Thread Pools SE 441. Prof. Bullinger

Size: px
Start display at page:

Download "Thread Pools SE 441. Prof. Bullinger"

Transcription

1 Thread Pools SE 441 Prof. Bullinger

2 Thread Pools Thread Pool Limitations Sizing Thread Pools ThreadPoolExecutor Queuing Tasks Parallelizing Loops

3 Thread Pool Limitations Task Dependencies Different types of tasks require different execution policies Independent tasks are ideal Dependent tasks induce coupling Timing Results Side-effects Other tasks

4 Thread Confinement Thread confinement couples a task to its execution policy A single-threaded Executor does not require a thread-safe task Changing to a multi-threaded Executor introduces potential thread-safety issues Time-sensitive tasks may be impeded by an execution policy A long task in a single-threaded Executor may affect response time of other tasks

5 ThreadLocal ThreadLocal provides thread-specific state Executors reuse threads, rendering thread-specific state unusable Threads may also come and go, depending on the execution policy of the Executor Limit ThreadLocal to the lifecycle of a Task

6 Thread Pool Heuristics Thread Pools work best when tasks are homogenous and independent Don t mix tasks that depend on each other in the same Executor One task blocks, waiting for the results of the other The other cannot run due to limited resources A single-threaded thread pool A thread-pool with no available threads

7 Thread Pool Heuristics Thread Pools work best when tasks are homogenous and independent Don t mix long-running and short-running tasks Eventually, long-running tasks dominate the thread pool Responsiveness may suffer Suggest adding timeouts to blocking calls to ensure liveness Large or unbounded thread pools minimize risk Document the execution policy requirement for a task!

8 Thread Pools Thread Pool Limitations Sizing Thread Pools ThreadPoolExecutor Queuing Tasks Parallelizing Loops

9 Thread Pool Size The number of threads in a thread pool can be optimized for the target tasks Should be sized dynamically int cpucount = Runtime.getRuntime().availableProcessors(); Based on the type of task I/O bound vs. CPU bound Sizing is not an absolute number, but rather too big or too small

10 How Many Threads? A large thread pool: incurs significant overhead for management, locks-up memory while active or blocked A small thread pool: reduces parallelism impacts throughput

11 Sizing Thread Pools Consider the nature of the tasks How many resources (sockets, file handles, etc.) are required? What type of task (I/O vs CPU) How many processors are available? How much memory is available? Are other required resources scarce (i.e. JDBC connection) Consider different execution policies (thread pools) for different types of tasks

12 Thread Pool Sizing Ncpu = number of available CPUs Ucpu = target CPU utilization (0 <= Ucpu <= 1 W/C = ratio of wait time to compute time (blocked) Nthreads = Ncpu * Ucpu * (1 + W/C)

13 Thread Pools Thread Pool Limitations Sizing Thread Pools ThreadPoolExecutor Queuing Tasks Parallelizing Loops

14 Executor Default Executors provide many behaviors Executors may be customized after construction ThreadPoolExecutor

15 Customizing ThreadPoolExecutor Hooks are provides in ThreadPoolExecutor beforeexecute - called before a task is executed afterexecute - called after a task is run, or an exception terminated - called when the thread pool completes shutdown Ideal for logging and statistics gathering

16 Thread Pools Thread Pool Limitations Sizing Thread Pools ThreadPoolExecutor Queuing Tasks Parallelizing Loops

17 Queued Tasks Thread Pools maintain a queue of pending tasks Tasks may still be scheduled faster than they can execute Resulting in resource consumption and instability LinkedBlockingQueue is the default Executor queue mechanism BlockQueues provide one potential solution An optional parameter to a ThreadPoolExecutor

18 Bounded Blocking Queues Bounded blocking queues provide a better solution Submitted tasks will be queued to the limit of the queue size Clients will block when attempting to submit tasks past the upper bound Requires a saturation policy Queue size and thread pool size must be considered together

19 Synchronous Queue A synchronous queue can be used for thread pool task submission Requires large or unbound pool sizes Consumer must be faster than the producer Improves response time to new tasks May invoke the saturation policy sooner

20 PriorityQueue A priority queue can be used to create a scheduling policy in conjunction with an execution policy

21 Saturation Policy How does a client respond to a rejected task submission? Use a provided rejection policy handler AbortPolicy - throws RejectedExecutionException CallerRunsPolicy - the client runs the task DiscardPolicy - deletes the submitted task DiscardOldestPolicy - replaces the next task to run(!) Define a custom rejection handler setrejectedexecutionhandler

22 Block on Full Work Queue

23 Thread Factories Executors create threads through the default thread factory Returns a plain, non-daemon thread Custom ThreadFactories can be specified for Executors

24 Custom Thread Factory Reasons: Trap uncaught exceptions Provide names for threads Provide debug logging Apply security policies Include performance statistics Threads created Threads destroyed

25 Thread Pools Thread Pool Limitations Sizing Thread Pools ThreadPoolExecutor Queuing Tasks Parallelizing Loops

26 Sequential to Parallel

27 Sequential to Parallel Candidates have: Complex computations in the loop body Potentially blocking I/O in the loop body Independent processing No ordering dependencies Enough loop elements to offset the overhead The loop completes after tasks are queued Not after the processing!

28 Recursive Parallelism

29 Awaiting Parallel Results

Chapter 8 Applying Thread Pools. Magnus Andersson

Chapter 8 Applying Thread Pools. Magnus Andersson Chapter 8 Applying Thread Pools Magnus Andersson Execution policies Not all task are suitable for all execution policies Dependent task Task exploiting thread confinement Response time sensitive tasks

More information

Threads Questions Important Questions

Threads Questions Important Questions Threads Questions Important Questions https://dzone.com/articles/threads-top-80-interview https://www.journaldev.com/1162/java-multithreading-concurrency-interviewquestions-answers https://www.javatpoint.com/java-multithreading-interview-questions

More information

[module lab 1.2] STRUCTURING PROGRAMS IN TASKS

[module lab 1.2] STRUCTURING PROGRAMS IN TASKS v1.0 Sistemi Concorrenti e di Rete LS II Facoltà di Ingegneria - Cesena a.a 2008/2009 [module lab 1.2] STRUCTURING PROGRAMS IN TASKS 1 STRUCTURING CONCURRENT PROGRAMS INTO TASKS Task concept abstract,

More information

Parallel Programming Practice

Parallel Programming Practice Parallel Programming Practice Threads and Tasks Susanne Cech Previtali Thomas Gross Last update: 2009-10-29, 09:12 Thread objects java.lang.thread Each thread is associated with an instance of the class

More information

Using the Executor Framework to Implement AEH in the RTSJ

Using the Executor Framework to Implement AEH in the RTSJ Using the Executor Framework to Implement AEH in the RTSJ Table of Contents MinSeong Kim & Andy Wellings Role of AEH in the RTSJ AEH Facility in the RTSJ Implementation Discussion Limitations of AEH The

More information

Parallel Programming Practice

Parallel Programming Practice Parallel Programming Practice Threads and Tasks Susanne Cech Previtali Thomas Gross Last update: 2009-10-29, 09:12 Thread objects java.lang.thread Each thread is associated with an instance of the class

More information

Parallel Task Executor in Java

Parallel Task Executor in Java Parallel Task Executor in Java Niravkumar Patel Computer Science Department San Jose State University San Jose, CA 95192 425-772-2509 niravkumar.patel1989@gmail.com ABSTRACT In software development there

More information

[module lab 1.3] CANCELLATION AND SHUTDOWN

[module lab 1.3] CANCELLATION AND SHUTDOWN v1.0 BETA Sistemi Concorrenti e di Rete LS II Facoltà di Ingegneria - Cesena a.a 2008/2009 [module lab 1.3] CANCELLATION AND SHUTDOWN 1 STOPPING THREADS AND TASKS An activity is cancellable if external

More information

Concurrency in Object Oriented Programs 4. Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter

Concurrency in Object Oriented Programs 4. Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter Concurrency in Object Oriented Programs 4 Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter Outline Thread Control Tasks and Task Control Finding and Exploiting Parallelism

More information

Lecture 03: Thread API (continue)

Lecture 03: Thread API (continue) Lecture 03: Thread API (continue) SSC2 Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 03 1 Recap Extending Thread or implementing Runnable Thread terminology Stopping Threads

More information

Final Concurrency. Oleg October 27, 2014

Final Concurrency. Oleg October 27, 2014 Final Concurrency Oleg Šelajev @shelajev oleg@zeroturnaround.com October 27, 2014 Feedbacks Task Executors Fork-Join framework Completable Future Agenda 2 HOMEWORK 4 FEEDBACK THREAD LOCAL VARIABLES TASK

More information

MULTI-THREADED QUERIES

MULTI-THREADED QUERIES 15-721 Project 3 Final Presentation MULTI-THREADED QUERIES Wendong Li (wendongl) Lu Zhang (lzhang3) Rui Wang (ruiw1) Project Objective Intra-operator parallelism Use multiple threads in a single executor

More information

White Paper. Major Performance Tuning Considerations for Weblogic Server

White Paper. Major Performance Tuning Considerations for Weblogic Server White Paper Major Performance Tuning Considerations for Weblogic Server Table of Contents Introduction and Background Information... 2 Understanding the Performance Objectives... 3 Measuring your Performance

More information

SEDA: An Architecture for Well-Conditioned, Scalable Internet Services

SEDA: An Architecture for Well-Conditioned, Scalable Internet Services SEDA: An Architecture for Well-Conditioned, Scalable Internet Services Matt Welsh, David Culler, and Eric Brewer Computer Science Division University of California, Berkeley Operating Systems Principles

More information

Effective Concurrent Java. Brian Goetz Sr. Staff Engineer, Sun Microsystems

Effective Concurrent Java. Brian Goetz Sr. Staff Engineer, Sun Microsystems Effective Concurrent Java Brian Goetz Sr. Staff Engineer, Sun Microsystems brian.goetz@sun.com The Big Picture Writing correct concurrent code is difficult, but not impossible. Using good object-oriented

More information

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7 THE PROCESS ABSTRACTION CS124 Operating Systems Winter 2015-2016, Lecture 7 2 The Process Abstraction Most modern OSes include the notion of a process Term is short for a sequential process Frequently

More information

Efficient Android Threading

Efficient Android Threading .... - J.', ' < '.. Efficient Android Threading Anders Göransson Beijing Cambridge Farnham Köln Sebastopol Tokyo O'REILLY Table of Contents Preface xi 1. Android Components and the Need for Multiprocessing

More information

Use cases. Faces tagging in photo and video, enabling: sharing media editing automatic media mashuping entertaining Augmented reality Games

Use cases. Faces tagging in photo and video, enabling: sharing media editing automatic media mashuping entertaining Augmented reality Games Viewdle Inc. 1 Use cases Faces tagging in photo and video, enabling: sharing media editing automatic media mashuping entertaining Augmented reality Games 2 Why OpenCL matter? OpenCL is going to bring such

More information

Vulkan: Scaling to Multiple Threads. Kevin sun Lead Developer Support Engineer, APAC PowerVR Graphics

Vulkan: Scaling to Multiple Threads. Kevin sun Lead Developer Support Engineer, APAC PowerVR Graphics Vulkan: Scaling to Multiple Threads Kevin sun Lead Developer Support Engineer, APAC PowerVR Graphics www.imgtec.com Introduction Who am I? Kevin Sun Working at Imagination Technologies Take responsibility

More information

CSCE 626 Experimental Evaluation.

CSCE 626 Experimental Evaluation. CSCE 626 Experimental Evaluation http://parasol.tamu.edu Introduction This lecture discusses how to properly design an experimental setup, measure and analyze the performance of parallel algorithms you

More information

Using Time Division Multiplexing to support Real-time Networking on Ethernet

Using Time Division Multiplexing to support Real-time Networking on Ethernet Using Time Division Multiplexing to support Real-time Networking on Ethernet Hariprasad Sampathkumar 25 th January 2005 Master s Thesis Defense Committee Dr. Douglas Niehaus, Chair Dr. Jeremiah James,

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [THREADS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Shuffle less/shuffle better Which actions?

More information

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci v1.0 20130510 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module lab 3.1] TASK FRAMEWORKS 1 STRUCTURING CONCURRENT PROGRAMS INTO

More information

SUMMARY FUTURES CALLABLES CONCURRENT PROGRAMMING THREAD S ADVANCED CONCEPTS

SUMMARY FUTURES CALLABLES CONCURRENT PROGRAMMING THREAD S ADVANCED CONCEPTS SUMMARY CONCURRENT PROGRAMMING THREAD S ADVANCED CONCEPTS Callable tasks Futures Executors Executor services Deadlocks PROGRAMMAZIONE CONCORRENTE E DISTR. Università degli Studi di Padova Dipartimento

More information

CST242 Concurrency Page 1

CST242 Concurrency Page 1 CST242 Concurrency Page 1 1 2 3 4 5 6 7 9 Concurrency CST242 Concurrent Processing (Page 1) Only computers with multiple processors can truly execute multiple instructions concurrently On single-processor

More information

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 12: Scheduling & Deadlock Priority Scheduling Priority Scheduling Choose next job based on priority» Airline checkin for first class passengers Can

More information

Only one thread can own a specific monitor

Only one thread can own a specific monitor Java 5 Notes Threads inherit their priority and daemon properties from their creating threads The method thread.join() blocks and waits until the thread completes running A thread can have a name for identification

More information

Multimedia Systems 2011/2012

Multimedia Systems 2011/2012 Multimedia Systems 2011/2012 System Architecture Prof. Dr. Paul Müller University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY http://www.icsy.de Sitemap 2 Hardware

More information

[08] IO SUBSYSTEM 1. 1

[08] IO SUBSYSTEM 1. 1 [08] IO SUBSYSTEM 1. 1 OUTLINE Input/Output (IO) Hardware Device Classes OS Interfaces Performing IO Polled Mode Interrupt Driven Blocking vs Non-blocking Handling IO Buffering & Strategies Other Issues

More information

Announcements. Reading. Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) CMSC 412 S14 (lect 5)

Announcements. Reading. Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) CMSC 412 S14 (lect 5) Announcements Reading Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) 1 Relationship between Kernel mod and User Mode User Process Kernel System Calls User Process

More information

Scheduling of processes

Scheduling of processes Scheduling of processes Processor scheduling Schedule processes on the processor to meet system objectives System objectives: Assigned processes to be executed by the processor Response time Throughput

More information

CMSC 433 Programming Language Technologies and Paradigms. Concurrency

CMSC 433 Programming Language Technologies and Paradigms. Concurrency CMSC 433 Programming Language Technologies and Paradigms Concurrency What is Concurrency? Simple definition Sequential programs have one thread of control Concurrent programs have many Concurrency vs.

More information

Java Concurrency in practice Chapter 9 GUI Applications

Java Concurrency in practice Chapter 9 GUI Applications Java Concurrency in practice Chapter 9 GUI Applications INF329 Spring 2007 Presented by Stian and Eirik 1 Chapter 9 GUI Applications GUI applications have their own peculiar threading issues To maintain

More information

Announcements. Program #1. Program #0. Reading. Is due at 9:00 AM on Thursday. Re-grade requests are due by Monday at 11:59:59 PM.

Announcements. Program #1. Program #0. Reading. Is due at 9:00 AM on Thursday. Re-grade requests are due by Monday at 11:59:59 PM. Program #1 Announcements Is due at 9:00 AM on Thursday Program #0 Re-grade requests are due by Monday at 11:59:59 PM Reading Chapter 6 1 CPU Scheduling Manage CPU to achieve several objectives: maximize

More information

Chapter 9 Uniprocessor Scheduling

Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 9 Uniprocessor Scheduling Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Aim of Scheduling Assign

More information

Chapter 4: Multi-Threaded Programming

Chapter 4: Multi-Threaded Programming Chapter 4: Multi-Threaded Programming Chapter 4: Threads 4.1 Overview 4.2 Multicore Programming 4.3 Multithreading Models 4.4 Thread Libraries Pthreads Win32 Threads Java Threads 4.5 Implicit Threading

More information

Concurrency Utilities: JSR-166

Concurrency Utilities: JSR-166 Concurrency Concurrency Utilities: JSR-166 Enables development of simple yet powerful multi-threaded applications > Like Collection provides rich data structure handling capability Beat C performance in

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

PROCESSES AND THREADS THREADING MODELS. CS124 Operating Systems Winter , Lecture 8

PROCESSES AND THREADS THREADING MODELS. CS124 Operating Systems Winter , Lecture 8 PROCESSES AND THREADS THREADING MODELS CS124 Operating Systems Winter 2016-2017, Lecture 8 2 Processes and Threads As previously described, processes have one sequential thread of execution Increasingly,

More information

Subject Name: OPERATING SYSTEMS. Subject Code: 10EC65. Prepared By: Kala H S and Remya R. Department: ECE. Date:

Subject Name: OPERATING SYSTEMS. Subject Code: 10EC65. Prepared By: Kala H S and Remya R. Department: ECE. Date: Subject Name: OPERATING SYSTEMS Subject Code: 10EC65 Prepared By: Kala H S and Remya R Department: ECE Date: Unit 7 SCHEDULING TOPICS TO BE COVERED Preliminaries Non-preemptive scheduling policies Preemptive

More information

A Predictable RTOS. Mantis Cheng Department of Computer Science University of Victoria

A Predictable RTOS. Mantis Cheng Department of Computer Science University of Victoria A Predictable RTOS Mantis Cheng Department of Computer Science University of Victoria Outline I. Analysis of Timeliness Requirements II. Analysis of IO Requirements III. Time in Scheduling IV. IO in Scheduling

More information

Uniprocessor Scheduling. Aim of Scheduling

Uniprocessor Scheduling. Aim of Scheduling Uniprocessor Scheduling Chapter 9 Aim of Scheduling Response time Throughput Processor efficiency Types of Scheduling Long-Term Scheduling Determines which programs are admitted to the system for processing

More information

Uniprocessor Scheduling. Aim of Scheduling. Types of Scheduling. Long-Term Scheduling. Chapter 9. Response time Throughput Processor efficiency

Uniprocessor Scheduling. Aim of Scheduling. Types of Scheduling. Long-Term Scheduling. Chapter 9. Response time Throughput Processor efficiency Uniprocessor Scheduling Chapter 9 Aim of Scheduling Response time Throughput Processor efficiency Types of Scheduling Long-Term Scheduling Determines which programs are admitted to the system for processing

More information

CS 450 Exam 2 Mon. 11/7/2016

CS 450 Exam 2 Mon. 11/7/2016 CS 450 Exam 2 Mon. 11/7/2016 Name: Rules and Hints You may use one handwritten 8.5 11 cheat sheet (front and back). This is the only additional resource you may consult during this exam. No calculators.

More information

CSE 120. Fall Lecture 8: Scheduling and Deadlock. Keith Marzullo

CSE 120. Fall Lecture 8: Scheduling and Deadlock. Keith Marzullo CSE 120 Principles of Operating Systems Fall 2007 Lecture 8: Scheduling and Deadlock Keith Marzullo Aministrivia Homework 2 due now Next lecture: midterm review Next Tuesday: midterm 2 Scheduling Overview

More information

Devsummit Concurrency Hacks

Devsummit Concurrency Hacks Devsummit Concurrency Hacks Taylor Riastradh Campbell campbell@mumble.net riastradh@netbsd.org EuroBSDcon 2015 Stockholm, Sweden October 2, 2015 Concurrency hacks Works in progress not even compile-tested.

More information

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Java: concurrency Outline Java threads thread implementation sleep, interrupt, and join threads that return values Thread synchronization

More information

Case Study: Parallelizing a Recursive Problem with Intel Threading Building Blocks

Case Study: Parallelizing a Recursive Problem with Intel Threading Building Blocks 4/8/2012 2:44:00 PM Case Study: Parallelizing a Recursive Problem with Intel Threading Building Blocks Recently I have been working closely with DreamWorks Animation engineers to improve the performance

More information

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections Thread Safety Today o Confinement o Threadsafe datatypes Required reading Concurrency Wrapper Collections Optional reading The material in this lecture and the next lecture is inspired by an excellent

More information

Implementing Scheduling Algorithms. Real-Time and Embedded Systems (M) Lecture 9

Implementing Scheduling Algorithms. Real-Time and Embedded Systems (M) Lecture 9 Implementing Scheduling Algorithms Real-Time and Embedded Systems (M) Lecture 9 Lecture Outline Implementing real time systems Key concepts and constraints System architectures: Cyclic executive Microkernel

More information

CS533 Concepts of Operating Systems. Jonathan Walpole

CS533 Concepts of Operating Systems. Jonathan Walpole CS533 Concepts of Operating Systems Jonathan Walpole SEDA: An Architecture for Well- Conditioned Scalable Internet Services Overview What does well-conditioned mean? Internet service architectures - thread

More information

Windows Interrupts

Windows Interrupts Windows 2000 - Interrupts Ausgewählte Betriebssysteme Institut Betriebssysteme Fakultät Informatik 1 Interrupts Software and Hardware Interrupts and Exceptions Kernel installs interrupt trap handlers Interrupt

More information

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7 Os-slide#1 /*Sequential Producer & Consumer*/ int i=0; repeat forever Gather material for item i; Produce item i; Use item i; Discard item i; I=I+1; end repeat Analogy: Manufacturing and distribution Print

More information

SUMMARY INTRODUCTION CONCURRENT PROGRAMMING THREAD S BASICS. Introduction Thread basics. Thread states. Sequence diagrams

SUMMARY INTRODUCTION CONCURRENT PROGRAMMING THREAD S BASICS. Introduction Thread basics. Thread states. Sequence diagrams SUMMARY CONCURRENT PROGRAMMING THREAD S BASICS PROGRAMMAZIONE CONCORRENTE E DISTR. Introduction Thread basics Thread properties Thread states Thread interruption Sequence diagrams Università degli Studi

More information

Yi Shi Fall 2017 Xi an Jiaotong University

Yi Shi Fall 2017 Xi an Jiaotong University Threads Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Case for Threads Thread details Case for Parallelism main() read_data() for(all data) compute(); write_data(); endfor main() read_data()

More information

Processes, Execution, and State. What is CPU Scheduling? Goals and Metrics. Rectified Scheduling Metrics. CPU Scheduling: Proposed Metrics 4/6/2016

Processes, Execution, and State. What is CPU Scheduling? Goals and Metrics. Rectified Scheduling Metrics. CPU Scheduling: Proposed Metrics 4/6/2016 Processes, Execution, and State Operating Systems Principles Scheduling Algorithms, Mechanisms, Performance Mark Kampe (markk@cs.ucla.edu) 4A. Introduction to Scheduling 4B. Non-Preemptive Scheduling 4C.

More information

Chapter 4: Multithreaded

Chapter 4: Multithreaded Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues Operating-System Examples 2009/10/19 2 4.1 Overview A thread is

More information

Multiprocessor and Real-Time Scheduling. Chapter 10

Multiprocessor and Real-Time Scheduling. Chapter 10 Multiprocessor and Real-Time Scheduling Chapter 10 1 Roadmap Multiprocessor Scheduling Real-Time Scheduling Linux Scheduling Unix SVR4 Scheduling Windows Scheduling Classifications of Multiprocessor Systems

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Processes and threads

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Processes and threads ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Processes and threads 1 Overview Process concept Process scheduling Thread

More information

Today s class. Scheduling. Informationsteknologi. Tuesday, October 9, 2007 Computer Systems/Operating Systems - Class 14 1

Today s class. Scheduling. Informationsteknologi. Tuesday, October 9, 2007 Computer Systems/Operating Systems - Class 14 1 Today s class Scheduling Tuesday, October 9, 2007 Computer Systems/Operating Systems - Class 14 1 Aim of Scheduling Assign processes to be executed by the processor(s) Need to meet system objectives regarding:

More information

DB2 Performance A Primer. Bill Arledge Principal Consultant CA Technologies Sept 14 th, 2011

DB2 Performance A Primer. Bill Arledge Principal Consultant CA Technologies Sept 14 th, 2011 DB2 Performance A Primer Bill Arledge Principal Consultant CA Technologies Sept 14 th, 2011 Agenda Performance Defined DB2 Instrumentation Sources of performance metrics DB2 Performance Disciplines System

More information

A Sense of Time for JavaScript and Node.js

A Sense of Time for JavaScript and Node.js A Sense of Time for JavaScript and Node.js First-Class Timeouts as a Cure for Event Handler Poisoning James C. Davis Eric R. Williamson Dongyoon Lee COMPUTER SCIENCE - 1 - Contributions Attack: Event Handler

More information

CONCURRENCY IN JAVA Course Parallel Computing

CONCURRENCY IN JAVA Course Parallel Computing CONCURRENCY IN JAVA Course Parallel Computing Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at Java on a NUMA Architecture Loading

More information

FCM 710: Architecture of Secure Operating Systems

FCM 710: Architecture of Secure Operating Systems FCM 710: Architecture of Secure Operating Systems Practice Exam, Spring 2010 Email your answer to ssengupta@jjay.cuny.edu March 16, 2010 Instructor: Shamik Sengupta Multiple-Choice 1. operating systems

More information

JAVA CONCURRENCY FRAMEWORK. Kaushik Kanetkar

JAVA CONCURRENCY FRAMEWORK. Kaushik Kanetkar JAVA CONCURRENCY FRAMEWORK Kaushik Kanetkar Old days One CPU, executing one single program at a time No overlap of work/processes Lots of slack time CPU not completely utilized What is Concurrency Concurrency

More information

RxNetty vs Tomcat Performance Results

RxNetty vs Tomcat Performance Results RxNetty vs Tomcat Performance Results Brendan Gregg; Performance and Reliability Engineering Nitesh Kant, Ben Christensen; Edge Engineering updated: Apr 2015 Results based on The Hello Netflix benchmark

More information

Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System

Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System Donald S. Miller Department of Computer Science and Engineering Arizona State University Tempe, AZ, USA Alan C.

More information

Other Optimistic Mechanisms, Memory Management!

Other Optimistic Mechanisms, Memory Management! Other Optimistic Mechanisms, Memory Management! Richard M. Fujimoto! Professor!! Computational Science and Engineering Division! College of Computing! Georgia Institute of Technology! Atlanta, GA 30332-0765,

More information

Multithreading and Interactive Programs

Multithreading and Interactive Programs Multithreading and Interactive Programs CS160: User Interfaces John Canny. Last time Model-View-Controller Break up a component into Model of the data supporting the App View determining the look of the

More information

Chapter 32 Multithreading and Parallel Programming

Chapter 32 Multithreading and Parallel Programming Chapter 32 Multithreading and Parallel Programming 1 Objectives To get an overview of multithreading ( 32.2). To develop task classes by implementing the Runnable interface ( 32.3). To create threads to

More information

ECE 477 Digital Systems Senior Design Project. Module 10 Embedded Software Development

ECE 477 Digital Systems Senior Design Project. Module 10 Embedded Software Development 2011 by D. G. Meyer ECE 477 Digital Systems Senior Design Project Module 10 Embedded Software Development Outline Memory Models Memory Sections Discussion Application Code Organization Memory Models -

More information

Overview. Sporadic tasks. Recall. Aperiodic tasks. Real-time Systems D0003E 2/26/2009. Loosening D = T. Aperiodic tasks. Response-time analysis

Overview. Sporadic tasks. Recall. Aperiodic tasks. Real-time Systems D0003E 2/26/2009. Loosening D = T. Aperiodic tasks. Response-time analysis Overview Real-time Systems D0003E Lecture 11: Priority inversion Burns/Wellings ch. 13 (except 13.12) Aperiodic tasks Response time analysis Blocking Priority inversion Priority inheritance Priority ceiling

More information

Chapter 1: Distributed Information Systems

Chapter 1: Distributed Information Systems Chapter 1: Distributed Information Systems Contents - Chapter 1 Design of an information system Layers and tiers Bottom up design Top down design Architecture of an information system One tier Two tier

More information

CSE120 Principles of Operating Systems. Prof Yuanyuan (YY) Zhou Scheduling

CSE120 Principles of Operating Systems. Prof Yuanyuan (YY) Zhou Scheduling CSE120 Principles of Operating Systems Prof Yuanyuan (YY) Zhou Scheduling Announcement l Homework 2 due on October 26th l Project 1 due on October 27th 2 Scheduling Overview l In discussing process management

More information

CSE473/Spring st Midterm Exam Tuesday, February 19, 2007 Professor Trent Jaeger

CSE473/Spring st Midterm Exam Tuesday, February 19, 2007 Professor Trent Jaeger CSE473/Spring 2008-1st Midterm Exam Tuesday, February 19, 2007 Professor Trent Jaeger Please read the instructions and questions carefully. You will be graded for clarity and correctness. You have 75 minutes

More information

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn Download lectures ftp://public.sjtu.edu.cn User:

More information

Lecture 2 Process Management

Lecture 2 Process Management Lecture 2 Process Management Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks The terms job and process may be interchangeable

More information

The Mercury project. Zoltan Somogyi

The Mercury project. Zoltan Somogyi The Mercury project Zoltan Somogyi The University of Melbourne Linux Users Victoria 7 June 2011 Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 1 / 23 Introduction Mercury: objectives

More information

Last class: Today: Thread Background. Thread Systems

Last class: Today: Thread Background. Thread Systems 1 Last class: Thread Background Today: Thread Systems 2 Threading Systems 3 What kind of problems would you solve with threads? Imagine you are building a web server You could allocate a pool of threads,

More information

Chapter 8: Memory-Management Strategies

Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

CPS 310 midterm exam #2, 4/10/2017

CPS 310 midterm exam #2, 4/10/2017 CPS 310 midterm exam #2, 4/10/2017 Your name please: NetID: Sign for your honor: Answer all questions. Please attempt to confine your answers to the space provided. Allocate your time carefully: you have

More information

Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 2

Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 2 Chapter 1: Distributed Information Systems Gustavo Alonso Computer Science Department Swiss Federal Institute of Technology (ETHZ) alonso@inf.ethz.ch http://www.iks.inf.ethz.ch/ Contents - Chapter 1 Design

More information

Questions from last time

Questions from last time Questions from last time Pthreads vs regular thread? Pthreads are POSIX-standard threads (1995). There exist earlier and newer standards (C++11). Pthread is probably most common. Pthread API: about a 100

More information

CHAPTER 3 - PROCESS CONCEPT

CHAPTER 3 - PROCESS CONCEPT CHAPTER 3 - PROCESS CONCEPT 1 OBJECTIVES Introduce a process a program in execution basis of all computation Describe features of processes: scheduling, creation, termination, communication Explore interprocess

More information

Process Concepts. CSC400 - Operating Systems. 3. Process Concepts. J. Sumey

Process Concepts. CSC400 - Operating Systems. 3. Process Concepts. J. Sumey CSC400 - Operating Systems 3. Process Concepts J. Sumey Overview Concurrency Processes & Process States Process Accounting Interrupts & Interrupt Processing Interprocess Communication CSC400 - Process

More information

Performance Best Practices Paper for IBM Tivoli Directory Integrator v6.1 and v6.1.1

Performance Best Practices Paper for IBM Tivoli Directory Integrator v6.1 and v6.1.1 Performance Best Practices Paper for IBM Tivoli Directory Integrator v6.1 and v6.1.1 version 1.0 July, 2007 Table of Contents 1. Introduction...3 2. Best practices...3 2.1 Preparing the solution environment...3

More information

Processes and Threads. Processes: Review

Processes and Threads. Processes: Review Processes and Threads Processes and their scheduling Threads and scheduling Multiprocessor scheduling Distributed Scheduling/migration Lecture 3, page 1 Processes: Review Multiprogramming versus multiprocessing

More information

Vulkan Timeline Semaphores

Vulkan Timeline Semaphores Vulkan line Semaphores Jason Ekstrand September 2018 Copyright 2018 The Khronos Group Inc. - Page 1 Current Status of VkSemaphore Current VkSemaphores require a strict signal, wait, signal, wait pattern

More information

Summary: Issues / Open Questions:

Summary: Issues / Open Questions: Summary: The paper introduces Transitional Locking II (TL2), a Software Transactional Memory (STM) algorithm, which tries to overcomes most of the safety and performance issues of former STM implementations.

More information

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES OBJECTIVES Detailed description of various ways of organizing memory hardware Various memory-management techniques, including paging and segmentation To provide

More information

SPIN Operating System

SPIN Operating System SPIN Operating System Motivation: general purpose, UNIX-based operating systems can perform poorly when the applications have resource usage patterns poorly handled by kernel code Why? Current crop of

More information

SmartSuspend. Achieve 100% Cluster Utilization. Technical Overview

SmartSuspend. Achieve 100% Cluster Utilization. Technical Overview SmartSuspend Achieve 100% Cluster Utilization Technical Overview 2011 Jaryba, Inc. SmartSuspend TM Technical Overview 1 Table of Contents 1.0 SmartSuspend Overview 3 2.0 How SmartSuspend Works 3 3.0 Job

More information

What Developers must know about DB2 for z/os indexes

What Developers must know about DB2 for z/os indexes CRISTIAN MOLARO CRISTIAN@MOLARO.BE What Developers must know about DB2 for z/os indexes Mardi 22 novembre 2016 Tour Europlaza, Paris-La Défense What Developers must know about DB2 for z/os indexes Introduction

More information

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel Alexander Züpke, Marc Bommert, Daniel Lohmann alexander.zuepke@hs-rm.de, marc.bommert@hs-rm.de, lohmann@cs.fau.de Motivation Automotive and Avionic industry

More information

Static Analysis of Embedded C

Static Analysis of Embedded C Static Analysis of Embedded C John Regehr University of Utah Joint work with Nathan Cooprider Motivating Platform: TinyOS Embedded software for wireless sensor network nodes Has lots of SW components for

More information

The memory unit has three sets of reservation stations, not one:

The memory unit has three sets of reservation stations, not one: Data structures for Tomasulo s algorithm Instruction status: Which stage the instruction is in. Functional unit status: Busy FU is busy executing an instruction Reservation-station status Busy reservation

More information

CSE398: Network Systems Design

CSE398: Network Systems Design CSE398: Network Systems Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University February 23, 2005 Outline

More information

Chapter 6 Parallel Loops

Chapter 6 Parallel Loops Chapter 6 Parallel Loops Part I. Preliminaries Part II. Tightly Coupled Multicore Chapter 6. Parallel Loops Chapter 7. Parallel Loop Schedules Chapter 8. Parallel Reduction Chapter 9. Reduction Variables

More information