SWIFTCLOUD: GEO-REPLICATION RIGHT TO THE EDGE

Size: px
Start display at page:

Download "SWIFTCLOUD: GEO-REPLICATION RIGHT TO THE EDGE"

Transcription

1 SWIFTCLOUD: GEO-REPLICATION RIGHT TO THE EDGE Annette Bieniusa T.U. Kaiserslautern Carlos Baquero HSALab, U. Minho Marc Shapiro, Marek Zawirski INRIA, LIP6 Nuno Preguiça, Sérgio Duarte, Valter Balegas CITI / U. Nova de Lisboa Copyright Nuno Preguiça CITI DI / FCT / UNL / 1

2 CONTEXT Latency to access cloud- based web services Commonly 10~100ms from the client- DC + poten7al DC- DC cost An increasing number of web applica3ons run code in clients for: responsiveness: avoid client- DC latency fault- tolerance: support opera7on on disconnec7on/server fault Industry catalyst HTML 5, Ajax Mobile devices NUNO PREGUIÇA CITI DI / FCT / UNL / 2

3 PROBLEM How to support data sharing web applications running in clients? NUNO PREGUIÇA CITI DI / FCT / UNL / 3

4 PROBLEM How to support data sharing web applications running in clients? Fast reads & fast writes Consistent data and session guarantees Low latency with useful consistency Fault-tolerance Support disconnection Tolerate DC faults / connectivity problems NUNO PREGUIÇA CITI DI / FCT / UNL / 4

5 OUTLINE Introduction Low latency with useful consistency Fault-tolerance Final remarks NUNO PREGUIÇA CITI DI / FCT / UNL / 5

6 LOW LATENCY for reads Caching data in client machines for writes Weak consistency Requires mergeable writes => CRDT Support fast writes => asynchronous writes; guarantees for app? NUNO PREGUIÇA CITI DI / FCT / UNL / 6

7 LOW LATENCY WITH USEFUL SEMANTICS Execute sequence of operations with atomic semantics Support for transactions Writes: mergeable, atomic visibility Reads: different isolation levels SI, repeatable reads, etc. AddFriend( X, Y) {!!X.add(Y)!!Y.add(X)! }! NUNO PREGUIÇA CITI DI / FCT / UNL / 7

8 LOW LATENCY WITH USEFUL SEMANTICS Client must observe coherent database state Observe her previous writes (read your writes) Successive reads reflect a non-decreasing set of writes (monotonic reads) Writes must be applied after observed reads (writes follow reads) Causal consistency at client Challenge: do it efficiently (small dep. info) NUNO PREGUIÇA CITI DI / FCT / UNL / 8

9 TRANSACTION EXECUTION ON SERVER seq [0 0 0] (C,1)è (IE,1 [1 0 0] IE (EU) x y x 000 = 0 y 000 = 0 T(IE,1): add(2) sur T(C,1)è (IE,1) : y.add(2) : y.add(2) Commit T(C,1) c T(C,1): y.add(2) NUNO PREGUIÇA CITI DI / FCT / UNL / 9

10 For SI, read version dep For read committed, read most recent version TRANSACTION EXECUTION ON CLIENT seq [0 0 0] [1 0 0] [1 1 0] IE (EU) x y x 000 = 0 y 000 = 0 T(IE,1): add(2) T(CA,1): sub(3) sur T(C,1)è (IE,1) : y.add(2) x.get(); dep=[1 0 0 ] y 000 = 0 Y 100 = 2 c T(C,1): y.add(2) T2.start dep = [1 0 0] T: y.get()=2 T: x.get()=0 NUNO PREGUIÇA CITI DI / FCT / UNL / 10

11 TRANSACTION EXECUTION ON CLIENT: ASYNC COMMIT seq [0 0 0] Keep cache fresh relying on event dissemination of data changes [1 0 0] [1 1 0] IE (EU) x y x 000 = 0 y 000 = 0 T(IE,1): add(2) T(CA,1): sub(3) x.get(); dep=[0 0 0] sur T(C,1)è (IE,1) : y.add(2) y 000 = 0 Y 000+T(C,1) = 2 c T(C,1): y.add(2) T2.start dep=[0 0 0]+T(C,1) T2: y.get()=2 T2: x.get()=0 NUNO PREGUIÇA CITI DI / FCT / UNL / 11

12 EXPERIMENTAL SETUP Swiftsocial application modeled after WalterSocial DC with single node running all components Amazon EC2 (Europe, US West, US East) clients planetlab NUNO PREGUIÇA CITI DI / FCT / UNL / 12

13 LATENCY IMPROVEMENT: SYNCHRONOUS COMMIT How moving the data close to the client improves latency? 100 Synchronous commit Cumulative Ocurrences (%) Transaction Execution Time (ms) Clt/Dc RTT Clt/Cdn/Dc RTT writes@client reads@dc reads@client Clt/Cdn RTT writes@cdn reads@cdn writes@dc NUNO PREGUIÇA CITI DI / FCT / UNL / 13

14 LATENCY IMPROVEMENT: ASYNCHRONOUS COMMIT How moving the data close to the client improves latency? 100 Asynchronous commit Cumulative Ocurrences (%) Transaction Execution Time (ms) Clt/Dc RTT Clt/Cdn/Dc RTT writes@client reads@dc reads@client Clt/Cdn RTT writes@cdn reads@cdn writes@dc NUNO PREGUIÇA CITI DI / FCT / UNL / 14

15 OUTLINE Introduction Low latency with useful semantics Fault-tolerance Final remarks NUNO PREGUIÇA CITI DI / FCT / UNL / 15

16 FAULT-TOLERANCE Support temporary disconnection Immediate: support execution from client cache Note: operating in a disconnected replica gives causal consistency Support DC-failure or client-dc network failure NUNO PREGUIÇA CITI DI / FCT / UNL / 16

17 SUPPORT DC-FAILURES OR CLIENT/DC NETWORK FAILURE Problem: on fail-over, new DC may not know some observed updates Leads to blocking or breaking session guarantees IE (EU) T(IE,1) X=2 T(IE,2) Y=5 client CA (US) T(IE,1) X=2 Potential solutions Operations only complete after being stable in f+1 DCs Slow writes Involve clients in fail-over: clients keep enough information to ensure session guarantees T(C,1) get(y)=5 dep=[2 0] T(C,2) get(y)? NUNO PREGUIÇA CITI DI / FCT / UNL / 17

18 CLIENT-ASSISTED FAILOVER Own updates Keep a log of own updates Observable state Union of own updates and stable updates On fail-over Replay log of own updates => may lead to double delivery Guarantee idempotence rely on CRDT properties; use client identifiers in operation execution NUNO PREGUIÇA CITI DI / FCT / UNL / 18

19 DC-FAULT TOLERANCE How often are reads stale? 3.5 Individual Reads Transactions 3.0 Stale Reads [ % ] Think Time [ s ] NUNO PREGUIÇA CITI DI / FCT / UNL / 19

20 FINAL REMARKS Extend geo-replication up to the client machine Low latency with adequate semantics Mergeable atomic transactions Causal+ consistency Partial replication Efficient implementation DC fault-tolerance Replay own updates Read stable updates NUNO PREGUIÇA CITI DI / FCT / UNL / 20

21 GEO-REPLICATION SCALABILITY How does SwiftCloud scale with the number of DCs? DC 1 DC 2 DC Latency [ ms ] ,000 2,000 3,000 4,000 5,000 6,000 Throughput [ tps ] NUNO PREGUIÇA CITI DI / FCT / UNL / 21

Cloud-backed applications. Write Fast, Read in the Past: Causal Consistency for Client- Side Applications. Requirements & challenges

Cloud-backed applications. Write Fast, Read in the Past: Causal Consistency for Client- Side Applications. Requirements & challenges Write Fast, Read in the Past: ausal onsistenc for lient- Side Applications loud-backed applications 1. Request 3. Repl 2. Process request & store update 4. Transmit update 50~200ms databas e app server

More information

(It s the invariants, stupid)

(It s the invariants, stupid) Consistency in three dimensions (It s the invariants, stupid) Marc Shapiro Cloud to the edge Social, web, e-commerce: shared mutable data Scalability replication consistency issues Inria & Sorbonne-Universités

More information

From strong to eventual consistency: getting it right. Nuno Preguiça, U. Nova de Lisboa Marc Shapiro, Inria & UPMC-LIP6

From strong to eventual consistency: getting it right. Nuno Preguiça, U. Nova de Lisboa Marc Shapiro, Inria & UPMC-LIP6 From strong to eventual consistency: getting it right Nuno Preguiça, U. Nova de Lisboa Marc Shapiro, Inria & UPMC-LIP6 Conflict-free Replicated Data Types ı Marc Shapiro 1,5, Nuno Preguiça 2,1, Carlos

More information

Just-Right Consistency. Centralised data store. trois bases. As available as possible As consistent as necessary Correct by design

Just-Right Consistency. Centralised data store. trois bases. As available as possible As consistent as necessary Correct by design Just-Right Consistency As available as possible As consistent as necessary Correct by design Marc Shapiro, UMC-LI6 & Inria Annette Bieniusa, U. Kaiserslautern Nuno reguiça, U. Nova Lisboa Christopher Meiklejohn,

More information

SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way to the Client Machine

SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way to the Client Machine SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way to the Client Machine Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero, Marc Shapiro, Nuno Preguiça To cite

More information

Conflict-free Replicated Data Types (CRDTs)

Conflict-free Replicated Data Types (CRDTs) Conflict-free Replicated Data Types (CRDTs) for collaborative environments Marc Shapiro, INRIA & LIP6 Nuno Preguiça, U. Nova de Lisboa Carlos Baquero, U. Minho Marek Zawirski, INRIA & UPMC Conflict-free

More information

Strong Eventual Consistency and CRDTs

Strong Eventual Consistency and CRDTs Strong Eventual Consistency and CRDTs Marc Shapiro, INRIA & LIP6 Nuno Preguiça, U. Nova de Lisboa Carlos Baquero, U. Minho Marek Zawirski, INRIA & UPMC Large-scale replicated data structures Large, dynamic

More information

Strong Eventual Consistency and CRDTs

Strong Eventual Consistency and CRDTs Strong Eventual Consistency and CRDTs Marc Shapiro, INRIA & LIP6 Nuno Preguiça, U. Nova de Lisboa Carlos Baquero, U. Minho Marek Zawirski, INRIA & UPMC Large-scale replicated data structures Large, dynamic

More information

Genie. Distributed Systems Synthesis and Verification. Marc Rosen. EN : Advanced Distributed Systems and Networks May 1, 2017

Genie. Distributed Systems Synthesis and Verification. Marc Rosen. EN : Advanced Distributed Systems and Networks May 1, 2017 Genie Distributed Systems Synthesis and Verification Marc Rosen EN.600.667: Advanced Distributed Systems and Networks May 1, 2017 1 / 35 Outline Introduction Problem Statement Prior Art Demo How does it

More information

A Modular Design for Geo-Distributed Querying

A Modular Design for Geo-Distributed Querying A Modular Design for Geo-Distributed Querying Dimitrios Vasilas, Marc Shapiro, Bradley King To cite this version: Dimitrios Vasilas, Marc Shapiro, Bradley King. A Modular Design for Geo-Distributed Querying:

More information

Extending Eventually Consistent Cloud Databases for Enforcing Numeric Invariants

Extending Eventually Consistent Cloud Databases for Enforcing Numeric Invariants Extending Eventually Consistent Cloud Databases for Enforcing Numeric Invariants Valter Balegas, Diogo Serra, Sérgio Duarte Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça NOVA LINCS/FCT/Universidade

More information

Write Fast, Read in the Past: Causal Consistency for Client-side Applications

Write Fast, Read in the Past: Causal Consistency for Client-side Applications Write Fast, Read in the Past: Causal Consistency for Client-side Applications Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas, Marc Shapiro To cite this version: Marek Zawirski,

More information

Using Erlang, Riak and the ORSWOT CRDT at bet365 for Scalability and Performance. Michael Owen Research and Development Engineer

Using Erlang, Riak and the ORSWOT CRDT at bet365 for Scalability and Performance. Michael Owen Research and Development Engineer 1 Using Erlang, Riak and the ORSWOT CRDT at bet365 for Scalability and Performance Michael Owen Research and Development Engineer 2 Background 3 bet365 in stats Founded in 2000 Located in Stoke-on-Trent

More information

GlobalFS: A Strongly Consistent Multi-Site Filesystem

GlobalFS: A Strongly Consistent Multi-Site Filesystem GlobalFS: A Strongly Consistent Multi-Site Filesystem Leandro Pacheco Raluca Halalai Valerio Schiavoni Fernando Pedone Etienne Rivière Pascal Felber RainbowFS Workshop May 3rd, 2017 Distributed applications

More information

Eventual Consistency Today: Limitations, Extensions and Beyond

Eventual Consistency Today: Limitations, Extensions and Beyond Eventual Consistency Today: Limitations, Extensions and Beyond Peter Bailis and Ali Ghodsi, UC Berkeley - Nomchin Banga Outline Eventual Consistency: History and Concepts How eventual is eventual consistency?

More information

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi 1 Lecture Notes 1 Basic Concepts Anand Tripathi CSci 8980 Operating Systems Anand Tripathi CSci 8980 1 Distributed Systems A set of computers (hosts or nodes) connected through a communication network.

More information

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs 1 Anand Tripathi CSci 8980 Operating Systems Lecture Notes 1 Basic Concepts Distributed Systems A set of computers (hosts or nodes) connected through a communication network. Nodes may have different speeds

More information

Architekturen für die Cloud

Architekturen für die Cloud Architekturen für die Cloud Eberhard Wolff Architecture & Technology Manager adesso AG 08.06.11 What is Cloud? National Institute for Standards and Technology (NIST) Definition On-demand self-service >

More information

Marek ZAWIRSKI. Cohérence à terme fiable avec des types de données répliquées

Marek ZAWIRSKI. Cohérence à terme fiable avec des types de données répliquées THÈSE DE DOCTORAT DE l UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Marek ZAWIRSKI Pour obtenir le grade

More information

BERLIN. 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved

BERLIN. 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved BERLIN 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved Amazon Aurora: Amazon s New Relational Database Engine Carlos Conde Technology Evangelist @caarlco 2015, Amazon Web Services,

More information

Towards a Proof Framework for Information Systems with Weak Consistency

Towards a Proof Framework for Information Systems with Weak Consistency Towards a Proof Framework for Information Systems with Weak Consistency Peter Zeller and Arnd Poetzsch-Heffter University of Kaiserslautern, Germany {p zeller,poetzsch@cs.uni-kl.de Abstract. Weakly consistent

More information

Reconciliation for Mobile Computing Environments with Portable Storage Devices

Reconciliation for Mobile Computing Environments with Portable Storage Devices Reconciliation for Mobile Computing Environments with Portable Storage Devices Marcos Bento 1, Nuno Preguiça 1, Carlos Baquero 2, and J. Legatheaux Martins 1 1 DI, FCT, Universidade Nova de Lisboa 2 DI,

More information

ARCHITECTING WEB APPLICATIONS FOR THE CLOUD: DESIGN PRINCIPLES AND PRACTICAL GUIDANCE FOR AWS

ARCHITECTING WEB APPLICATIONS FOR THE CLOUD: DESIGN PRINCIPLES AND PRACTICAL GUIDANCE FOR AWS ARCHITECTING WEB APPLICATIONS FOR THE CLOUD: DESIGN PRINCIPLES AND PRACTICAL GUIDANCE FOR AWS Dr Adnene Guabtni, Senior Research Scientist, NICTA/Data61, CSIRO Adnene.Guabtni@csiro.au EC2 S3 ELB RDS AMI

More information

Replication. Feb 10, 2016 CPSC 416

Replication. Feb 10, 2016 CPSC 416 Replication Feb 10, 2016 CPSC 416 How d we get here? Failures & single systems; fault tolerance techniques added redundancy (ECC memory, RAID, etc.) Conceptually, ECC & RAID both put a master in front

More information

Building Consistent Transactions with Inconsistent Replication

Building Consistent Transactions with Inconsistent Replication Building Consistent Transactions with Inconsistent Replication Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, Dan R. K. Ports University of Washington Distributed storage systems

More information

Document Sub Title. Yotpo. Technical Overview 07/18/ Yotpo

Document Sub Title. Yotpo. Technical Overview 07/18/ Yotpo Document Sub Title Yotpo Technical Overview 07/18/2016 2015 Yotpo Contents Introduction... 3 Yotpo Architecture... 4 Yotpo Back Office (or B2B)... 4 Yotpo On-Site Presence... 4 Technologies... 5 Real-Time

More information

IPA: Invariant-Preserving Applications for Weakly Consistent Replicated Databases

IPA: Invariant-Preserving Applications for Weakly Consistent Replicated Databases IPA: Invariant-Preserving Applications for Weakly Consistent Replicated Databases Valter Balegas NOVA LINCS, FCT, Universidade NOVA de Lisboa v.sousa@campus.fct.unl.pt Rodrigo Rodrigues INESC-ID, Instituto

More information

Eventual Consistency 1

Eventual Consistency 1 Eventual Consistency 1 Readings Werner Vogels ACM Queue paper http://queue.acm.org/detail.cfm?id=1466448 Dynamo paper http://www.allthingsdistributed.com/files/ amazon-dynamo-sosp2007.pdf Apache Cassandra

More information

An Optimized Conflict-free Replicated Set

An Optimized Conflict-free Replicated Set INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE An Optimized Conflict-free Replicated Set arxiv:1210.3368v1 [cs.dc] 11 Oct 2012 Annette Bieniusa, INRIA & UPMC, Paris, France Marek Zawirski,

More information

PNUTS and Weighted Voting. Vijay Chidambaram CS 380 D (Feb 8)

PNUTS and Weighted Voting. Vijay Chidambaram CS 380 D (Feb 8) PNUTS and Weighted Voting Vijay Chidambaram CS 380 D (Feb 8) PNUTS Distributed database built by Yahoo Paper describes a production system Goals: Scalability Low latency, predictable latency Must handle

More information

Fault-Tolerant Computer System Design ECE 695/CS 590. Putting it All Together

Fault-Tolerant Computer System Design ECE 695/CS 590. Putting it All Together Fault-Tolerant Computer System Design ECE 695/CS 590 Putting it All Together Saurabh Bagchi ECE/CS Purdue University ECE 695/CS 590 1 Outline Looking at some practical systems that integrate multiple techniques

More information

How Eventual is Eventual Consistency?

How Eventual is Eventual Consistency? Probabilistically Bounded Staleness How Eventual is Eventual Consistency? Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica (UC Berkeley) BashoChats 002, 28 February

More information

Basic vs. Reliable Multicast

Basic vs. Reliable Multicast Basic vs. Reliable Multicast Basic multicast does not consider process crashes. Reliable multicast does. So far, we considered the basic versions of ordered multicasts. What about the reliable versions?

More information

Transaction Management using Causal Snapshot Isolation in Partially Replicated Databases

Transaction Management using Causal Snapshot Isolation in Partially Replicated Databases Transaction Management using Causal Snapshot Isolation in Partially Replicated Databases ABSTRACT We present here a transaction management protocol using snapshot isolation in partially replicated multi-version

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski Distributed Systems 09. State Machine Replication & Virtual Synchrony Paul Krzyzanowski Rutgers University Fall 2016 1 State machine replication 2 State machine replication We want high scalability and

More information

Conflict-Free Replicated Data Types (basic entry)

Conflict-Free Replicated Data Types (basic entry) Conflict-Free Replicated Data Types (basic entry) Marc Shapiro Sorbonne-Universités-UPMC-LIP6 & Inria Paris http://lip6.fr/marc.shapiro/ 16 May 2016 1 Synonyms Conflict-Free Replicated Data Types (CRDTs).

More information

Be General and Don t Give Up Consistency in Geo- Replicated Transactional Systems

Be General and Don t Give Up Consistency in Geo- Replicated Transactional Systems Be General and Don t Give Up Consistency in Geo- Replicated Transactional Systems Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri and Binoy Ravindran Replicated Transactional Systems DATA CONSISTENCY

More information

Atomicity. Bailu Ding. Oct 18, Bailu Ding Atomicity Oct 18, / 38

Atomicity. Bailu Ding. Oct 18, Bailu Ding Atomicity Oct 18, / 38 Atomicity Bailu Ding Oct 18, 2012 Bailu Ding Atomicity Oct 18, 2012 1 / 38 Outline 1 Introduction 2 State Machine 3 Sinfonia 4 Dangers of Replication Bailu Ding Atomicity Oct 18, 2012 2 / 38 Introduction

More information

Using the SDACK Architecture to Build a Big Data Product. Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver

Using the SDACK Architecture to Build a Big Data Product. Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver Using the SDACK Architecture to Build a Big Data Product Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver Outline A Threat Analytic Big Data product The SDACK Architecture Akka Streams and data

More information

SCALABLE CONSISTENCY AND TRANSACTION MODELS

SCALABLE CONSISTENCY AND TRANSACTION MODELS Data Management in the Cloud SCALABLE CONSISTENCY AND TRANSACTION MODELS 69 Brewer s Conjecture Three properties that are desirable and expected from realworld shared-data systems C: data consistency A:

More information

This talk is about. Data consistency in 3D. Geo-replicated database q: Queue c: Counter { q c } Shared database q: Queue c: Counter { q c }

This talk is about. Data consistency in 3D. Geo-replicated database q: Queue c: Counter { q c } Shared database q: Queue c: Counter { q c } Data consistency in 3D (It s the invariants, stupid) Marc Shapiro Masoud Saieda Ardekani Gustavo Petri This talk is about Understanding consistency Primitive consistency mechanisms How primitives compose

More information

SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines

SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines Hanyu Zhao *, Quanlu Zhang, Zhi Yang *, Ming Wu, Yafei Dai * * Peking University Microsoft Research Replication for Fault Tolerance

More information

A comprehensive study of Convergent and Commutative Replicated Data Types

A comprehensive study of Convergent and Commutative Replicated Data Types INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE A comprehensive study of Convergent and Commutative Replicated Data Types Marc Shapiro, INRIA & LIP6, Paris, France Nuno Preguiça, CITI,

More information

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout Exploiting Commutativity For Practical Fast Replication Seo Jin Park and John Ousterhout Overview Problem: replication adds latency and throughput overheads CURP: Consistent Unordered Replication Protocol

More information

Concurrent Revisions

Concurrent Revisions Concurrent Revisions Lecture 2: Incremental Computation Eventual Consistency Sebastian Burckhardt Microsoft Research Joint work with Manuel Faehndrich, Daan Leijen, Tom Ball Caitlin Sadowski, Jaeheon Yi,

More information

It also performs many parallelization operations like, data loading and query processing.

It also performs many parallelization operations like, data loading and query processing. Introduction to Parallel Databases Companies need to handle huge amount of data with high data transfer rate. The client server and centralized system is not much efficient. The need to improve the efficiency

More information

NFSv4 as the Building Block for Fault Tolerant Applications

NFSv4 as the Building Block for Fault Tolerant Applications NFSv4 as the Building Block for Fault Tolerant Applications Alexandros Batsakis Overview Goal: To provide support for recoverability and application fault tolerance through the NFSv4 file system Motivation:

More information

Large-Scale Geo-Replicated Conflict-free Replicated Data Types

Large-Scale Geo-Replicated Conflict-free Replicated Data Types Large-Scale Geo-Replicated Conflict-free Replicated Data Types Carlos Bartolomeu carlos.bartolomeu@tecnico.ulisboa.pt Instituto Superior Técnico (Advisor: Professor Luís Rodrigues) Abstract. Conflict-free

More information

Amazon Aurora Relational databases reimagined.

Amazon Aurora Relational databases reimagined. Amazon Aurora Relational databases reimagined. Ronan Guilfoyle, Solutions Architect, AWS Brian Scanlan, Engineer, Intercom 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved Current

More information

RA-GRS, 130 replication support, ZRS, 130

RA-GRS, 130 replication support, ZRS, 130 Index A, B Agile approach advantages, 168 continuous software delivery, 167 definition, 167 disadvantages, 169 sprints, 167 168 Amazon Web Services (AWS) failure, 88 CloudTrail Service, 21 CloudWatch Service,

More information

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein Sameh Elnikety. Copyright 2012 Philip A. Bernstein

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein Sameh Elnikety. Copyright 2012 Philip A. Bernstein 10. Replication CSEP 545 Transaction Processing Philip A. Bernstein Sameh Elnikety Copyright 2012 Philip A. Bernstein 1 Outline 1. Introduction 2. Primary-Copy Replication 3. Multi-Master Replication 4.

More information

Building Consistent Transactions with Inconsistent Replication

Building Consistent Transactions with Inconsistent Replication DB Reading Group Fall 2015 slides by Dana Van Aken Building Consistent Transactions with Inconsistent Replication Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, Dan R. K. Ports

More information

SMAC: State Management for Geo-Distributed Containers

SMAC: State Management for Geo-Distributed Containers SMAC: State Management for Geo-Distributed Containers Jacob Eberhardt, Dominik Ernst, David Bermbach Information Systems Engineering Research Group Technische Universitaet Berlin Berlin, Germany Email:

More information

Applications of Paxos Algorithm

Applications of Paxos Algorithm Applications of Paxos Algorithm Gurkan Solmaz COP 6938 - Cloud Computing - Fall 2012 Department of Electrical Engineering and Computer Science University of Central Florida - Orlando, FL Oct 15, 2012 1

More information

Ceph: A Scalable, High-Performance Distributed File System PRESENTED BY, NITHIN NAGARAJ KASHYAP

Ceph: A Scalable, High-Performance Distributed File System PRESENTED BY, NITHIN NAGARAJ KASHYAP Ceph: A Scalable, High-Performance Distributed File System PRESENTED BY, NITHIN NAGARAJ KASHYAP Outline Introduction. System Overview. Distributed Object Storage. Problem Statements. What is Ceph? Unified

More information

arxiv: v2 [cs.dc] 26 Dec 2016

arxiv: v2 [cs.dc] 26 Dec 2016 Timestamps for Partial Replication Zhuolun Xiang 1 and Nitin H. Vaidya 2 1 Computer Science Department 2 Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign arxiv:1611.04022v2

More information

There Is More Consensus in Egalitarian Parliaments

There Is More Consensus in Egalitarian Parliaments There Is More Consensus in Egalitarian Parliaments Iulian Moraru, David Andersen, Michael Kaminsky Carnegie Mellon University Intel Labs Fault tolerance Redundancy State Machine Replication 3 State Machine

More information

Janus. Consolidating Concurrency Control and Consensus for Commits under Conflicts. Shuai Mu, Lamont Nelson, Wyatt Lloyd, Jinyang Li

Janus. Consolidating Concurrency Control and Consensus for Commits under Conflicts. Shuai Mu, Lamont Nelson, Wyatt Lloyd, Jinyang Li Janus Consolidating Concurrency Control and Consensus for Commits under Conflicts Shuai Mu, Lamont Nelson, Wyatt Lloyd, Jinyang Li New York University, University of Southern California State of the Art

More information

Automating the Choice of Consistency Levels in Replicated Systems

Automating the Choice of Consistency Levels in Replicated Systems Automating the Choice of Consistency Levels in Replicated Systems Cheng Li, João Leitão, Allen Clement Nuno Preguiça, Rodrigo Rodrigues, Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS),

More information

Mix n Match Async and Group Replication for Advanced Replication Setups. Pedro Gomes Software Engineer

Mix n Match Async and Group Replication for Advanced Replication Setups. Pedro Gomes Software Engineer Mix n Match Async and Group Replication for Advanced Replication Setups Pedro Gomes (pedro.gomes@oracle.com) Software Engineer 4th of February Copyright 2017, Oracle and/or its affiliates. All rights reserved.

More information

MDCC MULTI DATA CENTER CONSISTENCY. amplab. Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, Alan Fekete

MDCC MULTI DATA CENTER CONSISTENCY. amplab. Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, Alan Fekete MDCC MULTI DATA CENTER CONSISTENCY Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, Alan Fekete gpang@cs.berkeley.edu amplab MOTIVATION 2 3 June 2, 200: Rackspace power outage of approximately 0

More information

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013 PNUTS: Yahoo! s Hosted Data Serving Platform Reading Review by: Alex Degtiar (adegtiar) 15-799 9/30/2013 What is PNUTS? Yahoo s NoSQL database Motivated by web applications Massively parallel Geographically

More information

Eventual Consistency Today: Limitations, Extensions and Beyond

Eventual Consistency Today: Limitations, Extensions and Beyond Eventual Consistency Today: Limitations, Extensions and Beyond Peter Bailis and Ali Ghodsi, UC Berkeley Presenter: Yifei Teng Part of slides are cited from Nomchin Banga Road Map Eventual Consistency:

More information

Important Lessons. A Distributed Algorithm (2) Today's Lecture - Replication

Important Lessons. A Distributed Algorithm (2) Today's Lecture - Replication Important Lessons Lamport & vector clocks both give a logical timestamps Total ordering vs. causal ordering Other issues in coordinating node activities Exclusive access to resources/data Choosing a single

More information

Why distributed databases suck, and what to do about it. Do you want a database that goes down or one that serves wrong data?"

Why distributed databases suck, and what to do about it. Do you want a database that goes down or one that serves wrong data? Why distributed databases suck, and what to do about it - Regaining consistency Do you want a database that goes down or one that serves wrong data?" 1 About the speaker NoSQL team lead at Trifork, Aarhus,

More information

ZHT: Const Eventual Consistency Support For ZHT. Group Member: Shukun Xie Ran Xin

ZHT: Const Eventual Consistency Support For ZHT. Group Member: Shukun Xie Ran Xin ZHT: Const Eventual Consistency Support For ZHT Group Member: Shukun Xie Ran Xin Outline Problem Description Project Overview Solution Maintains Replica List for Each Server Operation without Primary Server

More information

CSE-E5430 Scalable Cloud Computing Lecture 10

CSE-E5430 Scalable Cloud Computing Lecture 10 CSE-E5430 Scalable Cloud Computing Lecture 10 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 23.11-2015 1/29 Exam Registering for the exam is obligatory,

More information

Distributed Systems. Lec 12: Consistency Models Sequential, Causal, and Eventual Consistency. Slide acks: Jinyang Li

Distributed Systems. Lec 12: Consistency Models Sequential, Causal, and Eventual Consistency. Slide acks: Jinyang Li Distributed Systems Lec 12: Consistency Models Sequential, Causal, and Eventual Consistency Slide acks: Jinyang Li (http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-eventual.ppt) 1 Consistency (Reminder)

More information

A Framework for Transactional Consistency Models with Atomic Visibility

A Framework for Transactional Consistency Models with Atomic Visibility A Framework for Transactional Consistency Models with Atomic Visibility Andrea Cerone, Giovanni Bernardi, Alexey Gotsman IMDEA Software Institute, Madrid, Spain CONCUR - Madrid, September 1st 2015 Data

More information

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf Distributed systems Lecture 6: distributed transactions, elections, consensus and replication Malte Schwarzkopf Last time Saw how we can build ordered multicast Messages between processes in a group Need

More information

Chapter 4: Distributed Systems: Replication and Consistency. Fall 2013 Jussi Kangasharju

Chapter 4: Distributed Systems: Replication and Consistency. Fall 2013 Jussi Kangasharju Chapter 4: Distributed Systems: Replication and Consistency Fall 2013 Jussi Kangasharju Chapter Outline n Replication n Consistency models n Distribution protocols n Consistency protocols 2 Data Replication

More information

1/10/16. RPC and Clocks. Tom Anderson. Last Time. Synchroniza>on RPC. Lab 1 RPC

1/10/16. RPC and Clocks. Tom Anderson. Last Time. Synchroniza>on RPC. Lab 1 RPC RPC and Clocks Tom Anderson Go Synchroniza>on RPC Lab 1 RPC Last Time 1 Topics MapReduce Fault tolerance Discussion RPC At least once At most once Exactly once Lamport Clocks Mo>va>on MapReduce Fault Tolerance

More information

Windows Clustering 101

Windows Clustering 101 Windows Clustering 101 Dave Bermingham, Microsoft Clustering MVP, Senior Technical Evangelist, SIOS Technology Corp. Dave Bermingham Microsoft Cluster MVP (2010-current) Founder of www.clusteringformeremortals.com

More information

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout Exploiting Commutativity For Practical Fast Replication Seo Jin Park and John Ousterhout Overview Problem: consistent replication adds latency and throughput overheads Why? Replication happens after ordering

More information

Distributed Systems. Catch-up Lecture: Consistency Model Implementations

Distributed Systems. Catch-up Lecture: Consistency Model Implementations Distributed Systems Catch-up Lecture: Consistency Model Implementations Slides redundant with Lec 11,12 Slide acks: Jinyang Li, Robert Morris, Dave Andersen 1 Outline Last times: Consistency models Strict

More information

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space Today CSCI 5105 Coda GFS PAST Instructor: Abhishek Chandra 2 Coda Main Goals: Availability: Work in the presence of disconnection Scalability: Support large number of users Successor of Andrew File System

More information

EECS 498 Introduction to Distributed Systems

EECS 498 Introduction to Distributed Systems EECS 498 Introduction to Distributed Systems Fall 2017 Harsha V. Madhyastha Replicated State Machines Logical clocks Primary/ Backup Paxos? 0 1 (N-1)/2 No. of tolerable failures October 11, 2017 EECS 498

More information

Future-Proofing MySQL for the Worldwide Data Revolution

Future-Proofing MySQL for the Worldwide Data Revolution Future-Proofing MySQL for the Worldwide Data Revolution Robert Hodges, CEO. What is Future-Proo!ng? Future-proo!ng = creating systems that last while parts change and improve MySQL is not losing out to

More information

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein. Copyright 2003 Philip A. Bernstein. Outline

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein. Copyright 2003 Philip A. Bernstein. Outline 10. Replication CSEP 545 Transaction Processing Philip A. Bernstein Copyright 2003 Philip A. Bernstein 1 Outline 1. Introduction 2. Primary-Copy Replication 3. Multi-Master Replication 4. Other Approaches

More information

Highly Available Database Architectures in AWS. Santa Clara, California April 23th 25th, 2018 Mike Benshoof, Technical Account Manager, Percona

Highly Available Database Architectures in AWS. Santa Clara, California April 23th 25th, 2018 Mike Benshoof, Technical Account Manager, Percona Highly Available Database Architectures in AWS Santa Clara, California April 23th 25th, 2018 Mike Benshoof, Technical Account Manager, Percona Hello, Percona Live Attendees! What this talk is meant to

More information

Weak Consistency and Disconnected Operation in git. Raymond Cheng

Weak Consistency and Disconnected Operation in git. Raymond Cheng Weak Consistency and Disconnected Operation in git Raymond Cheng ryscheng@cs.washington.edu Motivation How can we support disconnected or weakly connected operation? Applications File synchronization across

More information

High Performance Transactions in Deuteronomy

High Performance Transactions in Deuteronomy High Performance Transactions in Deuteronomy Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang Microsoft Research Overview Deuteronomy: componentized DB stack Separates transaction,

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Fault Tolerance Jia Rao http://ranger.uta.edu/~jrao/ 1 Failure in Distributed Systems Partial failure Happens when one component of a distributed system fails Often leaves

More information

MY WEAK CONSISTENCY IS STRONG WHEN BAD THINGS DO NOT COME IN THREES ZECHAO SHANG JEFFREY XU YU

MY WEAK CONSISTENCY IS STRONG WHEN BAD THINGS DO NOT COME IN THREES ZECHAO SHANG JEFFREY XU YU MY WEAK CONSISTENCY IS STRONG WHEN BAD THINGS DO NOT COME IN THREES ZECHAO SHANG JEFFREY XU YU DISCLAIMER: NOT AN OLTP TALK HOW TO GET ALMOST EVERYTHING FOR NOTHING SHARED-MEMORY SYSTEM IS BACK shared

More information

CSE 5306 Distributed Systems. Fault Tolerance

CSE 5306 Distributed Systems. Fault Tolerance CSE 5306 Distributed Systems Fault Tolerance 1 Failure in Distributed Systems Partial failure happens when one component of a distributed system fails often leaves other components unaffected A failure

More information

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5.

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5. Question 1 What makes a message unstable? How does an unstable message become stable? Distributed Systems 2016 Exam 2 Review Paul Krzyzanowski Rutgers University Fall 2016 In virtual sychrony, a message

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [REPLICATION & CONSISTENCY] Frequently asked questions from the previous class survey Shrideep Pallickara Computer Science Colorado State University L25.1 L25.2 Topics covered

More information

TAPIR. By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton

TAPIR. By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton TAPIR By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton Outline Problem Space Inconsistent Replication TAPIR Evaluation Conclusion Problem

More information

CSE/EE 461 HTTP and the Web

CSE/EE 461 HTTP and the Web CSE/EE 461 HTTP and the Web Last Time The Transport Layer Focus How does TCP share bandwidth? Topics AIMD Slow Start Application Presentation Session Transport Network Data Link Fast Retransmit / Fast

More information

Integrating synchronous and asynchronous interactions in groupware applications

Integrating synchronous and asynchronous interactions in groupware applications Integrating synchronous and asynchronous interactions in groupware applications Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos, and Sérgio Duarte CITI/DI, FCT, Universidade Nova de Lisboa, Quinta

More information

White Paper Amazon Aurora A Fast, Affordable and Powerful RDBMS

White Paper Amazon Aurora A Fast, Affordable and Powerful RDBMS White Paper Amazon Aurora A Fast, Affordable and Powerful RDBMS TABLE OF CONTENTS Introduction 3 Multi-Tenant Logging and Storage Layer with Service-Oriented Architecture 3 High Availability with Self-Healing

More information

CSE 5306 Distributed Systems. Consistency and Replication

CSE 5306 Distributed Systems. Consistency and Replication CSE 5306 Distributed Systems Consistency and Replication 1 Reasons for Replication Data are replicated for the reliability of the system Servers are replicated for performance Scaling in numbers Scaling

More information

In this unit we are going to look at cloud computing. Cloud computing, also known as 'on-demand computing', is a kind of Internet-based computing,

In this unit we are going to look at cloud computing. Cloud computing, also known as 'on-demand computing', is a kind of Internet-based computing, In this unit we are going to look at cloud computing. Cloud computing, also known as 'on-demand computing', is a kind of Internet-based computing, where shared resources, data and information are provided

More information

Prophecy: Using History for High Throughput Fault Tolerance

Prophecy: Using History for High Throughput Fault Tolerance Prophecy: Using History for High Throughput Fault Tolerance Siddhartha Sen Joint work with Wyatt Lloyd and Mike Freedman Princeton University Non crash failures happen Non crash failures happen Model as

More information

Important Lessons. Today's Lecture. Two Views of Distributed Systems

Important Lessons. Today's Lecture. Two Views of Distributed Systems Important Lessons Replication good for performance/ reliability Key challenge keeping replicas up-to-date Wide range of consistency models Will see more next lecture Range of correctness properties L-10

More information

Data Acquisition. The reference Big Data stack

Data Acquisition. The reference Big Data stack Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Civile e Ingegneria Informatica Data Acquisition Corso di Sistemi e Architetture per Big Data A.A. 2016/17 Valeria Cardellini The reference

More information

Selective Hearing: An Approach to Distributed, Eventually Consistent Edge Computation

Selective Hearing: An Approach to Distributed, Eventually Consistent Edge Computation Selective Hearing: An Approach to Distributed, Eventually Consistent Edge Computation Christopher Meiklejohn Basho Technologies, Inc. Bellevue, WA Email: cmeiklejohn@basho.com Peter Van Roy Université

More information

Enhancing Throughput of

Enhancing Throughput of Enhancing Throughput of NCA 2017 Zhongmiao Li, Peter Van Roy and Paolo Romano Enhancing Throughput of Partially Replicated State Machines via NCA 2017 Zhongmiao Li, Peter Van Roy and Paolo Romano Enhancing

More information

AWS_SOA-C00 Exam. Volume: 758 Questions

AWS_SOA-C00 Exam. Volume: 758 Questions Volume: 758 Questions Question: 1 A user has created photo editing software and hosted it on EC2. The software accepts requests from the user about the photo format and resolution and sends a message to

More information