KLIMAX: Profiling Memory Write Patterns to Detect Keystroke-Harvesting Malware

Size: px
Start display at page:

Download "KLIMAX: Profiling Memory Write Patterns to Detect Keystroke-Harvesting Malware"

Transcription

1 to Detect Keystroke-Harvesting Malware Menlo Park, 21st September 2011 Stefano Ortolani - ortolani@cs.vu.nl Cristiano Giuffrida - giuffrida@cs.vu.nl Vrije Universiteit Amsterdam, The Netherlands Bruno Crispo - crispo@disi.unitn.it Università di Trento Trento, Italy

2 Motivation 2

3 Motivation 2

4 Motivation Malware is here to stay. Especially if it can access private data. 2

5 In a Nutshell... 3

6 In a Nutshell... State-of-the-art approaches detect when data is leaked! Leaking! 3

7 In a Nutshell... State-of-the-art approaches detect when data is leaked! They all depend on the adopted window of observation. But real-world malware conceal theirself! Leaking is delayed until the malware is able to blend in with the background noise. 3

8 In a Nutshell... State-of-the-art approaches detect when data is leaked! They all depend on the adopted window of observation. Harvesting! But real-world malware conceal theirself! Leaking is delayed until the malware is able to blend in with the background noise. Let s backtrack to the harvesting then! We measure the harvesting by quantitatively profiling the memory. An approach so application-agnostic allows us to deal with a huge variety of malware. 3

9 Outline Requirements. Our approach, i.e. KLIMAX. Technical challenges. Architecture. Detecting privacy-breaching malware. Conclusions. 4

10 Infrastructure Requirements Transparent Application-agnostic. Backward compatible Retrofit existing applications and OSes. Live deployable Can be installed in production at any time. Fine-grained Distinguishes the nature of memory accesses. 5

11 Possible Approaches Tracking memory usage is conceptually simple, but how to do it? OS performance counters? Snapshots? Memory access dynamics is LOST. Merely intercepting page-faults? MISSES accesses. OS is not entirely in control. Virtualization? NOT live, and NOT fine-grained. Have NO knowledge of single memory accesses. NOT fine-grained. 6

12 Our Approach We designed a component running in kernel space forcibly monitoring any memory write. The monitoring is enabled on-demand, hence no overhead if no analysis is in progress. We control a set of monitoring parameters. Monitoring time. Processes and thread to be monitored. Memory regions: heap, data segment. Code regions: main binary or/and libraries. We obtain in return a set of performance counters. 7

13 Our Approach We designed a component running in kernel space forcibly monitoring any memory write. The monitoring is enabled on-demand, hence no overhead if no analysis is in progress. We control a set of monitoring parameters. Monitoring time. Processes and thread to be monitored. Memory regions: heap, data segment. Code regions: main binary or/and libraries. We obtain in return a set of performance counters. Why not the stack? 7

14 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); return 0; Top of the stack Bottom of the stack 8

15 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); return 0; Top of the stack locals of main - int i, buff[] return address of main params of main - argv, argc Bottom of the stack 8

16 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); return 0; Top of the stack locals of main - int i, buff[] return address of main params of main - argv, argc Bottom of the stack 8

17 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); Top of the stack locals of foo return address of foo params of foo - int *buff, *v locals of main - int i, buff[] return address of main return 0; params of main - argv, argc Bottom of the stack 8

18 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); return 0; Top of the stack locals of main - int i, buff[] return address of main params of main - argv, argc Bottom of the stack 8

19 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); Top of the stack locals of foo return address of foo params of foo - int *buff, *v locals of main - int i, buff[] return address of main return 0; params of main - argv, argc Bottom of the stack 8

20 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { buff[*v++] = 5; int main(char *argv, int argc) { int i = 0; int buff[size]; while(1) foo(buff, &i); return 0; Top of the stack locals of main - int i, buff[] return address of main params of main - argv, argc Bottom of the stack 8

21 Long-Lived Stack Regions The stack is not always transient... void foo(int * buff, int * v) { Solution buff[*v++] = 5; Keep track of the lowest top of the stack. int main(char *argv, int argc) { int i = 0; And monitor int buff[size]; only stack while(1) regions below the foo(buff, &i); lowest top of the stack. Top of the stack locals of main - int i, buff[] return address of main return 0; params of main - argv, argc Bottom of the stack 8

22 Technical Challenges Paging provides applications with a uniform and isolated memory address space. All the memory accesses are controlled by the hardware. The OS is only in charge of dealing with page faults. A page fault may happen for different reasons: protection fault, page swapped on disk... etc The intuition is to trigger a page fault for every memory access. 9

23 Technical Challenges - Solution (1) We override the owner bit of some of the OS page table entries (PTE) (2) Each memory access triggers a protection page fault. (3) We disassemble the instruction to compute the number of bytes accessed. (4) We disable the protection and we allow the OS to resolve the fake page-fault. (5) The monitored process then executes as usual. (6) The protection is then restored right after the processor completed the execution of the faulting instruction. 10

24 Introducing KLIMAX We implemented KLIMAX as a device-less driver on Windows XP SP3. We support unmodified kernel and applications. Current implementation features a thread-safe monitor. KLIMAX s two main components: Shadower follows the complex MM model of windows (see Windows Internals). Classifier introspects windows data structures and PE headers to retrieve detailed process information. 11

25 Architecture and Interactions (1/2) Windows Kernel (Ring 0) Page Tables 3 - Restore PTE 5 - Forward INT 0E Page Fault Handler Classifier 4 - Update Counters Shadower KLIMAX Monitor 2 - INT 0E IDT 6 - Single Step 1 - Page Fault Monitored Process User-land (Ring 3) 12

26 Architecture and Interactions (2/2) Windows Kernel (Ring 0) Page Tables 3 - Override PTE Page Fault Handler Classifier 4 - Shadow Query Shadower KLIMAX Monitor 2 - INT 01 IDT 1 - Single Step Monitored Process User-land (Ring 3) 13

27 ... and it works! Let s poke under the hood of modern browsers... 14

28 KLIMAX for malware with keylogging behavior (1/2) In our previous work [OGC10] we taunted a keylogger with some input that looks real. Our strategy comprised two contemporary phases: Injection phase - the launch of the bait, i.e. the injection of the keystrokes. Monitor phase - in which we monitor all the processes. A third phase, termed Detection phase, flags as a keylogger any process exhibiting high correlation between: The stream of keystrokes we injected. The stream of bytes the process wrote on the hard drive. 15

29 KLIMAX for malware with keylogging behavior (2/2) Our old approach fails against malware postponing the leakage indefinitely (no clear I/O activity). In this scenario we can easily use KLIMAX and its ability to monitor each memory write. Windows Kernel (Ring 0) Classifier Shadower KLIMAX Monitor 3a - Sample Injected 3b - Memory Writes Injector Memory Writes 2 - Injection Pattern 4 - Writes Counters 1 - Attach to Process Monitored Process Detector User-land (Ring 3) 16

30 Evaluation - False Positives We tested the worst case scenario, e.g. shortcut managers. Keylogger Standard API RegisterHotKey Correlation HoeKey 1.13 negligible KeyTweak negligible Hot Key Plus 1.01 negligible AutoHotkey ~1 ZenKEY negligible Acquarius Soft Keyboard Hotkey 2.5 negligible Hotkey Recorder Version 2 - negligible HotKey Magic negligible 17

31 Evaluation - False Positives We tested the worst case scenario, e.g. shortcut managers. Keylogger Standard API RegisterHotKey Correlation HoeKey 1.13 negligible KeyTweak negligible Hot Key Plus 1.01 negligible AutoHotkey ~1 ZenKEY negligible Acquarius Soft Keyboard Hotkey 2.5 negligible Hotkey Recorder Version 2 - negligible HotKey Magic negligible 8 lines for its cfg file makes AutoHotKey a KeyLogger 17

32 Evaluation - False Negatives Keylogger Keylogging API API used Correlation Backdoor.Win32.Poison.pg ~1 Trojan-Downloader.Win32.Zlob.vzd - - negligible Monitor.Win32.Perflogger.ca - - negligible Suspicious.Graybird negligible Trojan-Spy.Win32.SCKeyLog.am - - negligible Backdoor.Win32.IRCBot.ebt - - negligible Worm.MSIL.PSW.d 0.74 Worm.Win32.Fujack.cr - - negligible BackDoor.Generic9.MQL ~1 Trojan.Win32.Agent.arim - - negligible PSW.Agent.7.AH 0.78 Worm.Win32.AutoRun.adro - - negligible Trojan.Win32.Delf.eq - - negligible Net-Worm.Win32.Mytob.jxu - - negligible Trojan-Spy.Win32.SCKeyLog.au - - negligible Backdoor.Ciadoor 0.98 Backdoor.Win32.Agent.su - negligible Backdoor.Win32.G_Spot negligible Trojan-Spy.MSIL.KeyLogger.oa - negligible Downloader.Rozena - - negligible Downloader.Banload.BDRQ - - negligible Heur.Trojan.Generic - - negligible PSW.Generic7.BNDX - - negligible 25 Samples from the Sandnet dataset. [Ross11] 18

33 Conclusions Two main modes of detection: Proactive detection - controlled by the user. Reactive detection - monitors the processes that register the keylogging callback. Promising results from our evaluation against real-world malware. False positives are due to poor programming practices. Detecting keylogging malware is just the first application of KLIMAX. KLIMAX can successfully monitor complex applications like modern web browsers. More tuning-up is needed to improve the performance (e.g. overriding the writable bit). 19

34 Thanks for your attention! Any questions? [OGC11] - Ortolani et al. - Bait your Hook: A Novel Detection Technique for Keyloggers [Ros11] - Rossow et al. - Sandnet: Network Traffic Analysis of Malicious Software. 20

Lecture 10. Pointless Tainting? Evaluating the Practicality of Pointer Tainting. Asia Slowinska, Herbert Bos. Advanced Operating Systems

Lecture 10. Pointless Tainting? Evaluating the Practicality of Pointer Tainting. Asia Slowinska, Herbert Bos. Advanced Operating Systems Lecture 10 Pointless Tainting? Evaluating the Practicality of Pointer Tainting Asia Slowinska, Herbert Bos Advanced Operating Systems December 15, 2010 SOA/OS Lecture 10, Pointer Tainting 1/40 Introduction

More information

KASPERSKY FRAUD PREVENTION FOR ENDPOINTS

KASPERSKY FRAUD PREVENTION FOR ENDPOINTS KASPERSKY FRAUD PREVENTION FOR ENDPOINTS www.kaspersky.com KASPERSKY FRAUD PREVENTION 1. Ways of Attacking Online Banking The prime motive behind cybercrime is making money and today s sophisticated criminal

More information

Application Fault Tolerance Using Continuous Checkpoint/Restart

Application Fault Tolerance Using Continuous Checkpoint/Restart Application Fault Tolerance Using Continuous Checkpoint/Restart Tomoki Sekiyama Linux Technology Center Yokohama Research Laboratory Hitachi Ltd. Outline 1. Overview of Application Fault Tolerance and

More information

Sistemi in Tempo Reale

Sistemi in Tempo Reale Laurea Specialistica in Ingegneria dell'automazione Sistemi in Tempo Reale Giuseppe Lipari Introduzione alla concorrenza Fundamentals Algorithm: It is the logical procedure to solve a certain problem It

More information

Buffer overflow background

Buffer overflow background and heap buffer background Comp Sci 3600 Security Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Address Space and heap buffer

More information

The Kernel Abstraction. Chapter 2 OSPP Part I

The Kernel Abstraction. Chapter 2 OSPP Part I The Kernel Abstraction Chapter 2 OSPP Part I Kernel The software component that controls the hardware directly, and implements the core privileged OS functions. Modern hardware has features that allow

More information

Malware

Malware reloaded Malware Research Team @ @xabiugarte Motivation Design principles / architecture Features Use cases Future work Dynamic Binary Instrumentation Techniques to trace the execution of a binary (or

More information

Processes. Johan Montelius KTH

Processes. Johan Montelius KTH Processes Johan Montelius KTH 2017 1 / 47 A process What is a process?... a computation a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other

More information

Future Work. Build applications that use extensions to optimize performance. Interface design.

Future Work. Build applications that use extensions to optimize performance. Interface design. Future Work Finish building VINO. Networking. Naming. Build applications that use extensions to optimize performance. Interface design. What types of extensions actually get used? Revisit flexibility vs.

More information

A process. the stack

A process. the stack A process Processes Johan Montelius What is a process?... a computation KTH 2017 a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other processes

More information

Advances in Linux process forensics with ECFS

Advances in Linux process forensics with ECFS Advances in Linux process forensics with ECFS Quick history Wanted to design a process snapshot format native to VMA Vudu http://www.bitlackeys.org/#vmavudu ECFS proved useful for other projects as well

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems. Robert Grimm University of Washington

Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems. Robert Grimm University of Washington Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems Robert Grimm University of Washington Extensions Added to running system Interact through low-latency interfaces Form

More information

CSE 451 Autumn Final Solutions mean 77.53, median 79, stdev 12.03

CSE 451 Autumn Final Solutions mean 77.53, median 79, stdev 12.03 CSE 451 Autumn 2016 Final Solutions 15 10 5 0 0 10 20 30 40 50 60 70 80 90 100 mean 77.53, median 79, stdev 12.03 I. Warm-up (a) (15 points) Circle true or false for each statement (no need to justify

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

Undermining Information Hiding (And What to do About it)

Undermining Information Hiding (And What to do About it) Undermining Information Hiding (And What to do About it) Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios Portokalidis, Cristiano Giuffrida, Herbert Bos Overview Mitigating

More information

CSCE 410/611: Virtualization

CSCE 410/611: Virtualization CSCE 410/611: Virtualization Definitions, Terminology Why Virtual Machines? Mechanics of Virtualization Virtualization of Resources (Memory) Some slides made available Courtesy of Gernot Heiser, UNSW.

More information

CS140 Operating Systems Final December 12, 2007 OPEN BOOK, OPEN NOTES

CS140 Operating Systems Final December 12, 2007 OPEN BOOK, OPEN NOTES CS140 Operating Systems Final December 12, 2007 OPEN BOOK, OPEN NOTES Your name: SUNet ID: In accordance with both the letter and the spirit of the Stanford Honor Code, I did not cheat on this exam. Furthermore,

More information

CONSTRUCTION OF A HIGHLY DEPENDABLE OPERATING SYSTEM

CONSTRUCTION OF A HIGHLY DEPENDABLE OPERATING SYSTEM CONSTRUCTION OF A HIGHLY DEPENDABLE OPERATING SYSTEM 6th European Dependable Computing Conference Coimbra, Portugal October 18 20, 2006 Jorrit N. Herder Dept. of Computer Science Vrije Universiteit Amsterdam

More information

Rootkits n Stuff

Rootkits n Stuff Rootkits n Stuff www.sigmil.org What a rootkit is(n t) IS Software intended to conceal running processes, files, etc from the OS A way to maintain control of a system after compromising it. ISN T A buffer

More information

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay Lecture 4: Mechanism of process execution Mythili Vutukuru IIT Bombay Low-level mechanisms How does the OS run a process? How does it handle a system call? How does it context switch from one process to

More information

Intrusion Detection and Malware Analysis

Intrusion Detection and Malware Analysis Intrusion Detection and Malware Analysis Host Based Attacks Pavel Laskov Wilhelm Schickard Institute for Computer Science Software security threats Modification of program code viruses and self-replicating

More information

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory Commercial Real-time Operating Systems An Introduction Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory swamis@iastate.edu Outline Introduction RTOS Issues and functionalities LynxOS

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Recap Paged MMU: Two main Issues Translation speed can be slow TLB Table size is big Multi-level page table

More information

Lecture 21: Virtual Memory. Spring 2018 Jason Tang

Lecture 21: Virtual Memory. Spring 2018 Jason Tang Lecture 21: Virtual Memory Spring 2018 Jason Tang 1 Topics Virtual addressing Page tables Translation lookaside buffer 2 Computer Organization Computer Processor Memory Devices Control Datapath Input Output

More information

CS 261 Fall Mike Lam, Professor. Virtual Memory

CS 261 Fall Mike Lam, Professor. Virtual Memory CS 261 Fall 2016 Mike Lam, Professor Virtual Memory Topics Operating systems Address spaces Virtual memory Address translation Memory allocation Lingering questions What happens when you call malloc()?

More information

Extensible Network Security Services on Software Programmable Router OS. David Yau, Prem Gopalan, Seung Chul Han, Feng Liang

Extensible Network Security Services on Software Programmable Router OS. David Yau, Prem Gopalan, Seung Chul Han, Feng Liang Extensible Network Security Services on Software Programmable Router OS David Yau, Prem Gopalan, Seung Chul Han, Feng Liang System Software and Architecture Lab Department of Computer Sciences Purdue University

More information

CSE543 - Computer and Network Security Module: Virtualization

CSE543 - Computer and Network Security Module: Virtualization CSE543 - Computer and Network Security Module: Virtualization Professor Trent Jaeger CSE543 - Introduction to Computer and Network Security 1 Operating System Quandary Q: What is the primary goal of system

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

CSE543 - Computer and Network Security Module: Virtualization

CSE543 - Computer and Network Security Module: Virtualization CSE543 - Computer and Network Security Module: Virtualization Professor Trent Jaeger CSE543 - Introduction to Computer and Network Security 1 1 Operating System Quandary Q: What is the primary goal of

More information

Native POSIX Thread Library (NPTL) CSE 506 Don Porter

Native POSIX Thread Library (NPTL) CSE 506 Don Porter Native POSIX Thread Library (NPTL) CSE 506 Don Porter Logical Diagram Binary Memory Threads Formats Allocators Today s Lecture Scheduling System Calls threads RCU File System Networking Sync User Kernel

More information

10/10/ Gribble, Lazowska, Levy, Zahorjan 2. 10/10/ Gribble, Lazowska, Levy, Zahorjan 4

10/10/ Gribble, Lazowska, Levy, Zahorjan 2. 10/10/ Gribble, Lazowska, Levy, Zahorjan 4 What s in a process? CSE 451: Operating Systems Autumn 2010 Module 5 Threads Ed Lazowska lazowska@cs.washington.edu Allen Center 570 A process consists of (at least): An, containing the code (instructions)

More information

What s in a process?

What s in a process? CSE 451: Operating Systems Winter 2015 Module 5 Threads Mark Zbikowski mzbik@cs.washington.edu Allen Center 476 2013 Gribble, Lazowska, Levy, Zahorjan What s in a process? A process consists of (at least):

More information

Fall 2017 :: CSE 306. Introduction to. Virtual Memory. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau)

Fall 2017 :: CSE 306. Introduction to. Virtual Memory. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Introduction to Virtual Memory Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Motivating Virtual Memory (Very) old days: Uniprogramming only one process existed at a time OS was little

More information

Advanced Systems Security: Program Diversity

Advanced Systems Security: Program Diversity Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

Nooks. Robert Grimm New York University

Nooks. Robert Grimm New York University Nooks Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? Design and Implementation Nooks Overview An isolation

More information

Distributed Systems Operation System Support

Distributed Systems Operation System Support Hajussüsteemid MTAT.08.009 Distributed Systems Operation System Support slides are adopted from: lecture: Operating System(OS) support (years 2016, 2017) book: Distributed Systems: Concepts and Design,

More information

What s in a traditional process? Concurrency/Parallelism. What s needed? CSE 451: Operating Systems Autumn 2012

What s in a traditional process? Concurrency/Parallelism. What s needed? CSE 451: Operating Systems Autumn 2012 What s in a traditional process? CSE 451: Operating Systems Autumn 2012 Ed Lazowska lazowska @cs.washi ngton.edu Allen Center 570 A process consists of (at least): An, containing the code (instructions)

More information

How to Sandbox IIS Automatically without 0 False Positive and Negative

How to Sandbox IIS Automatically without 0 False Positive and Negative How to Sandbox IIS Automatically without 0 False Positive and Negative Professor Tzi-cker Chiueh Computer Science Department Stony Brook University chiueh@cs.sunysb.edu 1/10/06 Blackhat Federal 2006 1

More information

Bypassing Browser Memory Protections

Bypassing Browser Memory Protections Bypassing Browser Memory Protections Network Security Instructor: Dr. Shishir Nagaraja September 10, 2011. 1 Introduction to the topic A number of memory protection mechanisms like GS, SafeSEH, DEP and

More information

CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio

CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio Fall 2017 1 Outline Inter-Process Communication (20) Threads

More information

Play with FILE Structure Yet Another Binary Exploitation Technique. Abstract

Play with FILE Structure Yet Another Binary Exploitation Technique. Abstract Play with FILE Structure Yet Another Binary Exploitation Technique An-Jie Yang (Angelboy) angelboy@chroot.org Abstract To fight against prevalent cyber threat, more mechanisms to protect operating systems

More information

The Kernel Abstraction

The Kernel Abstraction The Kernel Abstraction Debugging as Engineering Much of your time in this course will be spent debugging In industry, 50% of software dev is debugging Even more for kernel development How do you reduce

More information

PRACTICAL CONTROL FLOW INTEGRITY & RANDOMIZATION FOR BINARY EXECUTABLES

PRACTICAL CONTROL FLOW INTEGRITY & RANDOMIZATION FOR BINARY EXECUTABLES PRACTICAL CONTROL FLOW INTEGRITY & RANDOMIZATION FOR BINARY EXECUTABLES Christos Tselas, AM:875 Elisjana Ymeralli, AM:801 Ioanna Ramoutsaki, AM: 812 Vasilis Glabedakis, AM: 2921 cs-457 Department: Computer

More information

CSE 509: Computer Security

CSE 509: Computer Security CSE 509: Computer Security Date: 2.16.2009 BUFFER OVERFLOWS: input data Server running a daemon Attacker Code The attacker sends data to the daemon process running at the server side and could thus trigger

More information

Concurrent programming: Introduction II. Anna Lina Ruscelli Scuola Superiore Sant Anna

Concurrent programming: Introduction II. Anna Lina Ruscelli Scuola Superiore Sant Anna Concurrent programming: Introduction II Anna Lina Ruscelli Scuola Superiore Sant Anna Outline Concepts of Process Thread Mode switch Process switch Introduction to competition and collaboration 2 Computer

More information

SHADOW WALKER Raising The Bar For Rootkit Detection. By Sherri Sparks Jamie Butler

SHADOW WALKER Raising The Bar For Rootkit Detection. By Sherri Sparks Jamie Butler SHADOW WALKER Raising The Bar For Rootkit Detection By Sherri Sparks ssparks@longwood.cs.ucf.edu Jamie Butler james.butler@hbgary.com What Is A Rootkit? Defining characteristic is stealth. Viruses reproduce,

More information

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19 PROCESS VIRTUAL MEMORY PART 2 CS24 Operating Systems Winter 25-26, Lecture 9 2 Virtual Memory Abstraction Last time, officially introduced concept of virtual memory Programs use virtual addresses to refer

More information

Protection. OS central role. Fundamental to other OS goals. OS kernel. isolation of misbehaving applications. Relaibility Security Privacy fairness

Protection. OS central role. Fundamental to other OS goals. OS kernel. isolation of misbehaving applications. Relaibility Security Privacy fairness Protection OS central role isolation of misbehaving applications Fundamental to other OS goals Relaibility Security Privacy fairness OS kernel implements protection lowest level SW runnig on the syste

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Demand paging Concepts to Learn 2 Abstraction Virtual Memory (VM) 4GB linear address space for each process

More information

Background. IBM sold expensive mainframes to large organizations. Monitor sits between one or more OSes and HW

Background. IBM sold expensive mainframes to large organizations. Monitor sits between one or more OSes and HW Virtual Machines Background IBM sold expensive mainframes to large organizations Some wanted to run different OSes at the same time (because applications were developed on old OSes) Solution: IBM developed

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Silberschatz, Galvin and Gagne 2013! Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples

More information

Implementing your own generic unpacker

Implementing your own generic unpacker HITB Singapore 2015 Julien Lenoir - julien.lenoir@airbus.com October 14, 2015 Outline 1 Introduction 2 Test driven design 3 Fine tune algorithm 4 Demo 5 Results 6 Conclusion October 14, 2015 2 Outline

More information

Asynchronous Events on Linux

Asynchronous Events on Linux Asynchronous Events on Linux Frederic.Rossi@Ericsson.CA Open System Lab Systems Research June 25, 2002 Ericsson Research Canada Introduction Linux performs well as a general purpose OS but doesn t satisfy

More information

Processes (Intro) Yannis Smaragdakis, U. Athens

Processes (Intro) Yannis Smaragdakis, U. Athens Processes (Intro) Yannis Smaragdakis, U. Athens Process: CPU Virtualization Process = Program, instantiated has memory, code, current state What kind of memory do we have? registers + address space Let's

More information

[537] Virtual Machines. Tyler Harter

[537] Virtual Machines. Tyler Harter [537] Virtual Machines Tyler Harter Outline Machine Virtualization Overview CPU Virtualization (Trap-and-Emulate) CPU Virtualization (Modern x86) Memory Virtualization Performance Challenges Outline Machine

More information

A Novel Approach to Explain the Detection of Memory Errors and Execution on Different Application Using Dr Memory.

A Novel Approach to Explain the Detection of Memory Errors and Execution on Different Application Using Dr Memory. A Novel Approach to Explain the Detection of Memory Errors and Execution on Different Application Using Dr Memory. Yashaswini J 1, Tripathi Ashish Ashok 2 1, 2 School of computer science and engineering,

More information

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Objectives To introduce the notion of a

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole The Process Concept 2 The Process Concept Process a program in execution Program - description of how to perform an activity instructions and static

More information

The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007

The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007 15-410...The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007 Dave Eckhardt Bruce Maggs 1 L16_VM2 Wean Synchronization Watch for exam e-mail Please answer promptly Computer Club demo night Thursday (2/22)

More information

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed Process Management CS 537 Lecture 3: Processes Michael Swift This lecture begins a series of topics on processes, threads, and synchronization Today: processes and process management what are the OS units

More information

Threads. Raju Pandey Department of Computer Sciences University of California, Davis Spring 2011

Threads. Raju Pandey Department of Computer Sciences University of California, Davis Spring 2011 Threads Raju Pandey Department of Computer Sciences University of California, Davis Spring 2011 Threads Effectiveness of parallel computing depends on the performance of the primitives used to express

More information

Buffer overflow prevention, and other attacks

Buffer overflow prevention, and other attacks Buffer prevention, and other attacks Comp Sci 3600 Security Outline 1 2 Two approaches to buffer defense Aim to harden programs to resist attacks in new programs Run time Aim to detect and abort attacks

More information

Process size is independent of the main memory present in the system.

Process size is independent of the main memory present in the system. Hardware control structure Two characteristics are key to paging and segmentation: 1. All memory references are logical addresses within a process which are dynamically converted into physical at run time.

More information

CSCE 410/611: Virtualization!

CSCE 410/611: Virtualization! CSCE 410/611: Virtualization! Definitions, Terminology! Why Virtual Machines?! Mechanics of Virtualization! Virtualization of Resources (Memory)! Some slides made available Courtesy of Gernot Heiser, UNSW.!

More information

CISC2200 Threads Spring 2015

CISC2200 Threads Spring 2015 CISC2200 Threads Spring 2015 Process We learn the concept of process A program in execution A process owns some resources A process executes a program => execution state, PC, We learn that bash creates

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 208 Lecture 23 LAST TIME: VIRTUAL MEMORY Began to focus on how to virtualize memory Instead of directly addressing physical memory, introduce a level of indirection

More information

BlackBox. Lightweight Security Monitoring for COTS Binaries. Byron Hawkins and Brian Demsky University of California, Irvine, USA

BlackBox. Lightweight Security Monitoring for COTS Binaries. Byron Hawkins and Brian Demsky University of California, Irvine, USA BlackBox Lightweight Security Monitoring for COTS Binaries Byron Hawkins and Brian Demsky University of California, Irvine, USA Michael B. Taylor University of California, San Diego, USA Why Security Monitoring?

More information

Interrupts, Fork, I/O Basics

Interrupts, Fork, I/O Basics Interrupts, Fork, I/O Basics 12 November 2017 Lecture 4 Slides adapted from John Kubiatowicz (UC Berkeley) 12 Nov 2017 SE 317: Operating Systems 1 Topics for Today Interrupts Native control of Process

More information

in memory: an evolution of attacks Mathias Payer Purdue University

in memory: an evolution of attacks Mathias Payer Purdue University in memory: an evolution of attacks Mathias Payer Purdue University Images (c) MGM, WarGames, 1983 Memory attacks: an ongoing war Vulnerability classes according to CVE Memory

More information

CPSC/ECE 3220 Fall 2017 Exam Give the definition (note: not the roles) for an operating system as stated in the textbook. (2 pts.

CPSC/ECE 3220 Fall 2017 Exam Give the definition (note: not the roles) for an operating system as stated in the textbook. (2 pts. CPSC/ECE 3220 Fall 2017 Exam 1 Name: 1. Give the definition (note: not the roles) for an operating system as stated in the textbook. (2 pts.) Referee / Illusionist / Glue. Circle only one of R, I, or G.

More information

W4118 Operating Systems. Junfeng Yang

W4118 Operating Systems. Junfeng Yang W4118 Operating Systems Junfeng Yang What is a process? Outline Process dispatching Common process operations Inter-process Communication What is a process Program in execution virtual CPU Process: an

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 13: I/O Systems Zhi Wang Florida State University Content I/O hardware Application I/O interface Kernel I/O subsystem I/O performance Objectives

More information

CS 326: Operating Systems. Process Execution. Lecture 5

CS 326: Operating Systems. Process Execution. Lecture 5 CS 326: Operating Systems Process Execution Lecture 5 Today s Schedule Process Creation Threads Limited Direct Execution Basic Scheduling 2/5/18 CS 326: Operating Systems 2 Today s Schedule Process Creation

More information

CS333 Intro to Operating Systems. Jonathan Walpole

CS333 Intro to Operating Systems. Jonathan Walpole CS333 Intro to Operating Systems Jonathan Walpole Threads & Concurrency 2 Threads Processes have the following components: - an address space - a collection of operating system state - a CPU context or

More information

VUzzer: Application-Aware Evolutionary Fuzzing

VUzzer: Application-Aware Evolutionary Fuzzing VUzzer: Application-Aware Evolutionary Fuzzing Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cocojar, Cristiano Giuffrida, Herbert Bos (Presenter: Dennis Andriesse ) Vrije Universiteit Amsterdam IIIT

More information

Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races. CS 563 Young Li 10/31/18

Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races. CS 563 Young Li 10/31/18 Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races CS 563 Young Li 10/31/18 Intel Software Guard extensions (SGX) and Hyper-Threading What is Intel SGX? Set of

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Scuola Superiore Sant Anna. I/O subsystem. Giuseppe Lipari

Scuola Superiore Sant Anna. I/O subsystem. Giuseppe Lipari Scuola Superiore Sant Anna I/O subsystem Giuseppe Lipari Input Output and Device Drivers ERI Gennaio 2008 2 Objectives of the I/O subsystem To hide the complexity From the variability of the devices Provide

More information

Linux and Xen. Andrea Sarro. andrea.sarro(at)quadrics.it. Linux Kernel Hacking Free Course IV Edition

Linux and Xen. Andrea Sarro. andrea.sarro(at)quadrics.it. Linux Kernel Hacking Free Course IV Edition Linux and Xen Andrea Sarro andrea.sarro(at)quadrics.it Linux Kernel Hacking Free Course IV Edition Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 1 / 37 Introduction Xen and Virtualization

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 205 Lecture 23 LAST TIME: VIRTUAL MEMORY! Began to focus on how to virtualize memory! Instead of directly addressing physical memory, introduce a level of

More information

by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha

by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha CS 111 Scribe Notes for 4/11/05 by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha Processes What is a process? A process is a running instance of a program. The Web browser you're using to

More information

CPSC 341 OS & Networks. Processes. Dr. Yingwu Zhu

CPSC 341 OS & Networks. Processes. Dr. Yingwu Zhu CPSC 341 OS & Networks Processes Dr. Yingwu Zhu Process Concept Process a program in execution What is not a process? -- program on a disk A process is an active object, but a program is just a file It

More information

CrashMonkey: A Framework to Systematically Test File-System Crash Consistency. Ashlie Martinez Vijay Chidambaram University of Texas at Austin

CrashMonkey: A Framework to Systematically Test File-System Crash Consistency. Ashlie Martinez Vijay Chidambaram University of Texas at Austin CrashMonkey: A Framework to Systematically Test File-System Crash Consistency Ashlie Martinez Vijay Chidambaram University of Texas at Austin Crash Consistency File-system updates change multiple blocks

More information

Practical Keystroke Timing Attacks in Sandboxed JavaScript

Practical Keystroke Timing Attacks in Sandboxed JavaScript Practical Keystroke Timing Attacks in Sandboxed JavaScript M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard Sep 11, 2017 ESORICS 17 Graz University of Technology Motivation Keystroke timing

More information

KE IMu API Technical Overview

KE IMu API Technical Overview IMu Documentation KE IMu API Technical Overview Document Version 1.1 IMu Version 1.0.03 Page 1 Contents SECTION 1 Introduction 1 SECTION 2 IMu architecture 3 IMu Server 3 IMu Handlers 3 Schematic 4 SECTION

More information

Today s Topics. u Thread implementation. l Non-preemptive versus preemptive threads. l Kernel vs. user threads

Today s Topics. u Thread implementation. l Non-preemptive versus preemptive threads. l Kernel vs. user threads Today s Topics COS 318: Operating Systems Implementing Threads u Thread implementation l Non-preemptive versus preemptive threads l Kernel vs. user threads Jaswinder Pal Singh and a Fabulous Course Staff

More information

CS 350 Winter 2011 Current Topics: Virtual Machines + Solid State Drives

CS 350 Winter 2011 Current Topics: Virtual Machines + Solid State Drives CS 350 Winter 2011 Current Topics: Virtual Machines + Solid State Drives Virtual Machines Resource Virtualization Separating the abstract view of computing resources from the implementation of these resources

More information

Virtual Memory I. Jo, Heeseung

Virtual Memory I. Jo, Heeseung Virtual Memory I Jo, Heeseung Today's Topics Virtual memory implementation Paging Segmentation 2 Paging Introduction Physical memory Process A Virtual memory Page 3 Page 2 Frame 11 Frame 10 Frame 9 4KB

More information

Xen and the Art of Virtualization. CSE-291 (Cloud Computing) Fall 2016

Xen and the Art of Virtualization. CSE-291 (Cloud Computing) Fall 2016 Xen and the Art of Virtualization CSE-291 (Cloud Computing) Fall 2016 Why Virtualization? Share resources among many uses Allow heterogeneity in environments Allow differences in host and guest Provide

More information

ReDroid: Prioritizing Data Flows and Sinks for App Security Transformation

ReDroid: Prioritizing Data Flows and Sinks for App Security Transformation FEAST 2017 ReDroid: Prioritizing Data Flows and Sinks for App Security Transformation Ke Tian*, Gang Tan^, Daphne Yao*, Barbara Ryder* *Department of Computer Science Virginia Tech ^Department of CSE Penn

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2011 CS 161 Computer Security Discussion 1 January 26, 2011 Question 1 Buffer Overflow Mitigations Buffer overflow mitigations generally fall into two categories: (i) eliminating the cause

More information

Fault Isolation for Device Drivers

Fault Isolation for Device Drivers Fault Isolation for Device Drivers 39 th International Conference on Dependable Systems and Networks, 30 June 2009, Estoril Lisbon, Portugal Jorrit N. Herder Vrije Universiteit Amsterdam ~26% of Windows

More information

Practical Malware Analysis

Practical Malware Analysis Practical Malware Analysis Ch 4: A Crash Course in x86 Disassembly Revised 1-16-7 Basic Techniques Basic static analysis Looks at malware from the outside Basic dynamic analysis Only shows you how the

More information

SANDPIPER: BLACK-BOX AND GRAY-BOX STRATEGIES FOR VIRTUAL MACHINE MIGRATION

SANDPIPER: BLACK-BOX AND GRAY-BOX STRATEGIES FOR VIRTUAL MACHINE MIGRATION SANDPIPER: BLACK-BOX AND GRAY-BOX STRATEGIES FOR VIRTUAL MACHINE MIGRATION Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif * University of Massachusetts Amherst * Intel, Portland Data

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

4.8 Summary. Practice Exercises

4.8 Summary. Practice Exercises Practice Exercises 191 structures of the parent process. A new task is also created when the clone() system call is made. However, rather than copying all data structures, the new task points to the data

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

0x1A Great Papers in Computer Security

0x1A Great Papers in Computer Security CS 380S 0x1A Great Papers in Computer Security Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs380s/ slide 1 Reference Monitor Observes execution of the program/process At what level? Possibilities:

More information

I/O virtualization. Jiang, Yunhong Yang, Xiaowei Software and Service Group 2009 虚拟化技术全国高校师资研讨班

I/O virtualization. Jiang, Yunhong Yang, Xiaowei Software and Service Group 2009 虚拟化技术全国高校师资研讨班 I/O virtualization Jiang, Yunhong Yang, Xiaowei 1 Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

More information