Synchronous Formal Design of Cyber-Physical Systems

Size: px
Start display at page:

Download "Synchronous Formal Design of Cyber-Physical Systems"

Transcription

1 1 Context Synchronous Formal Design of Cyber-Physical Systems The project conducted by Centre de recherche de l ECE Paris (axis Systèmes Intelligent et Communiquants) in collaboration with other institutions is around the design, development and verification of cyber-physical technologies to improve their safety, robustness and resilience. The teams involved in the project, tackle research topics going from embedded distributed systems, and knowledge/learning-based applications, to software-engineering and real-time in system design and networking. This proposal is around system and software design orientations of the project, and more specifically about synchronous design approaches for embedded software. In section 2, we outline cyber-physical systems and their design challenges. In Section 3, we briefly introduce synchronous languages. In Section 4, we provide an overview about the development plan of a synchronous contract-based language for software design in safety-critical systems like ITS (Intelligent Transportation Systems). In Section 5, we provide the internship motivations, the research plan, and the required skills of candidates. 2 Cyber-physical systems A cyber-physical system (CPSs) is a mechanism that is controlled or monitored by computer-based algorithms, tightly integrated with the Internet and its users. In CPSs, physical and software components are deeply intertwined, each operating on different spatial and temporal scales, exhibiting multiple and distinct behavioral modalities, and interacting with each other in a myriad of ways that change with context. Examples of CPSs include smart grid, autonomous automobile systems, medical monitoring, process control systems, robotics systems, and automatic pilot avionics, etc [10]. The synchronous reactive design approaches are widely adopted in the industry and can be definitely used for the software design of CPSs. System inputs Synchronous output production within the clock cycle j Node (Fun) outputs Values at cycles i<j Network layer (asynchronous) Other nodes sensors Physical environment actuators Figure 1: System model. 3 Synchronous languages Synchronous languages [7, 9] were introduced in the 80s for the purpose of designing reliable safety critical reactive systems (like railway modern systems). Their semantics are based on formal models that describe unambiguously their behaviors, and represent a rigorous basis for their verification and validation. In particular, they mainly respond to the following issues [8]: 1) Formal specifications: these specifications are used to priorly reason about system behaviors. They are highly recommended to ensure safe and reliable development of a system by formally demonstrating the functional correctness of its behavior in all Centre de recherche de l ECE Paris Page 1

2 possible circumstances; 2) Temporal determinism and concurrency: these paradigms address specification and prediction of real-time constraints of a system whose behavior can induce concurrency and parallelism; 3) Hierarchical structuring: a system is generally organized in a hierarchy of composable and encapsulating components; 4) Code generation: automatic code generation from formally proven high level specifications is an efficient solution to avoid manual programming and debugging tasks, tedious and error-prone. 3.1 Synchronous hypothesis A system consists of one or more nodes interacting via an arbitrary network (wired or wireless). Each node is an independent computing entity that handles hardware (processor (CPU), memory, etc) and runs some behavioral tasks. The basic assumption of synchronous languages is based on the following hypothesis: At the moment of an input event, a system node reacts fast enough to produce the output event before the next input event [8]. Based on such hypothesis, the execution of a system node is split into cyclic successive non-overlapping synchronized reactions. A reaction is typically a response after the receipt of some input data streams which are 1) the physical environment sensor data, 2) asynchronous outputs of the other system nodes received asynchronously from network and/or 3) the system outputs at the previous cycles. Figure 1 depicts a simple view about the synchronous approach of system design. 3.2 Execution traces A system node may have two type of execution traces: asynchronous and synchronous. Given two observable events of the node, in the former configuration, the arrival order of inputs and/or the computation time of outputs of the two events may be different, which lead to the temporal nondeterminism of reactions. In a synchronous configuration, by considering a uniform execution time τ of reactions (clock cycle) e.g., by reading inputs at a logic moment [nτ, (n + 1)τ[ where n is the number of time cycles since the beginning of the execution trace, the reaction occurs within the same moment. The functional properties of the node behavior and its interaction with the environment at the semantic and timing levels can therefore be safely addressed. However, as soon as the system design is guaranteed to be correct using the synchronous model, a posterior implementation phase is necessary to validate that the synchronous hypothesis is fully satisfied on a real hardware execution platform. This validation typically consists in proving that the considered target platform enables sufficient execution performances to ensure that reactions meet deadlines. 3.3 Cyclic off-line scheduling Off-line scheduling, used usually in background of cyclic executive synchronous approaches of design, builds statically a complete planning of the system node tasks by fixing all the timing parameters before execution. It has the following characteristics: deterministic and predictable; it ensures run-time low overhead and algorithmic complexity independence; it can be implemented efficiently; it does not require real-time operating systems; it used as background of many synchronous languages: Esterel, Lustre, Signal, Scade, etc. The cyclic scheduling (or synchronous scenario) is off-line with the following features: each system node is executed as a collection of periodic non-preemptive tasks τ 1,..., τ n ; it is stored in a table of time slots; aperiodic unpredictable environment events can be executed during free slots ans should be handled within the functional description of the system nominal behavior. Centre de recherche de l ECE Paris Page 2

3 4 SNACCC language SNACCC (SyNchronous Abstract Contractual Connected Components) is intended to be a formal language expected to model and reuse synchronous parameterizable software components on shelves. It is mainly intended to specify and verify the software layer of reactive safety-critical systems. A SNACCC component is unit of a third-party composition with 1) environment interface dependencies which are input and output data streams describing resp. its required and provided data, and 2) a set of fixed parameters. These parameters are used for generic design purposes i.e., systems in such approaches are designed in terms of generic parameters to be specified later for specific deployment environments. It is also a unit of a third party encapsulation within composite components themselves defined based on subcomponents. The language cadence components by logical clocks, and some data streams can be assigned to others computed at previous cycles. It also allows the explicit specifications of timing predictions. Timing constraints i 1 i n Precondition p 1 p k Component Abstract/Concrete Behavior o 1 Post-conditions o m Figure 2: Contractual specification of a SNACCC component: {i 1,..., i n }, {p 1,..., p k }, and {o 1,..., o m } are resp. input, parameters and outputs. In addition, a SNACCC component is mainly described by an abstract contractual specification supposed to reflect the necessary sufficient of its behavior without disclosing implementation details. Many results exist around the notion of Design-by-Contracts and inherit from different perspectives. Recently in 2015, a unified vision of this research topic was proposed in [6, 5]. The SNACCC language is intended to be based on these recent works. We distinguish two types of components: atomic and composite. Atomic components represent the leaf level of encapsulation and specified by primitive contracts. A primitive contract consists of a precondition on inputs and parameters, a behavioral specification and postconditions defined on inputs, outputs and parameters. The behavioral specification of an atomic component begins abstract and is refined gradually by many top-down concrete ones. These contractual elements of components can be translated to predicates of the propositional and/or first order logic. Composite components represent intermediate levels of encapsulation and specified by composite contracts. These contracts are defined exactly like primitive ones except that their specifications are defined by compositional logic patterns. Under these paradigms, contracts are double-edged, they would be useful for verification purposes by reflecting the necessary sufficient of components behaviors i.e., components are plugged as light-weight units of reuse in the formal model of verification without including implementation details; implementation/code generation purposes by allowing contract refinement and substitutions on the different components separately. Figure 2 shows the contractual structure of a SNACCC component described above. For sake of originality, we aim to combine both end-system functional and timing specifications with network analysis of data exchange determinism in SNACCC. This will allow software engineering and networking research communities to collaborate together within the same reasoning and development framework. The idea is to integrate in SNACCC a formal method to reason on the network as a separate component. This component must be able to model the network in terms of mathematical objects in order to guarantee a safe communication between the software endpoints (embedded in the different remote subsystems). For example, one of the objectives is to predict the data transmission time (depending on their Centre de recherche de l ECE Paris Page 3

4 size, network characteristics such as bandwidth and others, etc.) and analyze its impacts on the real-time performance of the system. All the elements that can be traced useful for the application from the network can be integrated in this component. 5 Motivations and R&D plan The main motivation behind SNACCC is to provide innovative solutions for the development of high integrity safety critical (HISC) CPSs. HISC industrial community build systems by using common synchronous component-based approaches. They are still checking safety on components separately by using 1) posterior formal proof, 2) prior incremental formal design, 3) or classic testing. Besides, the use of formal methods, during or after design without a smart complexity distribution throughout the whole development cycle, is heavy in general, and model-checkers or proof assistants are not scalable to support large industrial applications. In turn, integrity and interoperability are usually verified by testing directly source codes after the implementation phase, which is insufficient and sometimes even inefficient compared to the complexity of contemporary complex HISC industrial projects. Many contemporary standards [2, 1, 3] governing these systems recommend using component-based approaches and formal methods to build them, while providing real reliable solutions to the problems mentioned above. In this context, the proof engine of SNACCC is expected to be based on SMT [4] solvers enriched by inductive proof strategies, and to allow the following features: Contracts consistency verification face to their pre/postconditions and timing predictions; Automatic inference of composite contracts; Contracts substitutability and refinement; Functional specification of networking asynchronous data exchange between the system nodes and the verification of their impact on the system; Compliance of networking specifications with the timing predictions of the system. The Ph.D. project The work may be conducted by following the steps below: 1) state of the art around synchronous, reactive and real-time systems, their design and verification formal methods, and their design and implementation platforms (like SCADE Suite for Esterel); 2) state of the art around contract-based design approaches and tools; 3) theoretical study of contracts consistency, composition and refinement at the diffrent levels of design (functional semantics, timing, etc); 4) inclusion of new design paradigms related to networking part by investigating and understating the network communication characteristics (synchronous, asynchronous, determinism, random, delaytolerant, etc) and limits; 5) in parallel with steps 3) and 4), specification of the logical foundations of the syntax and semantics of SNACCC and the (alpha version) implementation of the syntactic, type-checking and semantic analyzers of the language. 6) design of the proof engine (using SMT-based inductive based startegies); 7) application to relevant case studies, and prototyping on real embedded platforms. Centre de recherche de l ECE Paris Page 4

5 Desired skills and experience Minimum qualifications: Master s degree candidate or engineer in computer sciences; Additional knowledge topics: formal methods and computer science theory, synchronous, reactive and real-time systems, networking, knowledge around automotive and/or railway systems standards is recommended but not required; Programming languages: OCaml, Ada, C, and Python for scripting; Proven written and verbal communication skills. Contact: Sebti Mouelhi (sebti.mouelhi@ece.fr) Centre de recherche de l ECE Paris Page 5

6 References [1] CENELEC EN 50128, Railway applications Communications, signalling and processing systems Software for railway control and protection systems. Technical report, 2001 (rev. 2011). [2] ISO :2012, Road vehicles Functional safety [3] DO-178C, Software Considerations in Airborne Systems and Equipment Certification, RTSA [4] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5. Technical report, Department of Computer Science, The University of Iowa, Available at [5] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. Sangiovanni- Vincentelli, W. Damm, T. Henzinger, and K. Larsen. Contracts for Systems Design: Methodology and Application cases. Research Report RR-8760, Inria Rennes Bretagne Atlantique ; INRIA, July [6] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. Sangiovanni- Vincentelli, W. Damm, T. Henzinger, and K. Larsen. Contracts for Systems Design: Theory. Research Report RR-8759, Inria Rennes Bretagne Atlantique ; INRIA, July [7] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. D. de Simone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64 83, Jan [8] A. Gamati. Designing Embedded Systems with the SIGNAL Programming Language: Synchronous, Reactive Specification. Springer Publishing Company, Incorporated, 1st edition, [9] N. Halbwachs. Synchronous Programming of Reactive Systems. Springer-Verlag, Berlin, Heidelberg, [10] S. K. Khaitan and J. D. McCalley. Design techniques and applications of cyberphysical systems: A survey. IEEE Systems Journal, 9(2): , June [11] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml system release Technical report, Institut National de Recherche en Informatique et en Automatique (INRIA), Available at Centre de recherche de l ECE Paris Page 6

Distributed Systems Programming (F21DS1) Formal Verification

Distributed Systems Programming (F21DS1) Formal Verification Distributed Systems Programming (F21DS1) Formal Verification Andrew Ireland Department of Computer Science School of Mathematical and Computer Sciences Heriot-Watt University Edinburgh Overview Focus on

More information

Formal Foundations of Software Engineering

Formal Foundations of Software Engineering Formal Foundations of Software Engineering http://d3s.mff.cuni.cz Martin Nečaský Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Goals of the course Show methods and tools

More information

Embedded Software Engineering

Embedded Software Engineering Embedded Software Engineering 3 Unit Course, Spring 2002 EECS Department, UC Berkeley Christoph Kirsch www.eecs.berkeley.edu/~fresco/giotto/course-2002 It s significant $4 billion development effort >

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University dissertation Author: Gouw, Stijn de Title: Combining monitoring with run-time assertion checking Issue

More information

UML Profile for MARTE: Time Model and CCSL

UML Profile for MARTE: Time Model and CCSL UML Profile for MARTE: Time Model and CCSL Frédéric Mallet 1 Université Nice Sophia Antipolis, Aoste team INRIA/I3S, Sophia Antipolis, France Frederic.Mallet@unice.fr Abstract. This 90 minutes tutorial

More information

Simulink/Stateflow. June 2008

Simulink/Stateflow. June 2008 Simulink/Stateflow Paul Caspi http://www-verimag.imag.fr/ Pieter Mosterman http://www.mathworks.com/ June 2008 1 Introduction Probably, the early designers of Simulink in the late eighties would have been

More information

Synchronous Specification

Synchronous Specification Translation Validation for Synchronous Specification in the Signal Compiler Van-Chan Ngo Jean-Pierre Talpin Thierry Gautier INRIA Rennes, France FORTE 2015 Construct a modular translation validationbased

More information

SCADE S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R

SCADE S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R SCADE 1 S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R What is SCADE? Introduction 2 Software Critical Application Development Environment, a Lustrebased IDE

More information

By: Chaitanya Settaluri Devendra Kalia

By: Chaitanya Settaluri Devendra Kalia By: Chaitanya Settaluri Devendra Kalia What is an embedded system? An embedded system Uses a controller to perform some function Is not perceived as a computer Software is used for features and flexibility

More information

Lecture 11 Lecture 11 Nov 5, 2014

Lecture 11 Lecture 11 Nov 5, 2014 Formal Verification/Methods Lecture 11 Lecture 11 Nov 5, 2014 Formal Verification Formal verification relies on Descriptions of the properties or requirements Descriptions of systems to be analyzed, and

More information

Semantics-Based Integration of Embedded Systems Models

Semantics-Based Integration of Embedded Systems Models Semantics-Based Integration of Embedded Systems Models Project András Balogh, OptixWare Research & Development Ltd. n 100021 Outline Embedded systems overview Overview of the GENESYS-INDEXYS approach Current

More information

Modal Logic: Implications for Design of a Language for Distributed Computation p.1/53

Modal Logic: Implications for Design of a Language for Distributed Computation p.1/53 Modal Logic: Implications for Design of a Language for Distributed Computation Jonathan Moody (with Frank Pfenning) Department of Computer Science Carnegie Mellon University Modal Logic: Implications for

More information

Tools for Formally Reasoning about Systems. June Prepared by Lucas Wagner

Tools for Formally Reasoning about Systems. June Prepared by Lucas Wagner Tools for Formally Reasoning about Systems June 9 2015 Prepared by Lucas Wagner 2015 Rockwell 2015 Collins. Rockwell All Collins. rights reserved. All rights reserved. Complex systems are getting more

More information

Certification Authorities Software Team (CAST) Position Paper CAST-25

Certification Authorities Software Team (CAST) Position Paper CAST-25 Certification Authorities Software Team (CAST) Position Paper CAST-25 CONSIDERATIONS WHEN USING A QUALIFIABLE DEVELOPMENT ENVIRONMENT (QDE) IN CERTIFICATION PROJECTS COMPLETED SEPTEMBER 2005 (Rev 0) NOTE:

More information

Introduction to Formal Methods

Introduction to Formal Methods 2008 Spring Software Special Development 1 Introduction to Formal Methods Part I : Formal Specification i JUNBEOM YOO jbyoo@knokuk.ac.kr Reference AS Specifier s Introduction to Formal lmethods Jeannette

More information

Programming Languages for Real-Time Systems. LS 12, TU Dortmund

Programming Languages for Real-Time Systems. LS 12, TU Dortmund Programming Languages for Real-Time Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 20 June 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 41 References Slides are based on Prof. Wang Yi, Prof.

More information

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems 13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems Florian Hölzl and Martin Feilkas Institut für Informatik Technische Universität

More information

A Tabular Expression Toolbox for Matlab/Simulink

A Tabular Expression Toolbox for Matlab/Simulink A Tabular Expression Toolbox for Matlab/Simulink Colin Eles and Mark Lawford McMaster Centre for Software Certification McMaster University, Hamilton, Ontario, Canada L8S 4K1 {elesc,lawford}@mcmaster.ca

More information

CS 565: Programming Languages. Spring 2008 Tu, Th: 16:30-17:45 Room LWSN 1106

CS 565: Programming Languages. Spring 2008 Tu, Th: 16:30-17:45 Room LWSN 1106 CS 565: Programming Languages Spring 2008 Tu, Th: 16:30-17:45 Room LWSN 1106 Administrivia Who am I? Course web page http://www.cs.purdue.edu/homes/peugster/cs565spring08/ Office hours By appointment Main

More information

Transforming Cyber-Physical System Models

Transforming Cyber-Physical System Models Transforming Cyber-Physical System Models Nathan Jarus Ph.D. Candidate Department of Electrical and Computer Engineering Advisors: Dr. Sahra Sedigh Sarvestani and Dr. Ali Hurson ISC Graduate Research Symposium

More information

Programming Embedded Systems

Programming Embedded Systems Programming Embedded Systems Lecture 10 An introduction to Lustre Wednesday Feb 15, 2012 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/34 Course topic: programming lang. Which language to

More information

Advanced Tool Architectures. Edited and Presented by Edward A. Lee, Co-PI UC Berkeley. Tool Projects. Chess Review May 10, 2004 Berkeley, CA

Advanced Tool Architectures. Edited and Presented by Edward A. Lee, Co-PI UC Berkeley. Tool Projects. Chess Review May 10, 2004 Berkeley, CA Advanced Tool Architectures Edited and Presented by Edward A. Lee, Co-PI UC Berkeley Chess Review May 10, 2004 Berkeley, CA Tool Projects Concurrent model-based design Giotto (Henzinger) E machine & S

More information

Test and Evaluation of Autonomous Systems in a Model Based Engineering Context

Test and Evaluation of Autonomous Systems in a Model Based Engineering Context Test and Evaluation of Autonomous Systems in a Model Based Engineering Context Raytheon Michael Nolan USAF AFRL Aaron Fifarek Jonathan Hoffman 3 March 2016 Copyright 2016. Unpublished Work. Raytheon Company.

More information

An Encapsulated Communication System for Integrated Architectures

An Encapsulated Communication System for Integrated Architectures An Encapsulated Communication System for Integrated Architectures Architectural Support for Temporal Composability Roman Obermaisser Overview Introduction Federated and Integrated Architectures DECOS Architecture

More information

Formal Verification for safety critical requirements From Unit-Test to HIL

Formal Verification for safety critical requirements From Unit-Test to HIL Formal Verification for safety critical requirements From Unit-Test to HIL Markus Gros Director Product Sales Europe & North America BTC Embedded Systems AG Berlin, Germany markus.gros@btc-es.de Hans Jürgen

More information

SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems

SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems Hassan Gomaa References: H. Gomaa, Chapters 1, 2, 3 - Real-Time Software Design for Embedded Systems, Cambridge University

More information

INTEGRATING SYSTEM AND SOFTWARE ENGINEERING FOR CERTIFIABLE AVIONICS APPLICATIONS

INTEGRATING SYSTEM AND SOFTWARE ENGINEERING FOR CERTIFIABLE AVIONICS APPLICATIONS INTEGRATING SYSTEM AND SOFTWARE ENGINEERING FOR CERTIFIABLE AVIONICS APPLICATIONS Thierry Le Sergent Mathieu Viala Alain Le Guennec Frédéric Roméas thierry.lesergent@esterel-technologies.com mathieu.viala@esterel-technologies.com

More information

Rule Formats for Nominal Modal Transition Systems

Rule Formats for Nominal Modal Transition Systems Rule Formats for Nominal Modal Transition Systems Anke Stüber Universitet Uppsala, Uppsala, Sweden anke.stuber@it.uu.se Abstract. Modal transition systems are specification languages that allow the expression

More information

A Multi-Modal Composability Framework for Cyber-Physical Systems

A Multi-Modal Composability Framework for Cyber-Physical Systems S5 Symposium June 12, 2012 A Multi-Modal Composability Framework for Cyber-Physical Systems Linh Thi Xuan Phan Insup Lee PRECISE Center University of Pennsylvania Avionics, Automotive Medical Devices Cyber-physical

More information

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis (abridged version of DAC slides) Sanjit A. Seshia Associate Professor EECS Department UC Berkeley Design Automation

More information

Flight Systems are Cyber-Physical Systems

Flight Systems are Cyber-Physical Systems Flight Systems are Cyber-Physical Systems Dr. Christopher Landauer Software Systems Analysis Department The Aerospace Corporation Computer Science Division / Software Engineering Subdivision 08 November

More information

Architectural Blueprint

Architectural Blueprint IMPORTANT NOTICE TO STUDENTS These slides are NOT to be used as a replacement for student notes. These slides are sometimes vague and incomplete on purpose to spark a class discussion Architectural Blueprint

More information

Java-MOP: A Monitoring Oriented Programming Environment for Java

Java-MOP: A Monitoring Oriented Programming Environment for Java Java-MOP: A Monitoring Oriented Programming Environment for Java Feng Chen and Grigore Roşu Department of Computer Science, University of Illinois at Urbana - Champaign, USA {fengchen, grosu}@uiuc.edu

More information

Reactive Types. Jean-Pierre Talpin. Campus de Beaulieu, Rennes, France.

Reactive Types. Jean-Pierre Talpin. Campus de Beaulieu, Rennes, France. Reactive Types Jean-Pierre Talpin IRISA (INRIA-Rennes & CNRS URA 227) Campus de Beaulieu, 35000 Rennes, France E-mail: talpin@irisa.fr Abstract. Synchronous languages, such as Signal, are best suited for

More information

FROM SYNCHRONOUS SPECIFICATIONS TO ASYNCHRONOUS DISTRIBUTED IMPLEMENTATIONS Technische Universitiit Miinchen Peter Scholz

FROM SYNCHRONOUS SPECIFICATIONS TO ASYNCHRONOUS DISTRIBUTED IMPLEMENTATIONS Technische Universitiit Miinchen Peter Scholz FROM SYNCHRONOUS SPECIFICATIONS TO ASYNCHRONOUS DISTRIBUTED IMPLEMENTATIONS Technische Universitiit Miinchen Peter Scholz In this contribution, we sketch a design process for reactive systems, specified

More information

Embedded software design with Polychrony

Embedded software design with Polychrony Embedded software design with Polychrony DATE 09 tutorial on Correct-by-Construction Embedded Software Synthesis: Formal Frameworks, Methodologies, and Tools Jean-Pierre Talpin, RIA List of contributors

More information

Investigation of System Timing Concerns in Embedded Systems: Tool-based Analysis of AADL Models

Investigation of System Timing Concerns in Embedded Systems: Tool-based Analysis of AADL Models Investigation of System Timing Concerns in Embedded Systems: Tool-based Analysis of AADL Models Peter Feiler Software Engineering Institute phf@sei.cmu.edu 412-268-7790 2004 by Carnegie Mellon University

More information

Q Body of techniques supported by. R precise mathematics. R powerful analysis tools. Q Rigorous, effective mechanisms for system.

Q Body of techniques supported by. R precise mathematics. R powerful analysis tools. Q Rigorous, effective mechanisms for system. Introduction to Formal Methods 1 Introduction to Formal Methods 2 Formal Specification Requirements specification R notational statement of system services Software specification R formal abstract depiction

More information

Compositionality in system design: interfaces everywhere! UC Berkeley

Compositionality in system design: interfaces everywhere! UC Berkeley Compositionality in system design: interfaces everywhere! Stavros Tripakis UC Berkeley DREAMS Seminar, Mar 2013 Computers as parts of cyber physical systems cyber-physical ~98% of the world s processors

More information

Agent-Oriented Software Engineering

Agent-Oriented Software Engineering Agent-Oriented Software Engineering Lin Zuoquan Information Science Department Peking University lz@is.pku.edu.cn http://www.is.pku.edu.cn/~lz/teaching/stm/saswws.html Outline Introduction AOSE Agent-oriented

More information

An Introduction to Lustre

An Introduction to Lustre An Introduction to Lustre Monday Oct 06, 2014 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/35 ES Programming languages Which language to write embedded software in? Traditional: low-level

More information

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Insup Lee 1, Oleg Sokolsky 1, Anna Philippou 2 1 RTG (Real-Time Systems Group) Department of

More information

Seminar Software Quality and Safety

Seminar Software Quality and Safety Seminar Software Quality and Safety SCADE a model-driven Software Development Environment by Dominik Protte Software Engineering Group Universität Paderborn Motivation Many safety-critical components in

More information

Principles of Real-Time Programming

Principles of Real-Time Programming Principles of Real-Time Programming Christoph M. Kirsch Department of Electrical Engineering and Computer Sciences University of California, Berkeley cm@eecs.berkeley.edu Abstract. Real-time programming

More information

Strong and Weak Contract Formalism for Third-Party Component Reuse

Strong and Weak Contract Formalism for Third-Party Component Reuse Strong and Weak Contract Formalism for Third-Party Component Reuse Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

More information

The Impact of SOA Policy-Based Computing on C2 Interoperation and Computing. R. Paul, W. T. Tsai, Jay Bayne

The Impact of SOA Policy-Based Computing on C2 Interoperation and Computing. R. Paul, W. T. Tsai, Jay Bayne The Impact of SOA Policy-Based Computing on C2 Interoperation and Computing R. Paul, W. T. Tsai, Jay Bayne 1 Table of Content Introduction Service-Oriented Computing Acceptance of SOA within DOD Policy-based

More information

From MDD back to basic: Building DRE systems

From MDD back to basic: Building DRE systems From MDD back to basic: Building DRE systems, ENST MDx in software engineering Models are everywhere in engineering, and now in software engineering MD[A, D, E] aims at easing the construction of systems

More information

What are Embedded Systems? Lecture 1 Introduction to Embedded Systems & Software

What are Embedded Systems? Lecture 1 Introduction to Embedded Systems & Software What are Embedded Systems? 1 Lecture 1 Introduction to Embedded Systems & Software Roopa Rangaswami October 9, 2002 Embedded systems are computer systems that monitor, respond to, or control an external

More information

Impact of Runtime Architectures on Control System Stability

Impact of Runtime Architectures on Control System Stability Impact of Runtime Architectures on Control System Stability P. Feiler, J. Hansson Software Engineering Institute, Pittsburgh, PA Abstract: Control systems are sensitive to the endto-end latency and age

More information

DEPARTMENT OF COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE Department of Computer Science 1 DEPARTMENT OF COMPUTER SCIENCE Office in Computer Science Building, Room 279 (970) 491-5792 cs.colostate.edu (http://www.cs.colostate.edu) Professor L. Darrell Whitley,

More information

An Introduction to ProofPower

An Introduction to ProofPower An Introduction to ProofPower Roger Bishop Jones Date: 2006/10/21 16:53:33 Abstract An introductory illustrated description of ProofPower (not progressed far enough to be useful). Contents http://www.rbjones.com/rbjpub/pp/doc/t015.pdf

More information

Model-based Analysis of Event-driven Distributed Real-time Embedded Systems

Model-based Analysis of Event-driven Distributed Real-time Embedded Systems Model-based Analysis of Event-driven Distributed Real-time Embedded Systems Gabor Madl Committee Chancellor s Professor Nikil Dutt (Chair) Professor Tony Givargis Professor Ian Harris University of California,

More information

Foundations of Data Warehouse Quality (DWQ)

Foundations of Data Warehouse Quality (DWQ) DWQ Foundations of Data Warehouse Quality (DWQ) v.1.1 Document Number: DWQ -- INRIA --002 Project Name: Foundations of Data Warehouse Quality (DWQ) Project Number: EP 22469 Title: Author: Workpackage:

More information

Modelling and verification of cyber-physical system

Modelling and verification of cyber-physical system Modelling and verification of cyber-physical system Michal Pluska, David Sinclair LERO @ DCU Dublin City University School of Computing Dublin 9, Ireland michal.pluska@computing.dcu.ie Abstract * Embedded

More information

Mike Whalen Program Director, UMSEC University of Minnesota

Mike Whalen Program Director, UMSEC University of Minnesota Formal Analysis for Communicating Medical Devices Mike Whalen Program Director, UMSEC University of Minnesota Research Topics Multi-Domain Analysis of System Architecture Models Compositional Assume-Guarantee

More information

Formal Verification. Lecture 10

Formal Verification. Lecture 10 Formal Verification Lecture 10 Formal Verification Formal verification relies on Descriptions of the properties or requirements of interest Descriptions of systems to be analyzed, and rely on underlying

More information

A GRAPHICAL TABULAR MODEL FOR RULE-BASED LOGIC PROGRAMMING AND VERIFICATION **

A GRAPHICAL TABULAR MODEL FOR RULE-BASED LOGIC PROGRAMMING AND VERIFICATION ** Formal design, Rule-based systems, Tabular-Trees Grzegorz J. NALEPA, Antoni LIGEZA A GRAPHICAL TABULAR MODEL FOR RULE-BASED LOGIC PROGRAMMING AND VERIFICATION ** New trends in development of databases

More information

Design Specification of Cyber-Physical Systems: Towards a Domain-Specific Modeling Language based on Simulink, Eclipse Modeling Framework, and Giotto

Design Specification of Cyber-Physical Systems: Towards a Domain-Specific Modeling Language based on Simulink, Eclipse Modeling Framework, and Giotto Design Specification of Cyber-Physical Systems: Towards a Domain-Specific Modeling Language based on Simulink, Eclipse Modeling Framework, and Giotto Muhammad Umer Tariq, Jacques Florence, and Marilyn

More information

MASP Chapter on Safety and Security

MASP Chapter on Safety and Security MASP Chapter on Safety and Security Daniel Watzenig Graz, Austria https://artemis.eu MASP Chapter on Safety & Security Daniel Watzenig daniel.watzenig@v2c2.at Francois Tuot francois.tuot@gemalto.com Antonio

More information

Scaling Up: The Validation of Empirically Derived Scheduling Rules on NVIDIA GPUs

Scaling Up: The Validation of Empirically Derived Scheduling Rules on NVIDIA GPUs Scaling Up: The Validation of Empirically Derived Scheduling Rules on NVIDIA GPUs Joshua Bakita Department of Computer Science, University of North Carolina at Chapel Hill 14th Annual Workshop on Operating

More information

Joint Entity Resolution

Joint Entity Resolution Joint Entity Resolution Steven Euijong Whang, Hector Garcia-Molina Computer Science Department, Stanford University 353 Serra Mall, Stanford, CA 94305, USA {swhang, hector}@cs.stanford.edu No Institute

More information

Database code in PL-SQL PL-SQL was used for the database code. It is ready to use on any Oracle platform, running under Linux, Windows or Solaris.

Database code in PL-SQL PL-SQL was used for the database code. It is ready to use on any Oracle platform, running under Linux, Windows or Solaris. Alkindi Software Technology Introduction Alkindi designed a state of the art collaborative filtering system to work well for both largeand small-scale systems. This document serves as an overview of how

More information

A Modal Specification Approach for Assuring the Safety of On-Demand Medical Cyber-Physical Systems

A Modal Specification Approach for Assuring the Safety of On-Demand Medical Cyber-Physical Systems A Modal Specification Approach for Assuring the Safety of On-Demand Medical Cyber-Physical Systems Lu Feng PRECISE Center Department of Computer and Information Science University of Pennsylvania lufeng@cis.upenn.edu

More information

AOSA - Betriebssystemkomponenten und der Aspektmoderatoransatz

AOSA - Betriebssystemkomponenten und der Aspektmoderatoransatz AOSA - Betriebssystemkomponenten und der Aspektmoderatoransatz Results obtained by researchers in the aspect-oriented programming are promoting the aim to export these ideas to whole software development

More information

A Component-based Approach to Verified Software: What, Why, How and What Next?

A Component-based Approach to Verified Software: What, Why, How and What Next? A Component-based Approach to Verified Software: What, Why, How and What Next? Kung-Kiu Lau, Zheng Wang, Anduo Wang and Ming Gu School of Computer Science, The University of Manchester Manchester M13 9PL,

More information

A Tutorial on Runtime Verification and Assurance. Ankush Desai EECS 219C

A Tutorial on Runtime Verification and Assurance. Ankush Desai EECS 219C A Tutorial on Runtime Verification and Assurance Ankush Desai EECS 219C Outline 1. Background on Runtime Verification 2. Challenges in Programming Robotics System Drona). 3. Solution 1: Combining Model

More information

A NEW PROOF-ASSISTANT THAT REVISITS HOMOTOPY TYPE THEORY THE THEORETICAL FOUNDATIONS OF COQ USING NICOLAS TABAREAU

A NEW PROOF-ASSISTANT THAT REVISITS HOMOTOPY TYPE THEORY THE THEORETICAL FOUNDATIONS OF COQ USING NICOLAS TABAREAU COQHOTT A NEW PROOF-ASSISTANT THAT REVISITS THE THEORETICAL FOUNDATIONS OF COQ USING HOMOTOPY TYPE THEORY NICOLAS TABAREAU The CoqHoTT project Design and implement a brand-new proof assistant by revisiting

More information

Concurrent Models of Computation

Concurrent Models of Computation Concurrent Models of Computation Edward A. Lee Robert S. Pepper Distinguished Professor, UC Berkeley EECS 219D Concurrent Models of Computation Fall 2011 Copyright 2009-2011, Edward A. Lee, All rights

More information

Design of Embedded Systems

Design of Embedded Systems Design of Embedded Systems José Costa Software for Embedded Systems Departamento de Engenharia Informática (DEI) Instituto Superior Técnico 2015-01-02 José Costa (DEI/IST) Design of Embedded Systems 1

More information

Model-checking with the TimeLine formalism

Model-checking with the TimeLine formalism Model-checking with the TimeLine formalism Andrea Zaccara University of Antwerp Andrea.Zaccara@student.uantwerpen.be Abstract A logical model checker can be an effective tool for verification of software

More information

10 th AUTOSAR Open Conference

10 th AUTOSAR Open Conference 10 th AUTOSAR Open Conference Ravi Akella, Software Researcher Akihito Iwai, Director Silicon Valley Innovation Center DENSO International America, Inc. Integrating an actor based connected car platform

More information

Contemporary Design. Traditional Hardware Design. Traditional Hardware Design. HDL Based Hardware Design User Inputs. Requirements.

Contemporary Design. Traditional Hardware Design. Traditional Hardware Design. HDL Based Hardware Design User Inputs. Requirements. Contemporary Design We have been talking about design process Let s now take next steps into examining in some detail Increasing complexities of contemporary systems Demand the use of increasingly powerful

More information

ITM DEVELOPMENT (ITMD)

ITM DEVELOPMENT (ITMD) ITM Development (ITMD) 1 ITM DEVELOPMENT (ITMD) ITMD 361 Fundamentals of Web Development This course will cover the creation of Web pages and sites using HTML, CSS, Javascript, jquery, and graphical applications

More information

Synchronous reactive programming

Synchronous reactive programming Synchronous reactive programming Marcus Sundman Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: marcus.sundman@iki.fi URL: http://www.iki.fi/marcus.sundman/ Abstract

More information

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May ISSN

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May ISSN International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 106 Self-organizing behavior of Wireless Ad Hoc Networks T. Raghu Trivedi, S. Giri Nath Abstract Self-organization

More information

Specification and Generation of Environment for Model Checking of Software Components *

Specification and Generation of Environment for Model Checking of Software Components * Specification and Generation of Environment for Model Checking of Software Components * Pavel Parizek 1, Frantisek Plasil 1,2 1 Charles University, Faculty of Mathematics and Physics, Department of Software

More information

From Event-B Models to Dafny Code Contracts

From Event-B Models to Dafny Code Contracts From Event-B Models to Dafny Code Contracts Mohammadsadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh Electronic and Computer Science School, University of Southampton Southampton, United Kingdom {md5g11,mjb,ra3}@ecs.soton.ac.uk

More information

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics System Models Nicola Dragoni Embedded Systems Engineering DTU Informatics 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models Architectural vs Fundamental Models Systems that are intended

More information

Design and Specification of Embedded Systems in Java Using Successive, Formal Refinement

Design and Specification of Embedded Systems in Java Using Successive, Formal Refinement Design and Specification of Embedded Systems in Java Using Successive, Formal Refinement James Shin Young, Josh MacDonald, Michael Shilman, Abdallah Tabbara, Paul Hilfinger, and A. Richard Newton Department

More information

An Information Model for High-Integrity Real Time Systems

An Information Model for High-Integrity Real Time Systems An Information Model for High-Integrity Real Time Systems Alek Radjenovic, Richard Paige, Philippa Conmy, Malcolm Wallace, and John McDermid High-Integrity Systems Group, Department of Computer Science,

More information

Chapter 4 Objectives

Chapter 4 Objectives Chapter 4 Objectives Eliciting requirements from the customers Modeling requirements Reviewing requirements to ensure their quality Documenting requirements for use by the design and test teams 4.1 The

More information

Time-Awareness in the Internet of Things. ITSF 2014 Marc Weiss, NIST Consultant

Time-Awareness in the Internet of Things. ITSF 2014 Marc Weiss, NIST Consultant Time-Awareness in the Internet of Things ITSF 2014 Marc Weiss, NIST Consultant mweiss@nist.gov ++1-303-497-3261 Cisco White Paper GE White Paper Energy Saving (I2E) Defense Predictive maintenance Enable

More information

StackAnalyzer Proving the Absence of Stack Overflows

StackAnalyzer Proving the Absence of Stack Overflows StackAnalyzer Proving the Absence of Stack Overflows AbsInt GmbH 2012 2 Functional Safety Demonstration of functional correctness Well-defined criteria Automated and/or model-based testing Formal techniques:

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 643921. TOOLS INTEGRATION UnCoVerCPS toolchain Goran Frehse, UGA Xavier

More information

Introduction to Real-time Systems. Advanced Operating Systems (M) Lecture 2

Introduction to Real-time Systems. Advanced Operating Systems (M) Lecture 2 Introduction to Real-time Systems Advanced Operating Systems (M) Lecture 2 Introduction to Real-time Systems Real-time systems deliver services while meeting some timing constraints Not necessarily fast,

More information

Chapter 2 Synchronous Programming: Overview

Chapter 2 Synchronous Programming: Overview Chapter 2 Synchronous Programming: Overview Abstract This chapter gives an overview of synchronous programming through the presentation of the main existing languages together with their associated tools.

More information

From Signal to Service

From Signal to Service From Signal to Service Challenges for the Development of AUTOSAR Adaptive Applications Automotive Ethernet and AUTOSAR Adaptive are key technologies for highly automated driving and comprehensive connectivity

More information

CS SOFTWARE ENGINEERING QUESTION BANK SIXTEEN MARKS

CS SOFTWARE ENGINEERING QUESTION BANK SIXTEEN MARKS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS 6403 - SOFTWARE ENGINEERING QUESTION BANK SIXTEEN MARKS 1. Explain iterative waterfall and spiral model for software life cycle and various activities

More information

A Graduate Embedded System Education Program

A Graduate Embedded System Education Program A Graduate Embedded System Education Program Alberto Sangiovanni-Vincentelli Department of EECS, University of California at Berkeley EE249:Fall03 The Killer Applications for the Future? 2 Energy Conservation

More information

Simulation-Based FlexRay TM Conformance Testing an OVM success story

Simulation-Based FlexRay TM Conformance Testing an OVM success story Simulation-Based FlexRay TM Conformance Testing an OVM success story Mark Litterick, Co-founder & Verification Consultant, Verilab Abstract This article presents a case study on how the Open Verification

More information

Exercise Unit 2: Modeling Paradigms - RT-UML. UML: The Unified Modeling Language. Statecharts. RT-UML in AnyLogic

Exercise Unit 2: Modeling Paradigms - RT-UML. UML: The Unified Modeling Language. Statecharts. RT-UML in AnyLogic Exercise Unit 2: Modeling Paradigms - RT-UML UML: The Unified Modeling Language Statecharts RT-UML in AnyLogic Simulation and Modeling I Modeling with RT-UML 1 RT-UML: UML Unified Modeling Language a mix

More information

Foundation of Contract for Things

Foundation of Contract for Things Foundation of Contract for Things C.Sofronis, O.Ferrante, A.Ferrari, L.Mangeruca ALES S.r.l. Rome The Internet of System Engineering INCOSE-IL Seminar, Herzliya, Israel 15 September, 2011 Software Platform

More information

Extracting the Range of cps from Affine Typing

Extracting the Range of cps from Affine Typing Extracting the Range of cps from Affine Typing Extended Abstract Josh Berdine, Peter W. O Hearn Queen Mary, University of London {berdine, ohearn}@dcs.qmul.ac.uk Hayo Thielecke The University of Birmingham

More information

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 1 Introduction Definition of a Distributed System (1) A distributed system is: A collection of

More information

Modelling and simulation of guaranteed throughput channels of a hard real-time multiprocessor system

Modelling and simulation of guaranteed throughput channels of a hard real-time multiprocessor system Modelling and simulation of guaranteed throughput channels of a hard real-time multiprocessor system A.J.M. Moonen Information and Communication Systems Department of Electrical Engineering Eindhoven University

More information

Virtual Validation of Cyber Physical Systems

Virtual Validation of Cyber Physical Systems Virtual Validation of Cyber Physical Systems Patrik Feth, Thomas Bauer, Thomas Kuhn Fraunhofer IESE Fraunhofer-Platz 1 67663 Kaiserslautern {patrik.feth, thomas.bauer, thomas.kuhn}@iese.fraunhofer.de Abstract:

More information

Modelling, Specification and Verification of an Emergency Closing System

Modelling, Specification and Verification of an Emergency Closing System From: FLAIRS-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Modelling, Specification and Verification of an Emergency Closing System Werner Stephan and Georg Rock and Michael

More information

Tool Support for Design Inspection: Automatic Generation of Questions

Tool Support for Design Inspection: Automatic Generation of Questions Tool Support for Design Inspection: Automatic Generation of Questions Tim Heyer Department of Computer and Information Science, Linköping University, S-581 83 Linköping, Email: Tim.Heyer@ida.liu.se Contents

More information

Schedule Integration for Time-Triggered Systems

Schedule Integration for Time-Triggered Systems Schedule Integration for Time-Triggered Systems Outline Motivation Automotive software Automotive architectures Integration Challenge Time-triggered automotive systems Sychronization Schedule Integration

More information

Infinite Derivations as Failures

Infinite Derivations as Failures Infinite Derivations as Failures Andrea Corradi and Federico Frassetto DIBRIS, Università di Genova, Italy name.surname@dibris.unige.it Abstract. When operating on cyclic data, programmers have to take

More information