Trends and Challenges in Multicore Programming

Trends and Challenges in Multicore Programming Trends and Challenges in Multicore Programming Eva Burrows Bergen Language Design Laboratory (BLDL) Department of Informatics, University of Bergen Bergen, March 17, 2010 Outline The Roadmap of Multicores

More information

Region-Based Memory Management for Task Dataflow Models

Region-Based Memory Management for Task Dataflow Models Region-Based Memory Management for Task Dataflow Models Nikolopoulos, D. (2012). Region-Based Memory Management for Task Dataflow Models: First Joint ENCORE & PEPPHER Workshop on Programmability and Portability

More information

Polyhedral Optimizations of Explicitly Parallel Programs

Polyhedral Optimizations of Explicitly Parallel Programs Habanero Extreme Scale Software Research Group Department of Computer Science Rice University The 24th International Conference on Parallel Architectures and Compilation Techniques (PACT) October 19, 2015

More information

Cilk Plus GETTING STARTED

Cilk Plus GETTING STARTED Cilk Plus GETTING STARTED Overview Fundamentals of Cilk Plus Hyperobjects Compiler Support Case Study 3/17/2015 CHRIS SZALWINSKI 2 Fundamentals of Cilk Plus Terminology Execution Model Language Extensions

More information

Towards a codelet-based runtime for exascale computing. Chris Lauderdale ET International, Inc.

Towards a codelet-based runtime for exascale computing. Chris Lauderdale ET International, Inc. Towards a codelet-based runtime for exascale computing Chris Lauderdale ET International, Inc. What will be covered Slide 2 of 24 Problems & motivation Codelet runtime overview Codelets & complexes Dealing

More information

COMP 322: Fundamentals of Parallel Programming Module 1: Parallelism

COMP 322: Fundamentals of Parallel Programming Module 1: Parallelism c 2016 by Vivek Sarkar January 10, 2018 Contents 0 Course Organization 2 1 Task-level Parallelism 2 1.1 Task Creation and Termination (Async, Finish).......................... 2 1.2 Computation Graphs.........................................

More information

The Parallel Boost Graph Library spawn(active Pebbles)

The Parallel Boost Graph Library spawn(active Pebbles) The Parallel Boost Graph Library spawn(active Pebbles) Nicholas Edmonds and Andrew Lumsdaine Center for Research in Extreme Scale Technologies Indiana University Origins Boost Graph Library (1999) Generic

More information

Recursive inverse factorization

Recursive inverse factorization Recursive inverse factorization Anton Artemov Division of Scientific Computing, Uppsala University anton.artemov@it.uu.se 06.09.2017 Context of work Research group on large scale electronic structure computations

More information

Thread-Local. Lecture 27: Concurrency 3. Dealing with the Rest. Immutable. Whenever possible, don t share resources

Thread-Local. Lecture 27: Concurrency 3. Dealing with the Rest. Immutable. Whenever possible, don t share resources Thread-Local Lecture 27: Concurrency 3 CS 62 Fall 2016 Kim Bruce & Peter Mawhorter Some slides based on those from Dan Grossman, U. of Washington Whenever possible, don t share resources Easier to have

More information

Portable Parallel Programming for Multicore Computing

Portable Parallel Programming for Multicore Computing Portable Parallel Programming for Multicore Computing? Vivek Sarkar Rice University vsarkar@rice.edu FPU ISU ISU FPU IDU FXU FXU IDU IFU BXU U U IFU BXU L2 L2 L2 L3 D Acknowledgments Rice Habanero Multicore

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Revisiting the Past 25 Years: Lessons for the Future. Guri Sohi University of Wisconsin-Madison

Revisiting the Past 25 Years: Lessons for the Future. Guri Sohi University of Wisconsin-Madison Revisiting the Past 25 Years: Lessons for the Future Guri Sohi University of Wisconsin-Madison Outline VLIW OOO Superscalar Enhancing Superscalar And the future 2 Beyond pipelining to ILP Late 1980s to

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming https://wiki.rice.edu/confluence/display/parprog/comp322 Lecture 27: Java Threads Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu

More information

Accelerating Financial Applications on the GPU

Accelerating Financial Applications on the GPU Accelerating Financial Applications on the GPU Scott Grauer-Gray Robert Searles William Killian John Cavazos Department of Computer and Information Science University of Delaware Sixth Workshop on General

More information

Shared-memory Parallel Programming with Cilk Plus

Shared-memory Parallel Programming with Cilk Plus Shared-memory Parallel Programming with Cilk Plus John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 4 30 August 2018 Outline for Today Threaded programming

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework and numa control Examples

More information

Java Performance Analysis for Scientific Computing

Java Performance Analysis for Scientific Computing Java Performance Analysis for Scientific Computing Roldan Pozo Leader, Mathematical Software Group National Institute of Standards and Technology USA UKHEC: Java for High End Computing Nov. 20th, 2000

More information

Dynamic Task Parallelism with a GPU Work-Stealing Runtime System

Dynamic Task Parallelism with a GPU Work-Stealing Runtime System Dynamic Task Parallelism with a GPU Work-Stealing Runtime System Sanjay Chatterjee, Max Grossman, Alina Sbîrlea, and Vivek Sarkar Department of Computer Science Rice University Background As parallel programming

More information

Lecture 32: Volatile variables, Java memory model

Lecture 32: Volatile variables, Java memory model COMP 322: Fundamentals of Parallel Programming Lecture 32: Volatile variables, Java memory model Vivek Sarkar Department of Computer Science, Rice University vsarkar@rice.edu https://wiki.rice.edu/confluence/display/parprog/comp322

More information

Comparison and analysis of parallel tasking performance for an irregular application

Comparison and analysis of parallel tasking performance for an irregular application Comparison and analysis of parallel tasking performance for an irregular application Patrick Atkinson, University of Bristol (p.atkinson@bristol.ac.uk) Simon McIntosh-Smith, University of Bristol Motivation

More information

ParalleX. A Cure for Scaling Impaired Parallel Applications. Hartmut Kaiser

ParalleX. A Cure for Scaling Impaired Parallel Applications. Hartmut Kaiser ParalleX A Cure for Scaling Impaired Parallel Applications Hartmut Kaiser (hkaiser@cct.lsu.edu) 2 Tianhe-1A 2.566 Petaflops Rmax Heterogeneous Architecture: 14,336 Intel Xeon CPUs 7,168 Nvidia Tesla M2050

More information

Merge Sort Quicksort 9 Abstract Windowing Toolkit & Swing Abstract Windowing Toolkit (AWT) vs. Swing AWT GUI Components Layout Managers Swing GUI

Merge Sort Quicksort 9 Abstract Windowing Toolkit & Swing Abstract Windowing Toolkit (AWT) vs. Swing AWT GUI Components Layout Managers Swing GUI COURSE TITLE :Introduction to Programming 2 COURSE PREREQUISITE :Introduction to Programming 1 COURSE DURATION :16 weeks (3 hours/week) COURSE METHODOLOGY:Combination of lecture and laboratory exercises

More information

Delegated Isolation. Jisheng Zhao. Rice University. Rice University

Delegated Isolation. Jisheng Zhao. Rice University. Rice University Delegated Isolation Roberto Lublinerman Pennsylvania State University rluble@psu.edu Swarat Chaudhuri Rice University swarat@rice.edu Jisheng Zhao Rice University jisheng.zhao@rice.edu Vivek Sarkar Rice

More information

On the cost of managing data flow dependencies

On the cost of managing data flow dependencies On the cost of managing data flow dependencies - program scheduled by work stealing - Thierry Gautier, INRIA, EPI MOAIS, Grenoble France Workshop INRIA/UIUC/NCSA Outline Context - introduction of work

More information

Computer Architecture: Multithreading (I) Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Multithreading (I) Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Multithreading (I) Prof. Onur Mutlu Carnegie Mellon University A Note on This Lecture These slides are partly from 18-742 Fall 2012, Parallel Computer Architecture, Lecture 9: Multithreading

More information

Chap. 6 Part 3. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1

Chap. 6 Part 3. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1 Chap. 6 Part 3 CIS*3090 Fall 2016 Fall 2016 CIS*3090 Parallel Programming 1 OpenMP popular for decade Compiler-based technique Start with plain old C, C++, or Fortran Insert #pragmas into source file You

More information

Jackson Marusarz Intel Corporation

Jackson Marusarz Intel Corporation Jackson Marusarz Intel Corporation Intel VTune Amplifier Quick Introduction Get the Data You Need Hotspot (Statistical call tree), Call counts (Statistical) Thread Profiling Concurrency and Lock & Waits

More information

Hierarchical DAG Scheduling for Hybrid Distributed Systems

Hierarchical DAG Scheduling for Hybrid Distributed Systems June 16, 2015 Hierarchical DAG Scheduling for Hybrid Distributed Systems Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, Jack Dongarra IPDPS 2015 Outline! Introduction & Motivation! Hierarchical

More information

Practical Concurrency. Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Practical Concurrency. Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. Practical Concurrency Agenda Motivation Java Memory Model Basics Common Bug Patterns JDK Concurrency Utilities Patterns of Concurrent Processing Testing Concurrent Applications Concurrency in Java 7 2

More information

GPU Sparse Graph Traversal

GPU Sparse Graph Traversal GPU Sparse Graph Traversal Duane Merrill (NVIDIA) Michael Garland (NVIDIA) Andrew Grimshaw (Univ. of Virginia) UNIVERSITY of VIRGINIA Breadth-first search (BFS) 1. Pick a source node 2. Rank every vertex

More information

Multi-core Implementations of the Concurrent Collections Programming Model

Multi-core Implementations of the Concurrent Collections Programming Model Multi-core Implementations of the Concurrent Collections Programming Model Zoran Budimlić, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek Sarkar, and Leo Treggiari Department of Computer

More information

Mutex Locking versus Hardware Transactional Memory: An Experimental Evaluation

Mutex Locking versus Hardware Transactional Memory: An Experimental Evaluation Mutex Locking versus Hardware Transactional Memory: An Experimental Evaluation Thesis Defense Master of Science Sean Moore Advisor: Binoy Ravindran Systems Software Research Group Virginia Tech Multiprocessing

More information

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Java: concurrency Outline Java threads thread implementation sleep, interrupt, and join threads that return values Thread synchronization

More information

CSC630/COS781: Parallel & Distributed Computing

CSC630/COS781: Parallel & Distributed Computing CSC630/COS781: Parallel & Distributed Computing Algorithm Design Chapter 3 (3.1-3.3) 1 Contents Preliminaries of parallel algorithm design Decomposition Task dependency Task dependency graph Granularity

More information

Concurrent Preliminaries

Concurrent Preliminaries Concurrent Preliminaries Sagi Katorza Tel Aviv University 09/12/2014 1 Outline Hardware infrastructure Hardware primitives Mutual exclusion Work sharing and termination detection Concurrent data structures

More information

Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API

Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API EuroPAR 2016 ROME Workshop Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API Suyang Zhu 1, Sunita Chandrasekaran 2, Peng Sun 1, Barbara Chapman 1, Marcus Winter 3,

More information

c 2015 by Adam R. Smith. All rights reserved.

c 2015 by Adam R. Smith. All rights reserved. c 2015 by Adam R. Smith. All rights reserved. THE PARALLEL INTERMEDIATE LANGUAGE BY ADAM RANDALL SMITH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Optimizing Irregular Adaptive Applications on Multi-threaded Processors: The Case of Medium-Grain Parallel Delaunay Mesh Generation

Optimizing Irregular Adaptive Applications on Multi-threaded Processors: The Case of Medium-Grain Parallel Delaunay Mesh Generation Optimizing Irregular Adaptive Applications on Multi-threaded rocessors: The Case of Medium-Grain arallel Delaunay Mesh Generation Filip Blagojević The College of William & Mary CSci 710 Master s roject

More information

Call Paths for Pin Tools

Call Paths for Pin Tools , Xu Liu, and John Mellor-Crummey Department of Computer Science Rice University CGO'14, Orlando, FL February 17, 2014 What is a Call Path? main() A() B() Foo() { x = *ptr;} Chain of function calls that

More information

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc.

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc. HPC Runtime Software Rishi Khan SC 11 Current Programming Models Shared Memory Multiprocessing OpenMP fork/join model Pthreads Arbitrary SMP parallelism (but hard to program/ debug) Cilk Work Stealing

More information

LLVM-based Communication Optimizations for PGAS Programs

LLVM-based Communication Optimizations for PGAS Programs LLVM-based Communication Optimizations for PGAS Programs nd Workshop on the LLVM Compiler Infrastructure in HPC @ SC15 Akihiro Hayashi (Rice University) Jisheng Zhao (Rice University) Michael Ferguson

More information

COMP 322: Fundamentals of Parallel Programming Module 1: Parallelism

COMP 322: Fundamentals of Parallel Programming Module 1: Parallelism c 2017 by Vivek Sarkar February 14, 2017 DRAFT VERSION Contents 0 Course Organization 3 1 Task-level Parallelism 3 1.1 Task Creation and Termination (Async, Finish).......................... 3 1.2 Computation

More information

Lecture Topics. Announcements. Today: Advanced Scheduling (Stallings, chapter ) Next: Deadlock (Stallings, chapter

Lecture Topics. Announcements. Today: Advanced Scheduling (Stallings, chapter ) Next: Deadlock (Stallings, chapter Lecture Topics Today: Advanced Scheduling (Stallings, chapter 10.1-10.4) Next: Deadlock (Stallings, chapter 6.1-6.6) 1 Announcements Exam #2 returned today Self-Study Exercise #10 Project #8 (due 11/16)

More information

Designing Parallel Programs. This review was developed from Introduction to Parallel Computing

Designing Parallel Programs. This review was developed from Introduction to Parallel Computing Designing Parallel Programs This review was developed from Introduction to Parallel Computing Author: Blaise Barney, Lawrence Livermore National Laboratory references: https://computing.llnl.gov/tutorials/parallel_comp/#whatis

More information

Architecture without explicit locks for logic simulation on SIMD machines

Architecture without explicit locks for logic simulation on SIMD machines Architecture without explicit locks for logic on machines M. Chimeh Department of Computer Science University of Glasgow UKMAC, 2016 Contents 1 2 3 4 5 6 The Using models to replicate the behaviour of

More information

Annotatable Systrace: An Extended Linux ftrace for Tracing a Parallelized Program

Annotatable Systrace: An Extended Linux ftrace for Tracing a Parallelized Program Annotatable Systrace: An Extended Linux ftrace for Tracing a Parallelized Program Daichi Fukui Mamoru Shimaoka Hiroki Mikami Dominic Hillenbrand Hideo Yamamoto Keiji Kimura Hironori Kasahara Waseda University,

More information

Module 20: Multi-core Computing Multi-processor Scheduling Lecture 39: Multi-processor Scheduling. The Lecture Contains: User Control.

Module 20: Multi-core Computing Multi-processor Scheduling Lecture 39: Multi-processor Scheduling. The Lecture Contains: User Control. The Lecture Contains: User Control Reliability Requirements of RT Multi-processor Scheduling Introduction Issues With Multi-processor Computations Granularity Fine Grain Parallelism Design Issues A Possible

More information

A Scalable Lock Manager for Multicores

A Scalable Lock Manager for Multicores A Scalable Lock Manager for Multicores Hyungsoo Jung Hyuck Han Alan Fekete NICTA Samsung Electronics University of Sydney Gernot Heiser NICTA Heon Y. Yeom Seoul National University @University of Sydney

More information

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction : A Distributed Shared Memory System Based on Multiple Java Virtual Machines X. Chen and V.H. Allan Computer Science Department, Utah State University 1998 : Introduction Built on concurrency supported

More information

QR Decomposition on GPUs

QR Decomposition on GPUs QR Decomposition QR Algorithms Block Householder QR Andrew Kerr* 1 Dan Campbell 1 Mark Richards 2 1 Georgia Tech Research Institute 2 School of Electrical and Computer Engineering Georgia Institute of

More information

Software transactional memory

Software transactional memory Transactional locking II (Dice et. al, DISC'06) Time-based STM (Felber et. al, TPDS'08) Mentor: Johannes Schneider March 16 th, 2011 Motivation Multiprocessor systems Speed up time-sharing applications

More information

Java Concurrency. Towards a better life By - -

Java Concurrency. Towards a better life By - - Java Concurrency Towards a better life By - Srinivasan.raghavan@oracle.com - Vaibhav.x.choudhary@oracle.com Java Releases J2SE 6: - Collection Framework enhancement -Drag and Drop -Improve IO support J2SE

More information

CSE 260 Lecture 19. Parallel Programming Languages

CSE 260 Lecture 19. Parallel Programming Languages CSE 260 Lecture 19 Parallel Programming Languages Announcements Thursday s office hours are cancelled Office hours on Weds 2p to 4pm Jing will hold OH, too, see Moodle Scott B. Baden /CSE 260/ Winter 2014

More information

Performance of Multicore LUP Decomposition

Performance of Multicore LUP Decomposition Performance of Multicore LUP Decomposition Nathan Beckmann Silas Boyd-Wickizer May 3, 00 ABSTRACT This paper evaluates the performance of four parallel LUP decomposition implementations. The implementations

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

JS Event Loop, Promises, Async Await etc. Slava Kim

JS Event Loop, Promises, Async Await etc. Slava Kim JS Event Loop, Promises, Async Await etc Slava Kim Synchronous Happens consecutively, one after another Asynchronous Happens later at some point in time Parallelism vs Concurrency What are those????

More information

Compiler-Directed Memory Hierarchy Design for Low-Energy Embedded Systems

Compiler-Directed Memory Hierarchy Design for Low-Energy Embedded Systems Compiler-Directed Memory Hierarchy Design for Low-Energy Embedded Systems Florin Balasa American University in Cairo Noha Abuaesh American University in Cairo Ilie I. Luican Microsoft Inc., USA Cristian

More information

Do we need dataflow programming?

Do we need dataflow programming? Do we need dataflow programming? Anthony Danalis Innovative Computing Laboratory University of Tennessee CCDSC 16, Chateau des Contes Programming vs Execution ü Dataflow based execution ü Think ILP, Out

More information

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation Why are threads useful? How does one use POSIX pthreads? Michael Swift 1 2 What s in a process? Organizing a Process A process

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

Chapter 4: Threads. Chapter 4: Threads. Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues

Chapter 4: Threads. Chapter 4: Threads. Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues 4.2 Silberschatz, Galvin

More information

Ingo Brenckmann Jochen Kirsten Storage Technology Strategists SAS EMEA Copyright 2003, SAS Institute Inc. All rights reserved.

Ingo Brenckmann Jochen Kirsten Storage Technology Strategists SAS EMEA Copyright 2003, SAS Institute Inc. All rights reserved. Intelligent Storage Results from real life testing Ingo Brenckmann Jochen Kirsten Storage Technology Strategists SAS EMEA SAS Intelligent Storage components! OLAP Server! Scalable Performance Data Server!

More information

A Data-flow Approach to Solving the von Neumann Bottlenecks

A Data-flow Approach to Solving the von Neumann Bottlenecks 1 A Data-flow Approach to Solving the von Neumann Bottlenecks Antoniu Pop Inria and École normale supérieure, Paris St. Goar, June 21, 2013 2 Problem Statement J. Preshing. A Look Back at Single-Threaded

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Synchronization 3 Automatic Parallelization and OpenMP 4 GPGPU 5 Q& A 2 Multithreaded

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming! Lecture 1: The What and Why of Parallel Programming; Task Creation & Termination (async, finish) Vivek Sarkar Department of Computer Science, Rice University

More information

MULTI-THREADED QUERIES

MULTI-THREADED QUERIES 15-721 Project 3 Final Presentation MULTI-THREADED QUERIES Wendong Li (wendongl) Lu Zhang (lzhang3) Rui Wang (ruiw1) Project Objective Intra-operator parallelism Use multiple threads in a single executor

More information

JCudaMP: OpenMP/Java on CUDA

JCudaMP: OpenMP/Java on CUDA JCudaMP: OpenMP/Java on CUDA Georg Dotzler, Ronald Veldema, Michael Klemm Programming Systems Group Martensstraße 3 91058 Erlangen Motivation Write once, run anywhere - Java Slogan created by Sun Microsystems

More information

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization Exploiting Task-Parallelism on Clusters via Adrián Castelló, Rafael Mayo, Judit Planas, Enrique S. Quintana-Ortí RePara 2015, August Helsinki, Finland Exploiting Task-Parallelism on Clusters via Power/energy/utilization

More information

ECE519 Advanced Operating Systems

ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (10 th Week) (Advanced) Operating Systems 10. Multiprocessor, Multicore and Real-Time Scheduling 10. Outline Multiprocessor

More information

David R. Mackay, Ph.D. Libraries play an important role in threading software to run faster on Intel multi-core platforms.

David R. Mackay, Ph.D. Libraries play an important role in threading software to run faster on Intel multi-core platforms. Whitepaper Introduction A Library Based Approach to Threading for Performance David R. Mackay, Ph.D. Libraries play an important role in threading software to run faster on Intel multi-core platforms.

More information

Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications

Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, Nathan Clark Motivation Hardware Trends Put more cores

More information

Data-triggered Multithreading for Near-Data Processing

Data-triggered Multithreading for Near-Data Processing Data-triggered Multithreading for Near-Data Processing Hung-Wei Tseng and Dean M. Tullsen Department of Computer Science and Engineering University of California, San Diego La Jolla, CA, U.S.A. Abstract

More information

Disruptor Using High Performance, Low Latency Technology in the CERN Control System

Disruptor Using High Performance, Low Latency Technology in the CERN Control System Disruptor Using High Performance, Low Latency Technology in the CERN Control System ICALEPCS 2015 21/10/2015 2 The problem at hand 21/10/2015 WEB3O03 3 The problem at hand CESAR is used to control the

More information

Day 6: Optimization on Parallel Intel Architectures

Day 6: Optimization on Parallel Intel Architectures Day 6: Optimization on Parallel Intel Architectures Lecture day 6 Ryo Asai Colfax International colfaxresearch.com April 2017 colfaxresearch.com/ Welcome Colfax International, 2013 2017 Disclaimer 2 While

More information