l20 nov zero-knowledge proofs

Size: px
Start display at page:

Download "l20 nov zero-knowledge proofs"

Transcription

1 l0 nov 00 zero-knowledge proofs

2 what properties should an interactive proof system have?

3 Alice Bob if c= o.w.

4 quadratic equations prove that equation has a solution without revealing the solution! Alice Bob t c s check

5 completeness if a statement is true, then the prover should always be able to convince the verifier that it is so. what does it mean to be true? language is a set of strings x is true relative to if

6 completeness for a language L, and for all interaction with V accepting the proof

7 completeness for a language L, and for all Pr[ ] interaction with V accepting the proof

8 completeness for a language L, and for all Pr[ ] interaction with V accepting the proof

9 completeness for a language L, and for all Pr[ ] interaction with V accepting the proof

10 soundness if a statement is false, then the prover should never be able to convince the verifier that it is so.

11 soundness if a statement is false, then the prover should never be able to convince the verifier that it is so. for a language L, and for all

12 soundness if a statement is false, then the prover should never be able to convince the verifier that it is so. for a language L, and for all Pr[ ] where is a negligible function

13 Alice Bob

14 Alice Bob check

15 Alice Bob check if yes, send it is true

16 Alice Bob check if yes, send if no, send it is true it is not true

17 Alice Bob check if yes, send if no, send it is true it is not true ok.

18 Alice Bob check if yes, send if no, send it is true it is not true ok. for a language L, and for all Pr[ ] where is a negligible function

19 soundness if a statement is false, then no prover should ever be able to convince the verifier that it is so. for a language L, and for all Pr[ ] where is a negligible function

20 interactive protocols are powerful

21 can you prove that this equation has no solutions:

22 prove this equation has no solutions Alice Bob t if t is a square if not send s=0 send s= accept if s=b

23 prove this equation has no solutions if there are no solutions, then challenges are b= b=0

24 prove this equation has no solutions if there are solutions, then challenges are b= b=0 prover is caught / time

25 prove this equation has no solutions Alice Bob t if t is a square if not send s= send s=0 accept if s=b but is the protocol zero-knowledge?

26 zero-knowledge after seeing a zero-knowledge proof, a verifier should be unable to accomplish any new tasks.

27 verifier s view by interacting with the prover, the verifier was convinced the statement was true but the proof itself... verifier could have generated them himself!

28 verifier s view how to generate a transcript of a proof: first pick c then pick then set output

29 zero-knowledge after seeing a zero-knowledge proof, a verifier should be unable to accomplish any new tasks. there exists a p.p.t. machine S s.t. for all honest verifier zero-knowledge

30 is honest-v zk ok? Alice Bob if c= if c= otherwise

31 zero-knowledge after seeing a zero-knowledge proof, a verifier should be unable to accomplish any new tasks. for all verifiers V* there exists a p.p.t. machine S O s.t. for all

32 prove this equation has no solutions Alice Bob t if t is a square if not send s= send s=0 accept if s=b so is this protocol zero-knowledge?

33 prove this equation has no solutions Alice Bob t if t is a square if not send s= send s=0 accept if s=b so is this protocol zero-knowledge? NO. but can be fixed in two ways...

34 graph iso quadratic equations lets build a zk proof for more general problems.

35 -coloring of a graph np-complete

36 -coloring of a graph np-complete

37 zk-proof of -colorability lice Bob

38 zk-proof of -colorability lice Bob

39 zk-proof of -colorability lice Bob pick a color perm

40 zk-proof of -colorability lice Bob pick a color perm color the graph with new perm

41 zk-proof of -colorability lice Bob pick a color perm color the graph place cups over nodes

42 zk-proof of -colorability lice Bob pick a color perm color the graph place cups over nodes

43 zk-proof of -colorability lice Bob pick a color perm color the graph place cups over nodes pick a random edge

44 zk-proof of -colorability lice Bob pick a color perm color the graph place cups over nodes reveals chosen edge pick a random edge

45 zk-proof of -colorability lice Bob pick a color perm color the graph place cups over nodes reveals chosen edge pick a random edge check colors

46 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge completeness?

47 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge soundness?

48 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge soundness?

49 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge soundness? repeat m times

50 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge soundness? repeat m times

51 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge soundness? repeat m times

52 zk-proof of -colorability lice Bob pick a color perm color the graph pick a random edge place cups over nodes check colors reveals chosen edge zero-knowledge?

53 simulator for -col Bob* S(G)

54 simulator for -col Bob* S(G)

55 simulator for -col Bob* S(G) color a random edge e

56 simulator for -col Bob* S(G) color a random edge e place cups over nodes

57 simulator for -col Bob* S(G) color a random edge e place cups over nodes ask bob for challenge c

58 simulator for -col Bob* S(G) color a random edge e place cups over nodes ask bob for challenge c success if c=e

59 simulator for -col Bob* S(G) color a random edge e place cups over nodes ask bob for challenge c success if c=e else repeat

60 simulator for -col Bob* S(G) color a random edge e place cups over nodes ask bob for challenge c success if c=e else repeat succeeds with pr

61 simulator for -col Bob* S(G) color a random edge e place cups over nodes ask bob for challenge c success if c=e else repeat succeeds with pr

62 simulator for -col Bob* S(G) color a random edge e place cups over nodes ask bob for challenge c success if c=e else repeat succeeds with pr expected # iterations: m

63 sudoko puzzle before i start, can you prove that it has a solution?

64 sudoko puzzle before i start, can you prove that it has a solution? YES. sudoko is in NP!

65 sudoko puzzle before i start, can you prove that it has a solution? YES. sudoko is in NP! YES. there is even an efficient way.

66 sudoko puzzle 9 9 9

67 sudoko puzzle

68 sudoko puzzle

69 sudoko puzzle

70 sudoko puzzle

71 sudoko puzzle

72 sudoko puzzle shuffle

73 sudoko puzzle check each pile has all 9

74 sudoko puzzle do the same for the rows and each sub-square

75 how to make this protocol internet-ready? what function did the cups play? (binding) (hiding) prover could not change color verifier could not see color

76 commitment schemes Sender Receiver sender commits to a bit sender cannot change her mind receiver cannot learn the bit sender can open commitment

77 commitment schemes two protocols: commit() open() Sender c Receiver open Sender b,s Receiver

Lecture 10, Zero Knowledge Proofs, Secure Computation

Lecture 10, Zero Knowledge Proofs, Secure Computation CS 4501-6501 Topics in Cryptography 30 Mar 2018 Lecture 10, Zero Knowledge Proofs, Secure Computation Lecturer: Mahmoody Scribe: Bella Vice-Van Heyde, Derrick Blakely, Bobby Andris 1 Introduction Last

More information

Lecture 5: Zero Knowledge for all of NP

Lecture 5: Zero Knowledge for all of NP 600.641 Special Topics in Theoretical Cryptography February 5, 2007 Lecture 5: Zero Knowledge for all of NP Instructor: Susan Hohenberger Scribe: Lori Kraus 1 Administrative The first problem set goes

More information

Zero Knowledge Protocol

Zero Knowledge Protocol Akash Patel (SJSU) Zero Knowledge Protocol Zero knowledge proof or protocol is method in which a party A can prove that given statement X is certainly true to party B without revealing any additional information

More information

Identification Schemes

Identification Schemes Identification Schemes Lecture Outline Identification schemes passwords one-time passwords challenge-response zero knowledge proof protocols Authentication Data source authentication (message authentication):

More information

Cryptographic protocols

Cryptographic protocols Cryptographic protocols Lecture 3: Zero-knowledge protocols for identification 6/16/03 (c) Jussipekka Leiwo www.ialan.com Overview of ZK Asymmetric identification techniques that do not rely on digital

More information

A Mathematical Proof. Zero Knowledge Protocols. Interactive Proof System. Other Kinds of Proofs. When referring to a proof in logic we usually mean:

A Mathematical Proof. Zero Knowledge Protocols. Interactive Proof System. Other Kinds of Proofs. When referring to a proof in logic we usually mean: A Mathematical Proof When referring to a proof in logic we usually mean: 1. A sequence of statements. 2. Based on axioms. Zero Knowledge Protocols 3. Each statement is derived via the derivation rules.

More information

Zero Knowledge Protocols. c Eli Biham - May 3, Zero Knowledge Protocols (16)

Zero Knowledge Protocols. c Eli Biham - May 3, Zero Knowledge Protocols (16) Zero Knowledge Protocols c Eli Biham - May 3, 2005 442 Zero Knowledge Protocols (16) A Mathematical Proof When referring to a proof in logic we usually mean: 1. A sequence of statements. 2. Based on axioms.

More information

Computer Security CS 426 Lecture 35. CS426 Fall 2010/Lecture 35 1

Computer Security CS 426 Lecture 35. CS426 Fall 2010/Lecture 35 1 Computer Security CS 426 Lecture 35 Commitment & Zero Knowledge Proofs 1 Readings for This Lecture Optional: Haveli and Micali: Practical and Privably-Secure Commitment Schemes from Collision-Free Hashing

More information

Lecture 6: ZK Continued and Proofs of Knowledge

Lecture 6: ZK Continued and Proofs of Knowledge 600.641 Special Topics in Theoretical Cryptography 02/06/06 Lecture 6: ZK Continued and Proofs of Knowledge Instructor: Susan Hohenberger Scribe: Kevin Snow 1 Review / Clarification At the end of last

More information

CSA E0 312: Secure Computation October 14, Guest Lecture 2-3

CSA E0 312: Secure Computation October 14, Guest Lecture 2-3 CSA E0 312: Secure Computation October 14, 2015 Guest Lecture 2-3 Guest Instructor: C. Pandu Rangan Submitted by: Cressida Hamlet 1 Introduction Till now we have seen only semi-honest parties. From now

More information

Indistinguishable Proofs of Work or Knowledge

Indistinguishable Proofs of Work or Knowledge Indistinguishable Proofs of Work or Knowledge Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, Bingsheng Zhang ASIACRYPT 2016 8th December, Hanoi, Vietnam Motivation (ZK) Proofs of Knowledge - PoK

More information

Zero-Knowledge Proofs of Knowledge

Zero-Knowledge Proofs of Knowledge Zero-Knowledge Proofs of Knowledge Stéphanie Delaune September 6, 2013 Stéphanie Delaune () Proofs of Knowledge September 6, 2013 1 / 16 Proofs of knowledge Proof of knowledge are often used to prove one

More information

Zero-Knowledge Proofs. Zero-Knowledge Proofs. Slides from a Talk by Eric Postpischil

Zero-Knowledge Proofs. Zero-Knowledge Proofs. Slides from a Talk by Eric Postpischil Slides from a Talk by Eric Postpischil Goals Alice wants to prove to Bob that she knows an identifying number X. Bob should not be able to figure out X. Dave observes all communications between Alice and

More information

ENEE 459-C Computer Security. Security protocols

ENEE 459-C Computer Security. Security protocols ENEE 459-C Computer Security Security protocols Key Agreement: Diffie-Hellman Protocol Key agreement protocol, both A and B contribute to the key Setup: p prime and g generator of Z p *, p and g public.

More information

ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification

ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification Hossen Asiful Mustafa Introduction Entity Authentication is a technique designed to let one party prove the identity of another

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS276: Cryptography Handout N24 Luca Trevisan April 21, 2009 Notes for Lecture 24 Scribed by Milosh Drezgich, posted May 11, 2009 Summary Today we introduce the notion of zero knowledge proof

More information

ENEE 459-C Computer Security. Security protocols (continued)

ENEE 459-C Computer Security. Security protocols (continued) ENEE 459-C Computer Security Security protocols (continued) Key Agreement: Diffie-Hellman Protocol Key agreement protocol, both A and B contribute to the key Setup: p prime and g generator of Z p *, p

More information

Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR)

Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Boaz Barak December 8, 2005 Oblivious Transfer We are thinking of the following situation: we have a server and a client (or

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor Identification (User Authentication) Fiat-Shamir Scheme Lecture 12 Tel-Aviv University 4 January 2010 Model and Major Issues Alice wishes to prove to Bob

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline ZKIP Other IP CPSC 467b: Cryptography and Computer Security Lecture 19 Michael J. Fischer Department of Computer Science Yale University March 31, 2010 Michael J. Fischer CPSC 467b, Lecture 19

More information

Homework 2 CS161 Computer Security, Spring 2008 Assigned 2/13/08 Due 2/25/08

Homework 2 CS161 Computer Security, Spring 2008 Assigned 2/13/08 Due 2/25/08 Homework 2 CS161 Computer Security, Spring 2008 Assigned 2/13/08 Due 2/25/08 1. Signatures and Attacks Recall that to use the ElGamal signature scheme, Alice randomly selects her private signing key x

More information

Zero-Knowledge Proofs

Zero-Knowledge Proofs Zero-Knowledge Proofs Yevgeniy Dodis New York University Special thanks: Salil Vadhan Zero-Knowledge Proofs [GMR85] Interactive proofs that reveal nothing other than the validity of assertion being proven

More information

Dawn Song

Dawn Song 1 Secret-Sharing & Zero-knowledge Proof Dawn Song dawnsong@cs.berkeley.edu Review DH key exchange protocol Password authentication protocol Random number generation 2 Lessons Learned Seeds must be unpredictable

More information

More crypto and security

More crypto and security More crypto and security CSE 199, Projects/Research Individual enrollment Projects / research, individual or small group Implementation or theoretical Weekly one-on-one meetings, no lectures Course grade

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Identification To identify yourself, you need something the adversary doesn t have Typical factors:

More information

Zero-Knowledge Proof and Authentication Protocols

Zero-Knowledge Proof and Authentication Protocols Zero-Knowledge Proof and Authentication Protocols Ben Lipton April 26, 2016 Outline Background Zero-Knowledge Proofs Zero-Knowledge Authentication History Example Protocols Guillou-Quisquater Non-zero-knowledge

More information

E-cash. Cryptography. Professor: Marius Zimand. e-cash. Benefits of cash: anonymous. difficult to copy. divisible (you can get change)

E-cash. Cryptography. Professor: Marius Zimand. e-cash. Benefits of cash: anonymous. difficult to copy. divisible (you can get change) Cryptography E-cash Professor: Marius Zimand e-cash Benefits of cash: anonymous difficult to copy divisible (you can get change) easily transferable There are several protocols for e-cash. We will discuss

More information

CS154, Lecture 18: PCPs, Hardness of Approximation, Approximation-Preserving Reductions, Interactive Proofs, Zero-Knowledge, Cold Fusion, Peace in

CS154, Lecture 18: PCPs, Hardness of Approximation, Approximation-Preserving Reductions, Interactive Proofs, Zero-Knowledge, Cold Fusion, Peace in CS154, Lecture 18: PCPs, Hardness of Approximation, Approximation-Preserving Reductions, Interactive Proofs, Zero-Knowledge, Cold Fusion, Peace in the Middle East There are thousands of NP-complete problems

More information

Secure Multi-Party Computation. Lecture 13

Secure Multi-Party Computation. Lecture 13 Secure Multi-Party Computation Lecture 13 Must We Trust? Can we have an auction without an auctioneer?! Declared winning bid should be correct Only the winner and winning bid should be revealed Using data

More information

Lecture 9: Zero-Knowledge Proofs

Lecture 9: Zero-Knowledge Proofs Great Ideas in Theoretical Computer Science Summer 2013 Lecture 9: Zero-Knowledge Proofs Lecturer: Kurt Mehlhorn & He Sun A zero-knowledge proof is an interactive protocol (game) between two parties, a

More information

Plaintext Awareness via Key Registration

Plaintext Awareness via Key Registration Plaintext Awareness via Key Registration Jonathan Herzog CIS, TOC, CSAIL, MIT Plaintext Awareness via Key Registration p.1/38 Context of this work Originates from work on Dolev-Yao (DY) model Symbolic

More information

CSE200: Computability and complexity Interactive proofs

CSE200: Computability and complexity Interactive proofs CSE200: Computability and complexity Interactive proofs Shachar Lovett January 29, 2018 1 What are interactive proofs Think of a prover trying to convince a verifer that a statement is correct. For example,

More information

Lecture 19 - Oblivious Transfer (OT) and Private Information Retrieval (PIR)

Lecture 19 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Lecture 19 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Boaz Barak November 29, 2007 Oblivious Transfer We are thinking of the following situation: we have a server and a client (or

More information

One-Shot Verifiable Encryption from Lattices. Vadim Lyubashevsky and Gregory Neven IBM Research -- Zurich

One-Shot Verifiable Encryption from Lattices. Vadim Lyubashevsky and Gregory Neven IBM Research -- Zurich One-Shot Verifiable Encryption from Lattices Vadim Lyubashevsky and Gregory Neven IBM Research -- Zurich Zero-Knowledge Proofs Zero-Knowledge Proofs Relation f(s)=t, and want to prove knowledge of s Zero-Knowledge

More information

CS549: Cryptography and Network Security

CS549: Cryptography and Network Security CS549: Cryptography and Network Security by Xiang-Yang Li Department of Computer Science, IIT Cryptography and Network Security 1 Notice This lecture note (Cryptography and Network Security) is prepared

More information

Homomorphic encryption (whiteboard)

Homomorphic encryption (whiteboard) Crypto Tutorial Homomorphic encryption Proofs of retrievability/possession Attribute based encryption Hidden vector encryption, predicate encryption Identity based encryption Zero knowledge proofs, proofs

More information

Cryptography and Cryptocurrencies. Intro to Cryptography and Cryptocurrencies

Cryptography and Cryptocurrencies. Intro to Cryptography and Cryptocurrencies Intro to Cryptographic Hash Functions Hash Pointers and Data Structures Block Chains Merkle Trees Digital Signatures Public Keys and Identities Let s design us some Digital Cash! Intro to Cryptographic

More information

Homework 3: Solution

Homework 3: Solution Homework 3: Solution March 28, 2013 Thanks to Sachin Vasant and Xianrui Meng for contributing their solutions. Exercise 1 We construct an adversary A + that does the following to win the CPA game: 1. Select

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator EXAMINATION ( End Semester ) SEMESTER ( Spring ) Roll Number Section Name Subject Number C S 6 0 0 8 8 Subject Name Foundations

More information

1 A Tale of Two Lovers

1 A Tale of Two Lovers CS 120/ E-177: Introduction to Cryptography Salil Vadhan and Alon Rosen Dec. 12, 2006 Lecture Notes 19 (expanded): Secure Two-Party Computation Recommended Reading. Goldreich Volume II 7.2.2, 7.3.2, 7.3.3.

More information

Solution to Problem Set 8

Solution to Problem Set 8 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Handout #24 Felipe Saint-Jean and Michael Fischer December 13, 2005 Solution to Problem Set 8 In the problems

More information

Multiparty Computation (MPC) protocols

Multiparty Computation (MPC) protocols Multiparty Computation (MPC) protocols Protocols where the users of the protocol don t trust each other, but nevertheless they want to achieve a common goal I don t trust Bob I don t trust Alice Alice

More information

An efficient implementation of Monero subaddresses. 1 Introduction. Sarang Noether and Brandon Goodell Monero Research Lab October 3, 2017

An efficient implementation of Monero subaddresses. 1 Introduction. Sarang Noether and Brandon Goodell Monero Research Lab October 3, 2017 RESEARCH BULLETIN MRL-0006 An efficient implementation of Monero subaddresses Sarang Noether and Brandon Goodell Monero Research Lab October 3, 2017 Abstract Users of the Monero cryptocurrency who wish

More information

MTAT Cryptology II. Entity Authentication. Sven Laur University of Tartu

MTAT Cryptology II. Entity Authentication. Sven Laur University of Tartu MTAT.07.003 Cryptology II Entity Authentication Sven Laur University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie?

More information

CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong, Spring and 6 February 2018

CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong, Spring and 6 February 2018 CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong, Spring 2018 5 and 6 February 2018 Identification schemes are mechanisms for Alice to prove her identity to Bob They comprise a setup

More information

Multi-Theorem Preprocessing NIZKs from Lattices

Multi-Theorem Preprocessing NIZKs from Lattices Multi-Theorem Preprocessing NIZKs from Lattices Sam Kim and David J. Wu Stanford University Soundness: x L, P Pr P, V (x) = accept = 0 No prover can convince honest verifier of false statement Proof Systems

More information

On Deniability in the Common Reference String and Random Oracle Model

On Deniability in the Common Reference String and Random Oracle Model On Deniability in the Common Reference String and Random Oracle Model Rafael Pass Department of Numerical Analysis and Computer Science Royal Institute of Technology, Stockholm, Sweden rafael@nada.kth.se

More information

MTAT Research Seminar in Cryptography IND-CCA2 secure cryptosystems

MTAT Research Seminar in Cryptography IND-CCA2 secure cryptosystems MTAT.07.006 Research Seminar in Cryptography IND-CCA2 secure cryptosystems Dan Bogdanov October 31, 2005 Abstract Standard security assumptions (IND-CPA, IND- CCA) are explained. A number of cryptosystems

More information

CS Computer Networks 1: Authentication

CS Computer Networks 1: Authentication CS 3251- Computer Networks 1: Authentication Professor Patrick Traynor 4/14/11 Lecture 25 Announcements Homework 3 is due next class. Submit via T-Square or in person. Project 3 has been graded. Scores

More information

Computer Security Spring Hashes & Macs. Aggelos Kiayias University of Connecticut

Computer Security Spring Hashes & Macs. Aggelos Kiayias University of Connecticut Computer Security Spring 2008 Hashes & Macs Aggelos Kiayias University of Connecticut What is a hash function? A way to produce the fingerprint of a file what are the required properties: 1. Efficiency.

More information

Universally Composable Multiparty Computation with Partially Isolated Parties

Universally Composable Multiparty Computation with Partially Isolated Parties Universally Composable Multiparty Computation with Partially Isolated Parties Ivan Damgård 1, Jesper Buus Nielsen 1 and Daniel Wichs 2 1 University of Aarhus, Denmark 2 New York University, USA Abstract.

More information

COIN FLIPPING BY TELEPHONE

COIN FLIPPING BY TELEPHONE COIN FLIPPING BY TELEPHONE A protocol for solving impossible problems Based on Manuel Blum's Paper from 1981 Proved useful for: - Mental poker - Certified Mail - Exchange of Secrets Table of Contents Application

More information

Information Security. message M. fingerprint f = H(M) one-way hash. 4/19/2006 Information Security 1

Information Security. message M. fingerprint f = H(M) one-way hash. 4/19/2006 Information Security 1 Information Security message M one-way hash fingerprint f = H(M) 4/19/2006 Information Security 1 Outline and Reading Digital signatures Definition RSA signature and verification One-way hash functions

More information

Physical Zero-Knowledge Proofs of Physical Properties

Physical Zero-Knowledge Proofs of Physical Properties Physical Zero-Knowledge Proofs of Physical Properties Ben Fisch Joint work with: Moni Naor and Daniel Freund TCC Rump Session, February 2014 x w Typical Zero-Knowledge Scenario Alice and Bob receive input

More information

Computational Soundness of Symbolic Zero Knowledge Proofs

Computational Soundness of Symbolic Zero Knowledge Proofs Computational Soundness of Symbolic Zero Knowledge Proofs Esfandiar Mohammadi Master Seminar Information Security and Cryptography Group Max-Planck Institute for Software Systems Saarland University Advisors:

More information

Publicly-verifiable proof of storage: a modular construction. Federico Giacon

Publicly-verifiable proof of storage: a modular construction. Federico Giacon Publicly-verifiable proof of storage: a modular construction Federico Giacon Ruhr-Universita t Bochum federico.giacon@rub.de 6th BunnyTN, Trent 17 December 2015 Proof of Storage Proof of Storage (PoS)

More information

ZERO KNOWLEDGE PROOFS FOR EXACT COVER AND 0-1 KNAPSACK

ZERO KNOWLEDGE PROOFS FOR EXACT COVER AND 0-1 KNAPSACK Proceedings of the 6th Annual ISC Graduate Research Symposium ISC-GRS 01 April 13, 01, Rolla, Missouri ZERO KNOWLEDGE PROOFS FOR EXACT COVER AND 0-1 KNAPSACK ABSTRACT Zero Knowledge Proofs (ZKPs) are interactive

More information

Yuval Ishai Technion

Yuval Ishai Technion Winter School on Bar-Ilan University, Israel 30/1/2011-1/2/2011 Bar-Ilan University Yuval Ishai Technion 1 Zero-knowledge proofs for NP [GMR85,GMW86] Bar-Ilan University Computational MPC with no honest

More information

An abuse-free fair contract-signing protocol based on the RSA signature

An abuse-free fair contract-signing protocol based on the RSA signature University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2010 An abuse-free fair contract-signing protocol based on the RSA signature

More information

Implementing Resettable UC-functionalities with Untrusted Tamper-proof Hardware-Tokens

Implementing Resettable UC-functionalities with Untrusted Tamper-proof Hardware-Tokens Implementing Resettable UC-functionalities with Untrusted Tamper-proof Hardware-Tokens Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges Karlsruhe Institute of Technology, Karlsruhe, Germany

More information

An Overview of Active Security in Garbled Circuits

An Overview of Active Security in Garbled Circuits An Overview of Active Security in Garbled Circuits Author: Cesar Pereida Garcia Supervisor: Pille Pullonen Department of Mathematics and Computer Science. University of Tartu Tartu, Estonia. December 15,

More information

MATH 111 QUADRATICS WORKSHEET. Solution. We can put f(x) into vertex form by completing the square:

MATH 111 QUADRATICS WORKSHEET. Solution. We can put f(x) into vertex form by completing the square: MATH 111 QUADRATICS WORKSHEET BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Name: Let f(x) = 3x 2 + 6x + 9. Use this function to answer questions Problems 1-3. 1. Write f(x) in vertex form. Solution. We can

More information

Nature Sunday Academy Lesson Plan

Nature Sunday Academy Lesson Plan Title Computer Security Description: Nature Sunday Academy Lesson Plan 2013-14 The objective of the lesson plan aims to help students to understand the general goals of security, the essential concerns

More information

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography Outline 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Fast Optimistically Fair Cut-and-Choose 2PC

Fast Optimistically Fair Cut-and-Choose 2PC Fast Optimistically Fair Cut-and-Choose 2PC Alptekin Küpçü Koç University, TURKEY akupcu@ku.edu.tr Payman Mohassel Yahoo Labs, USA pmohassel@yahoo-inc.com February 25, 2016 Abstract Secure two party computation

More information

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives S C I E N C E P A S S I O N T E C H N O L O G Y Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives David Derler, Christian Hanser, and Daniel Slamanig, IAIK,

More information

Fall 2005 Joseph/Tygar/Vazirani/Wagner Final

Fall 2005 Joseph/Tygar/Vazirani/Wagner Final CS 161 Computer Security Fall 2005 Joseph/Tygar/Vazirani/Wagner Final PRINT your name:, (last) SIGN your name: (first) PRINT your Unix account name: PRINT your TA s name: You may consult any books, notes,

More information

Language-Based Security on Android (call for participation) Avik Chaudhuri

Language-Based Security on Android (call for participation) Avik Chaudhuri + Language-Based Security on Android (call for participation) Avik Chaudhuri + What is Android? Open-source platform for mobile devices Designed to be a complete software stack Operating system Middleware

More information

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography 1. Introduction 2. RSA Outline 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving Credentials

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving Credentials Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving Credentials Melissa Chase 1, Chaya Ganesh 2, and Payman Mohassel 3 1 Microsoft Research,

More information

Timed Commitments. (Extended Abstract) Dan Boneh 1 and Moni Naor 2

Timed Commitments. (Extended Abstract) Dan Boneh 1 and Moni Naor 2 Timed Commitments (Extended Abstract) Dan Boneh 1 and Moni Naor 2 1 Stanford University, dabo@cs.stanford.edu 2 Weizmann institute, naor@wisdom.weizmann.ac.il Abstract. We introduce and construct timed

More information

Lecture Notes 14 : Public-Key Infrastructure

Lecture Notes 14 : Public-Key Infrastructure 6.857 Computer and Network Security October 24, 2002 Lecture Notes 14 : Public-Key Infrastructure Lecturer: Ron Rivest Scribe: Armour/Johann-Berkel/Owsley/Quealy [These notes come from Fall 2001. These

More information

Concurrent Zero Knowledge in Polylogarithmic Rounds. 2 Concurrent Composable Zero Knowledge: The Construction

Concurrent Zero Knowledge in Polylogarithmic Rounds. 2 Concurrent Composable Zero Knowledge: The Construction 6.876/18.426: Advanced Cryptography 28.4.2003. Lecture 19: Concurrent Zero Knowledge in Polylogarithmic Rounds Scribed by: Nenad Dedić 1 Introduction The subject of these notes is concurrent zero knowledge,

More information

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d)

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d) Outline AIT 682: Network and Systems Security 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard Topic 5.2 Public Key Cryptography Instructor: Dr. Kun Sun 2 Public Key

More information

6.842 Randomness and Computation September 25-27, Lecture 6 & 7. Definition 1 Interactive Proof Systems (IPS) [Goldwasser, Micali, Rackoff]

6.842 Randomness and Computation September 25-27, Lecture 6 & 7. Definition 1 Interactive Proof Systems (IPS) [Goldwasser, Micali, Rackoff] 6.84 Randomness and Computation September 5-7, 017 Lecture 6 & 7 Lecturer: Ronitt Rubinfeld Scribe: Leo de Castro & Kritkorn Karntikoon 1 Interactive Proof Systems An interactive proof system is a protocol

More information

EXAM Computer Science 1 Part 1

EXAM Computer Science 1 Part 1 Maastricht University Faculty of Humanities and Science Department of Knowledge Engineering EXAM Computer Science 1 Part 1 Block 1.1: Computer Science 1 Code: KEN1120 Examiner: Kurt Driessens Date: Januari

More information

Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation

Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation Yehuda Lindell Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel. lindell@wisdom.weizmann.ac.il

More information

Final report: Non-Interactive Zero Knowledge Protocol for Verifiable Computing

Final report: Non-Interactive Zero Knowledge Protocol for Verifiable Computing Final report: Non-Interactive Zero Knowledge Protocol for Verifiable Computing Part A abstract description of the project: In this project we implemented a zero knowledge protocol for verifiable computing.

More information

Secure Multi-party Computation

Secure Multi-party Computation Secure Multi-party Computation What it is, and why you d care Manoj Prabhakaran University of Illinois, Urbana-Champaign SMC SMC SMC conceived more than 30 years back SMC SMC conceived more than 30 years

More information

Activity Guide - Public Key Cryptography

Activity Guide - Public Key Cryptography Unit 2 Lesson 19 Name(s) Period Date Activity Guide - Public Key Cryptography Introduction This activity is similar to the cups and beans encryption we did in a previous lesson. However, instead of using

More information

Step-out Ring Signatures

Step-out Ring Signatures Marek Klonowski, Łukasz Krzywiecki, Mirosław Kutyłowski and Anna Lauks Institute of Mathematics and Computer Science Wrocław University of Technology MFCS 2008 25-29 August 2008, Toruń, Poland 1 2 Preliminaries

More information

Session Key Distribution

Session Key Distribution Session Key Distribution The TA shares secret keys with network users. The TA chooses session keys and distributes them in encrypted form upon request of network users. We will need to define appropriate

More information

Lecture 7.1: Private-key Encryption. Lecture 7.1: Private-key Encryption

Lecture 7.1: Private-key Encryption. Lecture 7.1: Private-key Encryption Private-key Encryption Alice and Bob share a secret s {0, 1} n Private-key Encryption Alice and Bob share a secret s {0, 1} n Encryption and Decryption algorithms are efficient Private-key Encryption Alice

More information

Entity Recognition for Sensor Network Motes (Extended Abstract)

Entity Recognition for Sensor Network Motes (Extended Abstract) Entity Recognition for Sensor Network Motes (Extended Abstract) Stefan Lucks 1, Erik Zenner 2, André Weimerskirch 3, Dirk Westhoff 4 1 Theoretische Informatik, University of Mannheim, Germany 2 Erik Zenner,

More information

An Overview of Secure Multiparty Computation

An Overview of Secure Multiparty Computation An Overview of Secure Multiparty Computation T. E. Bjørstad The Selmer Center Department of Informatics University of Bergen Norway Prøveforelesning for PhD-graden 2010-02-11 Outline Background 1 Background

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Exchanging keys and public key encryption Public Key Encryption pk sk Public Key Encryption pk cß Enc(pk,m) sk m Public

More information

Constant-Round Concurrent Zero Knowledge in the Bounded Player Model

Constant-Round Concurrent Zero Knowledge in the Bounded Player Model Constant-Round Concurrent Zero Knowledge in the Bounded Player Model Vipul Goyal 1, Abhishek Jain 2, Rafail Ostrovsky 3, Silas Richelson 4, and Ivan Visconti 5 1 Microsoft Research, INDIA, vipul@microsoft.com

More information

ASYMMETRIC (PUBLIC-KEY) ENCRYPTION. Mihir Bellare UCSD 1

ASYMMETRIC (PUBLIC-KEY) ENCRYPTION. Mihir Bellare UCSD 1 ASYMMETRIC (PUBLIC-KEY) ENCRYPTION Mihir Bellare UCSD 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters

More information

CS 251: Bitcoin and Crypto Currencies Fall 2015

CS 251: Bitcoin and Crypto Currencies Fall 2015 CS 251: Bitcoin and Crypto Currencies Fall 2015 Final Exam The exam is open book and open notes. You have 2 hours. Please answer all five questions. All questions are weighted equally. You may use course

More information

Ideal Security Protocol. Identify Friend or Foe (IFF) MIG in the Middle 4/2/2012

Ideal Security Protocol. Identify Friend or Foe (IFF) MIG in the Middle 4/2/2012 Ideal Security Protocol Satisfies security requirements Requirements must be precise Efficient Small computational requirement Small bandwidth usage, network delays Not fragile Works when attacker tries

More information

Security of Cryptosystems

Security of Cryptosystems Security of Cryptosystems Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Symmetric key cryptosystem m M 0 c Enc sk (m) sk Gen c sk m Dec sk (c) A randomised key generation algorithm outputs

More information

COMP1730/COMP6730 Programming for Scientists. Algorithm and problem complexity

COMP1730/COMP6730 Programming for Scientists. Algorithm and problem complexity COMP1730/COMP6730 Programming for Scientists Algorithm and problem complexity Algorithm complexity * The time (memory) consumed by an algorithm: - Counting elementary operations (not μs). - Expressed as

More information

Crypto-systems all around us ATM machines Remote logins using SSH Web browsers (https invokes Secure Socket Layer (SSL))

Crypto-systems all around us ATM machines Remote logins using SSH Web browsers (https invokes Secure Socket Layer (SSL)) Introduction (Mihir Bellare Text/Notes: http://cseweb.ucsd.edu/users/mihir/cse207/) Cryptography provides: Data Privacy Data Integrity and Authenticity Crypto-systems all around us ATM machines Remote

More information

Zero-Knowledge proof of knowledge transfer. Perm summer school on blockchain 2018

Zero-Knowledge proof of knowledge transfer. Perm summer school on blockchain 2018 Zero-Knowledge proof of knowledge transfer Teleport Teleport was born in 2016 from the idea to bring the power of peer-to-peer traffic distribution technology like BitTorrent to the solution of traffic

More information

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator BBS encryption scheme A prime p is called a Blum prime if p mod 4 = 3. ALGORITHM Alice, the recipient, makes her BBS key as follows: BBS encryption scheme A prime p is called a Blum prime if p mod 4 =

More information

Defining Multi-Party Computation

Defining Multi-Party Computation 2 Defining Multi-Party Computation In this chapter, we introduce notations and conventions we will use throughout, define some basic cryptographic primitives, and provide a security definition for multi-party

More information

SAS-Based Group Authentication and Key Agreement Protocols

SAS-Based Group Authentication and Key Agreement Protocols SAS-Based Group Authentication and Key Agreement Protocols Sven Laur 1,2 and Sylvain Pasini 3 2 University of Tartu 1 Helsinki University of Technology 3 Ecole Polytechnique Fédérale de Lausanne User-aided

More information

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer:

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: Understand the relationships between statements that are equivalent to the invertibility of a square matrix (Theorem 1.5.3). Use the inversion algorithm to find the inverse of an invertible matrix. Express

More information

Resettably Sound Zero-Knoweldge Arguments from OWFs - the (semi) Black-Box way

Resettably Sound Zero-Knoweldge Arguments from OWFs - the (semi) Black-Box way Resettably Sound Zero-Knoweldge Arguments from OWFs - the (semi) Black-Box way Rafail Ostrovsky 1 and Alessandra Scafuro 2 Muthuramakrishnan Venkitasubramanian 3 1 UCLA, USA 2 Boston University and Northeastern

More information

from circuits to RAM programs in malicious-2pc

from circuits to RAM programs in malicious-2pc from circuits to RAM programs in malicious-2pc Abstract: Secure 2-party computation (2PC) is becoming practical in some domains However, most approaches are limited by the fact that the desired functionality

More information