VUzzer: Application-Aware Evolutionary Fuzzing

Size: px
Start display at page:

Download "VUzzer: Application-Aware Evolutionary Fuzzing"

Transcription

1 VUzzer: Application-Aware Evolutionary Fuzzing Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cocojar, Cristiano Giuffrida, Herbert Bos (Presenter: Dennis Andriesse ) Vrije Universiteit Amsterdam IIIT Hyderabad NDSS 2017

2 Introduction Fuzzing is a powerful testing technique Generate/transform inputs to trigger bugs Fuzzers like AFL very successful in finding (low-hanging) bugs Deep bugs are harder! read(fd, buf, size); 3 if(buf[5] == 0xD8 && buf[4] == 0xFF) // notice the order of CMPs 4... some useful code... 5 else 6 EXIT_ERROR("Invalid file\n") AFL spends hours trying to enter the if branch Must guess which offsets to mutate Must guess the exact sequence 0xFFD8 VUzzer: Application-Aware Evolutionary Fuzzing 1 of 11

3 Introduction 1 int main(int argc, char **argv) { 2 unsigned char buf[1000]; 3 int i, fd, size, val; 4 if((fd = open(argv[1], O_RDONLY)) == 1) 5 exit(0); 6 fstat(fd, &s); 7 size = s.st_size; 8 if(size > 1000) 9 return 1; 10 read(fd, buf, size); 11 if(buf[1] == 0xEF && buf[0] == 0xFD) // notice the order of CMPs 12 printf("magic bytes matched!\n"); 13 else 14 EXIT_ERROR("Invalid file\n"); 15 if(buf[10] == % && buf[11] ) { 16 printf("2nd stop: on the way...\n"); 17 if(strncmp(&buf[15], "MAZE", 4) == 0) // nested IF some bug here else { 20 printf("you just missed me...\n"); some other task close(fd); return 0; 23 } 24 } else { 25 ERROR("Invalid bytes"); some other task close(fd); return 0; 28 } 29 close(fd); return 0; 30 } Finding deeply nested bugs infeasible with current approaches VUzzer: Application-Aware Evolutionary Fuzzing 2 of 11

4 Overview We introduce VUzzer, a mutation-based graybox fuzzer Key idea: find out where to mutate, and what to insert Evolutionary fuzzing: mutate/select most promising paths Magic byte detection: find magic bytes in inputs (JPG, ELF, PE, BMP,...) to delve deeper into bug-prone code like parsers Limited input type detection: detect that parts of input are integers, to aid mutation Find deeply nested bugs without wasting time on boring paths Limit usage of non-scalable techniques (DTA, symbex) VUzzer: Application-Aware Evolutionary Fuzzing 3 of 11

5 The VUzzer Approach Evolutionary Fuzzing Loop BB monitoring DTA evolutionary fuzzing loop close Test case Application binary Error BBs Executed BBs Append input Static analysis BB weights CMP imm Fitness function Fitness list Interesting offsets detection Magic bytes LEA offsets Crossover Mutation 1. Lightweight intraprocedural static analysis to find magic immediates and calculate BB weights (for path prioritization) Instrument cmp to detect comparisons against magic bytes Instrument lea to find input bytes used as index Model CFG as Markov model to compute probability of reaching each BB Unlikely BBs get higher weight VUzzer: Application-Aware Evolutionary Fuzzing 4 of 11

6 The VUzzer Approach Evolutionary Fuzzing Loop BB monitoring DTA evolutionary fuzzing loop close Test case Application binary Error BBs Executed BBs Append input Static analysis BB weights CMP imm Fitness function Fitness list Interesting offsets detection Magic bytes LEA offsets Crossover Mutation 2. Run application with seed inputs to infer initial control-/data-flow features Taint analysis used to find magic bytes and integer fields in input Use this knowledge for mutating input in later steps Detect suspected error-handling BBs Covered by totally random inputs, but not by known valid inputs Given a negative weight (avoid dead ends ) VUzzer: Application-Aware Evolutionary Fuzzing 5 of 11

7 The VUzzer Approach Evolutionary Fuzzing Loop BB monitoring DTA evolutionary fuzzing loop close Test case Application binary Error BBs Executed BBs Append input Static analysis BB weights CMP imm Fitness function Fitness list Interesting offsets detection Magic bytes LEA offsets Crossover Mutation 3. Main evolutionary loop: 1 Recombine/mutate inputs to form new inputs 2 Run application with new inputs 3 New BBs seen? Use DTA to infer more structural properties 4 Calculate fitness of inputs based on likelihood of paths covered 5 Select fittest inputs for next iteration VUzzer: Application-Aware Evolutionary Fuzzing 6 of 11

8 Evaluation Relative number of inputs executed (%) VUzzer AFLPIN Compared VUzzer against AFL for DARPA CGC dataset VUzzer requires far fewer inputs than AFL to find bugs VUzzer: Application-Aware Evolutionary Fuzzing 7 of 11

9 Evaluation LAVA-M DATASET : PERFORMANCE OF VUZZER COMPARED TO PRIOR APPROACHES. Program Total bugs FUZZER SES VUzzer (unique bugs, total inputs) uniq (27K) base (14k) md5sum who (5.8K) LAVA-M dataset: VUzzer finds more bugs than existing coverage-based (FUZZER) and symbex/sat-based (SES) approaches VUzzer: Application-Aware Evolutionary Fuzzing 8 of 11

10 Evaluation VA DATASET : PERFORMANCE OF VUZZER VS. AFL. Application VUzzer AFL #Unique crashes #Inputs #Unique crashes #Inputs mpg K K gif2png+libpng K M pdf2svg+libpoppler 13 5K 0 923K tcpdump+libpcap K M tcptrace+libpcap K M djpeg+libjpeg 1 90K M Found more bugs with fewer inputs compared to AFL for VA dataset (various applications) VUzzer: Application-Aware Evolutionary Fuzzing 9 of 11

11 Evaluation Number of crashes time (hours) mpg time (hours) gif2png VUzzer AFL Time taken by VUzzer to find all crashes found by AFL time (hours) tcpttrace Crashes found faster, with more consistent forward progress VUzzer: Application-Aware Evolutionary Fuzzing 10 of 11

12 Conclusion Designed novel fuzzing approach based on evolutionary approach Effective DTA-based heuristics for identifying magic bytes and input structure More effective mutation of inputs BB prioritization to avoid dead ends Find more bugs with orders of magnitude fewer inputs than existing approaches VUzzer released open source VUzzer: Application-Aware Evolutionary Fuzzing 11 of 11

KLEE Workshop Feeding the Fuzzers. with KLEE. Marek Zmysłowski MOBILE SECURITY TEAM R&D INSTITUTE POLAND

KLEE Workshop Feeding the Fuzzers. with KLEE. Marek Zmysłowski MOBILE SECURITY TEAM R&D INSTITUTE POLAND Feeding the Fuzzers with KLEE Marek Zmysłowski MOBILE SECURITY TEAM R&D INSTITUTE POLAND This presentation was created with help and commitment of the Samsung R&D Poland Mobile Security team. KLEE and

More information

Grey-box Concolic Testing on Binary Code

Grey-box Concolic Testing on Binary Code Grey-box Concolic Testing on Binary Code Jaeseung Choi KAIST Daejeon, Republic of Korea jschoi17@kaist.ac.kr Joonun Jang Samsung Research Seoul, Republic of Korea joonun.jang@samsung.com Choongwoo Han

More information

Guarding Vulnerable Code: Module 1: Sanitization. Mathias Payer, Purdue University

Guarding Vulnerable Code: Module 1: Sanitization. Mathias Payer, Purdue University Guarding Vulnerable Code: Module 1: Sanitization Mathias Payer, Purdue University http://hexhive.github.io 1 Vulnerabilities everywhere? 2 Common Languages: TIOBE 18 Jul 2018 Jul 2017 Change Language 1

More information

arxiv: v2 [cs.cr] 27 Mar 2018

arxiv: v2 [cs.cr] 27 Mar 2018 To appear in the 39th IEEE Symposium on Security and Privacy, May 21 23, 2018, San Francisco, CA, USA Angora: Efficient Fuzzing by Principled Search Peng Chen ShanghaiTech University chenpeng@shanghaitech.edu.cn

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 16: Building Secure Software Department of Computer Science and Engineering University at Buffalo 1 Review A large number of software vulnerabilities various

More information

Security Testing. Ulf Kargén Department of Computer and Information Science (IDA) Division for Database and Information Techniques (ADIT)

Security Testing. Ulf Kargén Department of Computer and Information Science (IDA) Division for Database and Information Techniques (ADIT) Security Testing TDDC90 Software Security Ulf Kargén Department of Computer and Information Science (IDA) Division for Database and Information Techniques (ADIT) Security testing vs regular testing Regular

More information

Software Security IV: Fuzzing

Software Security IV: Fuzzing 1 Software Security IV: Fuzzing Chengyu Song Slides modified from Dawn Song 2 Administrivia Homework1 Due: Friday Oct 27 11:59pm Questions regarding reading materials Talk Security R&D in a Security Company:

More information

COMP 2355 Introduction to Systems Programming

COMP 2355 Introduction to Systems Programming COMP 2355 Introduction to Systems Programming Christian Grothoff christian@grothoff.org http://grothoff.org/christian/ 1 Functions Similar to (static) methods in Java without the class: int f(int a, int

More information

NEUZZ: Efficient Fuzzing with Neural Program Smoothing

NEUZZ: Efficient Fuzzing with Neural Program Smoothing NEUZZ: Efficient Fuzzing with Neural Program Smoothing Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman Jana Columbia University Abstract Fuzzing has become the de facto standard

More information

Automatic program generation for detecting vulnerabilities and errors in compilers and interpreters

Automatic program generation for detecting vulnerabilities and errors in compilers and interpreters Automatic program generation for detecting vulnerabilities and errors in compilers and interpreters 0368-3500 Nurit Dor Shir Landau-Feibish Noam Rinetzky Preliminaries Students will group in teams of 2-3

More information

Control Flow Hijacking Attacks. Prof. Dr. Michael Backes

Control Flow Hijacking Attacks. Prof. Dr. Michael Backes Control Flow Hijacking Attacks Prof. Dr. Michael Backes Control Flow Hijacking malicious.pdf Contains bug in PDF parser Control of viewer can be hijacked Control Flow Hijacking Principles Normal Control

More information

Compiler-Agnostic Function Detection in Binaries

Compiler-Agnostic Function Detection in Binaries Compiler-Agnostic Function Detection in Binaries Dennis Andriesse, Asia Slowinska, Herbert Bos Vrije Universiteit Amsterdam EuroS&P 2017 Introduction Disassembly in Systems Security Disassembly is the

More information

Software Vulnerability

Software Vulnerability Software Vulnerability Refers to a weakness in a system allowing an attacker to violate the integrity, confidentiality, access control, availability, consistency or audit mechanism of the system or the

More information

Software security, secure programming

Software security, secure programming Software security, secure programming Fuzzing and Dynamic Analysis Master on Cybersecurity Master MoSiG Academic Year 2017-2018 Outline Fuzzing (or how to cheaply produce useful program inputs) A concrete

More information

Dowsing for overflows: a guided fuzzer to find buffer boundary violations

Dowsing for overflows: a guided fuzzer to find buffer boundary violations Dowsing for overflows: a guided fuzzer to find buffer boundary violations István Haller, Asia Slowinska, Matthias Neugschwandtner, Herbert Bos Usenix Security 2013 August 14, 2013 1 / 22 Bugs, bugs everywhere

More information

Automated Whitebox Fuzz Testing. by - Patrice Godefroid, - Michael Y. Levin and - David Molnar

Automated Whitebox Fuzz Testing. by - Patrice Godefroid, - Michael Y. Levin and - David Molnar Automated Whitebox Fuzz Testing by - Patrice Godefroid, - Michael Y. Levin and - David Molnar OUTLINE Introduction Methods Experiments Results Conclusion Introduction Fuzz testing is an effective Software

More information

Reverse Engineering. Class 6. Fuzzing. Reverse Engineering Class 6 Martin Balao martin.uy/reverse v1.0 EN CC BY-SA

Reverse Engineering. Class 6. Fuzzing. Reverse Engineering Class 6 Martin Balao martin.uy/reverse v1.0 EN CC BY-SA Reverse Engineering Class 6 Fuzzing 1 Fuzzing Grey box testing May be guided by reverse engineering Send, in an automatized way, valid and invalid inputs to an application with the goal of triggering bad

More information

15-213/18-243, Spring 2011 Exam 2

15-213/18-243, Spring 2011 Exam 2 Andrew login ID: Full Name: Section: 15-213/18-243, Spring 2011 Exam 2 Thursday, April 21, 2011 v2 Instructions: Make sure that your exam is not missing any sheets, then write your Andrew login ID, full

More information

Automated Whitebox Fuzz Testing

Automated Whitebox Fuzz Testing Automated Whitebox Fuzz Testing ( Research Patrice Godefroid (Microsoft Michael Y. Levin (Microsoft Center for ( Excellence Software David Molnar (UC Berkeley & MSR) Fuzz Testing Send random data to application

More information

MoonShine: Optimizing OS Fuzzer Seed Selection with Trace Distillation. Shankara Pailoor, Andrew Aday, Suman Jana Columbia University

MoonShine: Optimizing OS Fuzzer Seed Selection with Trace Distillation. Shankara Pailoor, Andrew Aday, Suman Jana Columbia University MoonShine: Optimizing OS Fuzzer Seed Selection with Trace Distillation Shankara Pailoor, Andrew Aday, Suman Jana Columbia University 1 OS Fuzzing Popular technique to find OS vulnerabilities Primarily

More information

Adventures in Fuzzing Instruction Selection. 1 EuroLLVM 2017 Justin Bogner

Adventures in Fuzzing Instruction Selection. 1 EuroLLVM 2017 Justin Bogner Adventures in Fuzzing Instruction Selection 1 EuroLLVM 2017 Justin Bogner Overview Hardening instruction selection using fuzzers Motivated by Global ISel Leveraging libfuzzer to find backend bugs Techniques

More information

LAVA: Large-scale Automated Vulnerability Addition

LAVA: Large-scale Automated Vulnerability Addition LAVA: Large-scale Automated Vulnerability Addition Engin Kirda Andrea Mambretti Wil Robertson Northeastern University Brendan Dolan-Gavitt NYU Tandon Patrick Hulin, Tim Leek, Fredrich Ulrich, Ryan Whelan

More information

Triggering Deep Vulnerabilities Using Symbolic Execution

Triggering Deep Vulnerabilities Using Symbolic Execution Triggering Deep Vulnerabilities Using Symbolic Execution Dan Caselden, Alex Bazhanyuk, Mathias Payer, Stephen McCamant, Dawn Song, and many other awesome researchers, coders, and reverse engineers in the

More information

everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int

everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int #include #include #include int open(const char *path, int flags); flagso_rdonly

More information

CSE 333 SECTION 3. POSIX I/O Functions

CSE 333 SECTION 3. POSIX I/O Functions CSE 333 SECTION 3 POSIX I/O Functions Administrivia Questions (?) HW1 Due Tonight Exercise 7 due Monday (out later today) POSIX Portable Operating System Interface Family of standards specified by the

More information

CAP6135: Programming Project 2 (Spring 2010)

CAP6135: Programming Project 2 (Spring 2010) CAP6135: Programming Project 2 (Spring 2010) This project is modified from the programming project 2 in Dr. Dawn Song s course CS161: computer security in Fall 2008: http://inst.eecs.berkeley.edu/~cs161/fa08/

More information

ECE264 Fall 2013 Exam 3, November 20, 2013

ECE264 Fall 2013 Exam 3, November 20, 2013 ECE264 Fall 2013 Exam 3, November 20, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

Rabbit in the Loop. A primer on feedback directed fuzzing using American Fuzzy Lop. by Kevin Läufer

Rabbit in the Loop. A primer on feedback directed fuzzing using American Fuzzy Lop. by Kevin Läufer Rabbit in the Loop A primer on feedback directed fuzzing using American Fuzzy Lop Abstract by Kevin Läufer This guide aims to provide the reader with a good intuition about the

More information

API 퍼징을통한취약점탐지 카이스트 차상길

API 퍼징을통한취약점탐지 카이스트 차상길 API 퍼징을통한취약점탐지 카이스트 차상길 API Fuzzing? void foo(int x) // This is an API function { // (side-effect-free) //... } void fuzz() { while (1) { foo(rand()); } } // Fuzzer MAIN Found a crash in foo when x = 42

More information

CMPSC 497: Static Analysis

CMPSC 497: Static Analysis CMPSC 497: Static Analysis Trent Jaeger Systems and Internet Infrastructure Security (SIIS) Lab Computer Science and Engineering Department Pennsylvania State University Page 1 Our Goal In this course,

More information

logistics: ROP assignment

logistics: ROP assignment bug-finding 1 logistics: ROP assignment 2 2013 memory safety landscape 3 2013 memory safety landscape 4 different design points memory safety most extreme disallow out of bounds usually even making out-of-bounds

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Homework 2 Due: Monday, February 22nd, at 11:59pm Instructions. This homework is due Monday, February 22nd, at 11:59pm. It must be submitted electronically

More information

Why files? 1. Storing a large amount of data 2. Long-term data retention 3. Access to the various processes in parallel

Why files? 1. Storing a large amount of data 2. Long-term data retention 3. Access to the various processes in parallel 1 File System Why files? 1. Storing a large amount of data 2. Long-term data retention 3. Access to the various processes in parallel 2 Basic Terms File Structures Field basic unit of data. Contains single

More information

Taintscope: A Checksum-Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection

Taintscope: A Checksum-Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection : A Checksum-Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection Tielei Wang Tao Wei Guofei Gu Wei Zou March 12, 2014 is: A Fuzzing tool Checksum-Aware Directed Why a new fuzzing

More information

Fuzzing and Patch Analysis: SAGEly Advice

Fuzzing and Patch Analysis: SAGEly Advice Fuzzing and Patch Analysis: SAGEly Advice Introduction Automated Test Generation Goal: Exercise target program to achieve full coverage of all possible states influenced by external input Code graph reachability

More information

Introduction to Symbolic Execution

Introduction to Symbolic Execution Introduction to Symbolic Execution Classic Symbolic Execution 1 Problem 1: Infinite execution path Problem 2: Unsolvable formulas 2 Problem 3: symbolic modeling External function calls and system calls

More information

CS C Primer. Tyler Szepesi. January 16, 2013

CS C Primer. Tyler Szepesi. January 16, 2013 January 16, 2013 Topics 1 Why C? 2 Data Types 3 Memory 4 Files 5 Endianness 6 Resources Why C? C is exteremely flexible and gives control to the programmer Allows users to break rigid rules, which are

More information

Outline. 1 Background. 2 Symbolic Execution. 3 Whitebox Fuzzing. 4 Summary. 1 Cost of each Microsoft Security Bulletin: $Millions

Outline. 1 Background. 2 Symbolic Execution. 3 Whitebox Fuzzing. 4 Summary. 1 Cost of each Microsoft Security Bulletin: $Millions CS 6V81-05: System Security and Malicious Code Analysis and Zhiqiang Lin 1 Background 2 Department of Computer Science University of Texas at Dallas 3 April 9 th, 2012 4 Software security bugs can be very

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Memory, Files and Bitoperations (yaseminb@kth.se) Overview Overview Lecture 11: Memory, Files and Bit operations Main function; reading and writing Bitwise Operations Lecture 11: Memory, Files

More information

Computer Science & Engineering Department I. I. T. Kharagpur

Computer Science & Engineering Department I. I. T. Kharagpur Computer Science & Engineering Department I. I. T. Kharagpur Operating System: CS33007 3rd Year CSE: 5th Semester (Autumn 2006-2007) Lecture III (Linux System Calls II) Goutam Biswas Date: 1st-7th August,

More information

CSE 333 Midterm Exam 2/12/16. Name UW ID#

CSE 333 Midterm Exam 2/12/16. Name UW ID# Name UW ID# There are 6 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed book, closed notes,

More information

Recitation 8: Tshlab + VM

Recitation 8: Tshlab + VM Recitation 8: Tshlab + VM Instructor: TAs 1 Outline Labs Signals IO Virtual Memory 2 TshLab and MallocLab TshLab due Tuesday MallocLab is released immediately after Start early Do the checkpoint first,

More information

KLIMAX: Profiling Memory Write Patterns to Detect Keystroke-Harvesting Malware

KLIMAX: Profiling Memory Write Patterns to Detect Keystroke-Harvesting Malware to Detect Keystroke-Harvesting Malware Menlo Park, 21st September 2011 Stefano Ortolani - ortolani@cs.vu.nl Cristiano Giuffrida - giuffrida@cs.vu.nl Vrije Universiteit Amsterdam, The Netherlands Bruno

More information

finding vulnerabilities

finding vulnerabilities cs6 42 computer security finding vulnerabilities adam everspaugh ace@cs.wisc.edu hw1 Homework 1 will be posted after class today Due: Feb 22 Should be fun! TAs can help with setup Use Piazza as first step

More information

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University File I/O Hyo-bong Son (proshb@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Unix Files A Unix file is a sequence of m bytes: B 0, B 1,..., B k,..., B m-1 All I/O

More information

CSE484/CSE584 BLACK BOX TESTING AND FUZZING. Dr. Benjamin Livshits

CSE484/CSE584 BLACK BOX TESTING AND FUZZING. Dr. Benjamin Livshits CSE484/CSE584 BLACK BOX TESTING AND FUZZING Dr. Benjamin Livshits Approaches to Finding Security Bugs 2 Runtime Monitoring Black-box Testing Static Analysis Fuzzing Basics 3 A form of vulnerability analysis

More information

Fuzzing: Breaking software in an automated fashion

Fuzzing: Breaking software in an automated fashion Fuzzing: Breaking software in an automated fashion Ilja van Sprundel December 8, 2005 1 Introduction Fuzzing is the art of automatic bug finding. This is done by providing an application with semi-valid

More information

A Smart Fuzzer for x86 Executables

A Smart Fuzzer for x86 Executables Università degli Studi di Milano Facoltà di Scienze Matematiche, Fisiche e Naturali A Smart Fuzzer for x86 Executables Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, Roberto Paleari May 19, 2007 Lanzi,

More information

File I/O. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

File I/O. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University File I/O Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Unix Files A Unix file is a sequence of m bytes: B 0, B 1,..., B k,..., B m-1 All I/O devices

More information

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,...

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,... Chapter 9 Computer Arithmetic Reading: Section 9.1 on pp. 290-296 Computer Representation of Data Groups of two-state devices are used to represent data in a computer. In general, we say the states are

More information

Advanced Systems Security: Symbolic Execution

Advanced Systems Security: Symbolic Execution Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

UNIVERSITY OF TORONTO SCARBOROUGH Computer and Mathematical Sciences. APRIL 2016 EXAMINATIONS CSCB09H3S Software Tools & Systems Programming

UNIVERSITY OF TORONTO SCARBOROUGH Computer and Mathematical Sciences. APRIL 2016 EXAMINATIONS CSCB09H3S Software Tools & Systems Programming UNIVERSITY OF TORONTO SCARBOROUGH Computer and Mathematical Sciences APRIL 2016 EXAMINATIONS CSCB09H3S Software Tools & Systems Programming Instructor: Bianca Schroeder and Naureen Nizam Duration: 3 hours

More information

Università Ca Foscari Venezia

Università Ca Foscari Venezia Stack Overflow Security 1 2018-19 Università Ca Foscari Venezia www.dais.unive.it/~focardi secgroup.dais.unive.it Introduction Buffer overflow is due to careless programming in unsafe languages like C

More information

Process Creation in UNIX

Process Creation in UNIX Process Creation in UNIX int fork() create a child process identical to parent Child process has a copy of the address space of the parent process On success: Both parent and child continue execution at

More information

A Hybrid Symbolic Execution Assisted Fuzzing Method

A Hybrid Symbolic Execution Assisted Fuzzing Method A Hybrid Symbolic Execution Assisted Fuzzing Method Li Zhang Institute for Infocomm Research A*STAR Singapore zhang-li@i2r.a-star.edu.sg Vrizlynn L. L. Thing Institute for Infocomm Research A*STAR Singapore

More information

Analysis/Bug-finding/Verification for Security

Analysis/Bug-finding/Verification for Security Analysis/Bug-finding/Verification for Security VIJAY GANESH University of Waterloo Winter 2013 Analysis/Test/Verify for Security Instrument code for testing Heap memory: Purify Perl tainting (information

More information

CS Operating Systems Lab 3: UNIX Processes

CS Operating Systems Lab 3: UNIX Processes CS 346 - Operating Systems Lab 3: UNIX Processes Due: February 15 Purpose: In this lab you will become familiar with UNIX processes. In particular you will examine processes with the ps command and terminate

More information

CSC209H Lecture 7. Dan Zingaro. February 25, 2015

CSC209H Lecture 7. Dan Zingaro. February 25, 2015 CSC209H Lecture 7 Dan Zingaro February 25, 2015 Inter-process Communication (IPC) Remember that after a fork, the two processes are independent We re going to use pipes to let the processes communicate

More information

It was a dark and stormy night. Seriously. There was a rain storm in Wisconsin, and the line noise dialing into the Unix machines was bad enough to

It was a dark and stormy night. Seriously. There was a rain storm in Wisconsin, and the line noise dialing into the Unix machines was bad enough to 1 2 It was a dark and stormy night. Seriously. There was a rain storm in Wisconsin, and the line noise dialing into the Unix machines was bad enough to keep putting garbage characters into the command

More information

Writing a fuzzer. for any language with american fuzzy lop. Ariel Twistlock Labs

Writing a fuzzer. for any language with american fuzzy lop. Ariel Twistlock Labs Writing a fuzzer for any language with american fuzzy lop Ariel Zelivansky @ Twistlock Labs What is fuzzing? Technique for testing software by providing it with random, unexpected or invalid input Dumb

More information

Operating systems. Lecture 7

Operating systems. Lecture 7 Operating systems. Lecture 7 Michał Goliński 2018-11-13 Introduction Recall Plan for today History of C/C++ Compiler on the command line Automating builds with make CPU protection rings system calls pointers

More information

File I/O. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University Embedded Software Lab.

File I/O. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University  Embedded Software Lab. 1 File I/O Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University http://nyx.skku.ac.kr Unix files 2 A Unix file is a sequence of m bytes: B 0, B 1,..., B k,..., B m-1 All I/O devices are represented

More information

CSC 405 Introduction to Computer Security Fuzzing

CSC 405 Introduction to Computer Security Fuzzing CSC 405 Introduction to Computer Security Fuzzing Alexandros Kapravelos akaprav@ncsu.edu Let s find some bugs (again) We have a potentially vulnerable program The program has some inputs which can be controlled

More information

Testing, code coverage and static analysis. COSC345 Software Engineering

Testing, code coverage and static analysis. COSC345 Software Engineering Testing, code coverage and static analysis COSC345 Software Engineering Outline Various testing processes ad hoc / formal / automatic Unit tests and test driven development Code coverage metrics Integration

More information

UNIX System Calls. Sys Calls versus Library Func

UNIX System Calls. Sys Calls versus Library Func UNIX System Calls Entry points to the kernel Provide services to the processes One feature that cannot be changed Definitions are in C For most system calls a function with the same name exists in the

More information

Required reading: StackGuard: Simple Stack Smash Protection for GCC

Required reading: StackGuard: Simple Stack Smash Protection for GCC Continuing with Software Security Writing & testing for Secure Code Required reading: StackGuard: Simple Stack Smash Protection for GCC Optional reading: Basic Integer Overflows Exploiting Format String

More information

SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities

SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana Columbia University ACM Conference on Computer

More information

5) Attacker causes damage Different to gaining control. For example, the attacker might quit after gaining control.

5) Attacker causes damage Different to gaining control. For example, the attacker might quit after gaining control. Feb 23, 2009 CSE, 409/509 Mitigation of Bugs, Life of an exploit 1) Bug inserted into code 2) Bug passes testing 3) Attacker triggers bug 4) The Attacker gains control of the program 5) Attacker causes

More information

ADVENTURE_IO Input/Output format and libraries for ADVENTURE modules List of Input/Output Functions February 17, 2006

ADVENTURE_IO Input/Output format and libraries for ADVENTURE modules List of Input/Output Functions February 17, 2006 ADVENTURE_IO Input/Output format and libraries for ADVENTURE modules List of Input/Output Functions February 17, 2006 ADVENTURE Project Contents 1. Open/Close of Adv file... 3 2. Open/Close of AdvDocument...

More information

CSE 333 SECTION 3. POSIX I/O Functions

CSE 333 SECTION 3. POSIX I/O Functions CSE 333 SECTION 3 POSIX I/O Functions Administrivia Questions (?) HW1 Due Tonight HW2 Due Thursday, July 19 th Midterm on Monday, July 23 th 10:50-11:50 in TBD (And regular exercises in between) POSIX

More information

Related reading: Effectively Prioritizing Tests in Development Environment Introduction to Software Engineering Jonathan Aldrich

Related reading: Effectively Prioritizing Tests in Development Environment Introduction to Software Engineering Jonathan Aldrich Test Prioritization Related reading: Effectively Prioritizing Tests in Development Environment 15-413 Introduction to Software Engineering Jonathan Aldrich Test Prioritization: Motivation Goal: find and

More information

Automated Extraction of Network Protocol Specifications

Automated Extraction of Network Protocol Specifications Automated Extraction of Network Protocol Specifications ARO MURI on Cyber Situation Awareness Kick Off Meeting Christopher Kruegel Computer Security Group, Motivation Stateful protocol specifications are

More information

Static Analysis and Bugfinding

Static Analysis and Bugfinding Static Analysis and Bugfinding Alex Kantchelian 09/12/2011 Last week we talked about runtime checking methods: tools for detecting vulnerabilities being exploited in deployment. So far, these tools have

More information

Jared DeMott Crucial Security, Inc. Black Hat Special thanks to ISE for smoking me with this test once upon an interview

Jared DeMott Crucial Security, Inc. Black Hat Special thanks to ISE for smoking me with this test once upon an interview Jared DeMott Crucial Security, Inc. Black Hat 2008 Special thanks to ISE for smoking me with this test once upon an interview Why? To make software better, or to hack software How? With automated tools

More information

Building Advanced Coverage-guided Fuzzer for Program Binaries

Building Advanced Coverage-guided Fuzzer for Program Binaries Building Advanced Coverage-guided Fuzzer for Program Binaries NGUYEN Anh Quynh WEI Lei 17/11/2017 Zero Nights, Moscow 2017 Self-introduction NGUYEN Anh Quynh, PhD

More information

CSE 410: Systems Programming

CSE 410: Systems Programming CSE 410: Systems Programming Input and Output Ethan Blanton Department of Computer Science and Engineering University at Buffalo I/O Kernel Services We have seen some text I/O using the C Standard Library.

More information

File Descriptors and Piping

File Descriptors and Piping File Descriptors and Piping CSC209: Software Tools and Systems Programming Furkan Alaca & Paul Vrbik University of Toronto Mississauga https://mcs.utm.utoronto.ca/~209/ Week 8 Today s topics File Descriptors

More information

Fuzzing. compass-security.com 1

Fuzzing. compass-security.com 1 Fuzzing compass-security.com 1 Fuzzing Finding bugs by bombarding target with nonconform data Think: Flip a few bits in a PDF, then start Acrobat with that PDF Just more automated Steps: Create input corpus

More information

CollAFL: Path Sensitive Fuzzing

CollAFL: Path Sensitive Fuzzing CollAFL: Path Sensitive Fuzzing Shuitao Gan 1, Chao Zhang 2, Xiaojun Qin 1, Xuwen Tu 1, Kang Li 3, Zhongyu Pei 2, Zuoning Chen 4 1 State Key Laboratory of Mathematical Engineering and Advanced Computing.

More information

Juwei Lin. - Joined TrendMicro Since Windows Kernel/Rootkit/Bootkit - Ransomware Decryption - ios/android/mac Vulnerability Hunting

Juwei Lin. - Joined TrendMicro Since Windows Kernel/Rootkit/Bootkit - Ransomware Decryption - ios/android/mac Vulnerability Hunting Juwei Lin - @panicaii - Joined TrendMicro Since 2013 - Windows Kernel/Rootkit/Bootkit - Ransomware Decryption - ios/android/mac Vulnerability Hunting Lilang Wu - @Lilang_Wu - Joined Trend Micro Since 2016

More information

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated CNIT 127: Exploit Development Ch 1: Before you begin Updated 1-14-16 Basic Concepts Vulnerability A flaw in a system that allows an attacker to do something the designer did not intend, such as Denial

More information

LAVA: Large-scale Automated Vulnerability Addition

LAVA: Large-scale Automated Vulnerability Addition 2016 IEEE Symposium on Security and Privacy LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson, Frederick Ulrich,

More information

Juwei Lin. - Joined TrendMicro Since Windows Kernel/Rootkit/Bootkit - Ransomware Decryption - ios/android/mac Vulnerability Hunting

Juwei Lin. - Joined TrendMicro Since Windows Kernel/Rootkit/Bootkit - Ransomware Decryption - ios/android/mac Vulnerability Hunting Juwei Lin - @panicaii - Joined TrendMicro Since 2013 - Windows Kernel/Rootkit/Bootkit - Ransomware Decryption - ios/android/mac Vulnerability Hunting Lilang Wu - @Lilang_Wu - Joined Trend Micro Since 2016

More information

Important Dates. October 27 th Homework 2 Due. October 29 th Midterm

Important Dates. October 27 th Homework 2 Due. October 29 th Midterm CSE333 SECTION 5 Important Dates October 27 th Homework 2 Due October 29 th Midterm String API vs. Byte API Recall: Strings are character arrays terminated by \0 The String API (functions that start with

More information

Towards Efficient Heap Overflow Discovery

Towards Efficient Heap Overflow Discovery Towards Efficient Heap Overflow Discovery Xiangkun Jia, TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; Chao Zhang, Institute for Network Science and Cyberspace, Tsinghua University; Purui

More information

Smarter fuzzing using sound and precise static analyzers

Smarter fuzzing using sound and precise static analyzers Smarter fuzzing using sound and precise static analyzers Pascal Cuoq, Chief Scientist, TrustInSoft January 31, 2017 Pascal Cuoq, Chief Scientist, TrustInSoft smarter fuzzing January 31, 2017 1 / 8 Introduction

More information

CS 3113 Introduction to Operating Systems Midterm October 11, 2018

CS 3113 Introduction to Operating Systems Midterm October 11, 2018 General instructions: CS 3113 Introduction to Operating Systems Midterm October 11, 2018 Please wait to open this exam booklet until you are told to do so. This examination booklet has 10 pages. You also

More information

CS 3113 Introduction to Operating Systems Midterm October 11, 2018

CS 3113 Introduction to Operating Systems Midterm October 11, 2018 General instructions: CS 3113 Introduction to Operating Systems Midterm October 11, 2018 Please wait to open this exam booklet until you are told to do so. This examination booklet has 10 pages. You also

More information

When you add a number to a pointer, that number is added, but first it is multiplied by the sizeof the type the pointer points to.

When you add a number to a pointer, that number is added, but first it is multiplied by the sizeof the type the pointer points to. Refresher When you add a number to a pointer, that number is added, but first it is multiplied by the sizeof the type the pointer points to. i.e. char *ptr1 = malloc(1); ptr1 + 1; // adds 1 to pointer

More information

CAN STRACE MAKE YOU FAIL?

CAN STRACE MAKE YOU FAIL? CAN STRACE MAKE YOU FAIL? Nahim El Atmani @brokenpi_pe July 15, 2016 1 DEFINITION 1.0 strace is a diagnostic, debugging and instructional userspace utility for Linux. It is used to monitor interactions

More information

Automatizing vulnerability research

Automatizing vulnerability research Innova&on & Research Symposium Cisco and Ecole Polytechnique 8-9 April 2018 CEDRIC TESSIER INSTRUMENTATION TEAM LEADER / ctessier@quarkslab.com Automatizing vulnerability research to better face new software

More information

Path Testing + Coverage. Chapter 8

Path Testing + Coverage. Chapter 8 Path Testing + Coverage Chapter 8 Structural Testing n Also known as glass/white/open box testing n A software testing technique whereby explicit knowledge of the internal workings of the item being tested

More information

Input and Output System Calls

Input and Output System Calls Chapter 2 Input and Output System Calls Internal UNIX System Calls & Libraries Using C --- 1011 OBJECTIVES Upon completion of this unit, you will be able to: Describe the characteristics of a file Open

More information

What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices

What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices Marius Muench 1 Jan Stijohann 2,3 Frank Kargl 3 Aurélien Francillon 1 Davide Balzarotti 1 1 EURECOM 2 Siemens AG 3 Ulm University

More information

Prospex: Protocol Specification Extraction

Prospex: Protocol Specification Extraction Prospex: Protocol Specification Extraction Paolo Milani Comparetti paolo@iseclab.org, Vienna University of Technology Gilbert Wondracek gilbert@iseclab.org, Vienna University of Technology Christopher

More information

Recent Trends in Program Analysis for Bug Hunting and Exploitation. ben-holland.com

Recent Trends in Program Analysis for Bug Hunting and Exploitation. ben-holland.com Recent Trends in Program Analysis for Bug Hunting and Exploitation ben-holland.com Recent Two Positive Trends in Program Analysis for Bug Hunting and Exploitation ben-holland.com $ whoami 2005 2010 B.S.

More information

FILE IO AND DATA REPRSENTATION. Problem Solving with Computers-I

FILE IO AND DATA REPRSENTATION. Problem Solving with Computers-I FILE IO AND DATA REPRSENTATION Problem Solving with Computers-I Midterm next Thursday (Oct 25) No class on Tuesday (Oct 23) Announcements I/O in programs Different ways of reading data into programs cin

More information

The course that gives CMU its Zip! I/O Nov 15, 2001

The course that gives CMU its Zip! I/O Nov 15, 2001 15-213 The course that gives CMU its Zip! I/O Nov 15, 2001 Topics Files Unix I/O Standard I/O A typical hardware system CPU chip register file ALU system bus memory bus bus interface I/O bridge main memory

More information

Basic C Program: Print to stdout. Basic C Program. Basic C Program: Print to stdout. Header Files. Read argument and print. Read argument and print

Basic C Program: Print to stdout. Basic C Program. Basic C Program: Print to stdout. Header Files. Read argument and print. Read argument and print CSC 4304 - Systems Programming Fall 2010 Lecture - II Basics of C Programming Summary of Last Class Basics of UNIX: logging in, changing password text editing with vi, emacs and pico file and directory

More information

Taint Nobody Got Time for Crash Analysis

Taint Nobody Got Time for Crash Analysis Taint Nobody Got Time for Crash Analysis Crash Analysis Triage Goals Execution Path What code paths were executed What parts of the execution interacted with external data Input Determination Which input

More information