Unit Testing in Java with an Emphasis on Concurrency Corky Cartwright Rice and Halmstad Universities Summer 2013

Size: px
Start display at page:

Download "Unit Testing in Java with an Emphasis on Concurrency Corky Cartwright Rice and Halmstad Universities Summer 2013"

Transcription

1 Unit Testing in Java with an Emphasis on Concurrency Corky Cartwright Rice and Halmstad Universities Summer 2013

2 Software Engineering Culture Three Guiding Visions Data-driven design Test-driven development Mostly functional coding (no gratuitous mutation) Codified in Design Recipe taught in How to Design Programs by Felleisen et al (available for free online: [first edition], [second edition]) and Elements of Object-Oriented Design (available online at. The target languages are Scheme and Java.

3 Moore s Law

4

5 Extrapolate the Future

6 Timeliness CPU clock frequencies stagnate Multi-Core CPUs provide additional processing power, but multiple s needed to use multiple cores. Writing concurrent programs is difficult!

7 Tutorial Outline Introduce unit testing in single-ed (deterministic) setting using lists Demonstrate problems introduced by concurrency and their impact on unit testing Show how some of the most basic problems can be overcome by using the right policies and tools.

8 (Sequential) Unit Testing Unit tests Test parts of the program (including( whole!) Integrate with program development; commits to repository must pass all unit tests Automate testing during maintenance phase Serve as documentation Prevent bugs from reoccurring Help keep the code repository clean Help keep the code repository clean Effective with a single of control

9 Universal Test-Driven Design Recipe Analyze the problem: define the data and determine top level operations. Give sample data values. Define type signatures, contracts, and headers for all top level operations. In Java, the type signature is part of the header. Give input-output examples including critical boundary cases for each operation. Write a template for each operation, typically based on structural decomposition of primary argument (the receiver in OO methods). Code each method by filling in templates Test every method (using I/O examples!) and ascertain that every method is tested on sufficient set of examples. White-box testing matters!

10 Sequential Case Studies: Functional Lists and Bi-Lists A List<E> is either Empty<E>(), or Cons<E>(e, l) where e is an E and l is List<E> A BiList<E> is a mutable data structure containing a possibly empty sequence of objects of type E that can be traversed in either direction using a BiListIterator<E>.

11 Review Elements of Sequential Unit Testing Unit tests depend on deterministic behavior Known input, expected output Success Failure correct behavior flawed code Outcome of test is meaningful if test is deterministic

12 Problems Due to Concurrency Thread scheduling is nondeterministic and machine-dependent Code may be executed under different schedules Different schedules may produce different results Known input, expected output(s?) Success correct behavior in this schedule, may be flawed in other schedule Failure flawed code Success of unit test is meaningless

13 Recommended Resources on Concurrent Programming in Java Explicit Concurrency: Comp 402 web site from 2009 Brian Goetz, Java Concurrency in Practice (available onlne at this website) Coping with Multicore Emerging parallel extensions of Java/Scala that guarantee determinism (in designated subset) and do not require explicit synchronization and avoid JMM issues Habanero Java Habanero Scala

14 Problems Due to Java Memory Model JMM is MUCH weaker than sequential consistency Writes to shared data may be held pending indefinitely unless target is declared volatile or is shielded by the same lock as subsequent reads. Why not always use locking (synchronized)? Significant overhead Increases likelihood of deadlock Extremely difficult to reason about program execution for specific inputs because so many schedules are allowed. A model that accommodates compiler writers rather than software developers.

15 Hidden Pitfalls in Using JUnit to Test Concurrent Java Junit Is Completely Broken for Concurrent Code Units: Fails to detect exceptions and failed assertions in s other than the main (!) Fails to detect if auxiliary is still running when main terminates; all execution is aborted when main terminates. Fails to ensure that all auxiliary s were joined by main before termination. (In Habanero Java, all programs are implicity enclosed a comprehensive join called finish() but not in Java.)

16 Possible Solutions to Concurrent Testing Problems Programming Language Features Ensure that bad things cannot happen; perhaps ensure determinism (reducing testing to sequential semantics!) May restrict programmers Comprehensive Testing Testing if bad things happen in any schedule All schedules may be too stringent for programs involving GUIs Does not limit space of solutions but testing burden is greatly increased. Good testing tools are essential.

17 Coping with the Java Memory Model Avoid using synchronized and minimize the size of synchronized blocks to reduce likelihood of deadlock. Identify all classes that can be shared and make all fields in such classes either final or volatile. Ensures sequential consistency (almost). Array elements are still technically a problem because they cannot be marked as volatile. The ConcurrentUtilities library includes a special form of array with volatile elements.

18 Improvements to Junit ConcJUnit developed by my former Uncaught exceptions and failed assertions graduate student Mathias Ricken fixes Not caught in child s all of the problems with Junit. Developed for Java 6; Java 7 not yet supported. Mathias developed some other tools to help test concurrent programs but none of them have yet reached production quality (e.g., random delays/yields). Research idea: JVM from Hell.

19 Sample JUnit Tests public class Test extends TestCase { public void testexception() { throw new RuntimeException("booh!"); public void testassertion() { assertequals(0, 1); if (0!=1) throw new AssertionFailedError(); Both tests fail.

20 Problematic JUnit Tests Main public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child Main Child spawns uncaught! end of test success!

21 Problematic JUnit Tests Main public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child Main Child spawns uncaught! end of test success!

22 Problematic JUnit Tests Main public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child Uncaught exception, test should fail but does not!

23 Problematic JUnit Tests Main public class Test extends TestCase { public void testfailure() { new Thread(new Runnable() { public void run() { throw fail("this thrownew new RuntimeException("booh!"); fails!"); ).start(); Child Uncaught exception, test should fail but does not!

24 Thread Group for JUnit Tests Test public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child invokes checks TestGroup s Uncaught Exception Handler

25 Thread Group for JUnit Tests Test public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child spawns and waits resumes Main Test Child spawns uncaught! end of test invokes group s handler check group s handler failure!

26 Improvements to JUnit Uncaught exceptions and failed assertions Not caught in child s Thread group with exception handler JUnit test runs in a separate, not main Child s are created in same group When test ends, check if handler was invoked Detection of uncaught exceptions and failed assertions in child s that occurred before test s end Past tense: occurred!

27 Child Thread Outlives Parent Test public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child spawns and waits resumes Main Test Child spawns uncaught! end of test invokes group s handler check group s handler failure!

28 Child Thread Outlives Parent Test public class Test extends TestCase { public void testexception() { new Thread(new Runnable() { public void run() { throw thrownew new RuntimeException("booh!"); ).start(); Child check group s spawns and waits resumes handler Main Test Child spawns end of test success! uncaught! Too late! invokes group s handler

29 Enforced Join public class Test extends TestCase { public void testexception() { Thread new Thread(new t = Thread(new Runnable() Runnable() { { public void run() { throw throw new new RuntimeException("booh!"); RuntimeException("booh!"); ); t.start(); t.join(); Test Child

30 Testing Using ConcJUnit Replacement for junit.jar or as plugin JAR for JUnit 4.7 compatible with Java 6 (not 7 or 8) Available as binary and source at Results from DrJava s unit tests Child for communication with slave VM still alive in test Several reader and writer s still alive in low level test (calls to join() missing) DrJava currently does not use ConcJUnit Tests based on a custom-made class extending junit.framework.testcase Does not check if join() calls are missing

31 Conclusion Improved JUnit now detects problems in other s Only in chosen schedule Needs schedule-based execution Annotations ease documentation and checking of concurrency invariants Open-source library of Java API invariants Support programs for schedule-based execution

32 Future Work Adversary scheduling using delays/yields (JVM from Hell) Schedule-Based Execution (Impractical?) Replay stored schedules Generate representative schedules Dynamic race detection (what races bugs?) Randomized schedules (JVM from Hell) Support annotations from Floyd-Hoare logic Declare and check contracts (preconditions & postconditions for methods) Declare and check class invariants

33 Extra Slides

34 Tractability of Comprehensive Testing Test all possible schedules Concurrent unit tests meaningful again Number of schedules (N) t: : # of s, s: : # of slices per detail

35 Extra: Number of Schedules Product of s-combinations For 1: choose s out of ts time slices For 2: choose s out of ts-s time slices For t-1: choose s out of 2s time slices For t-1: choose s out of s time slices W C L back

36 Tractability of Comprehensive Testing If program is race-free, we do not have to simulate all switches Threads interfere only at critical points : lock operations, shared or volatile variables, etc. Code between critical points cannot affect outcome Simulate all possible arrangements of blocks delimited by critical points Run dynamic race detection in parallel Lockset algorithm (e.g. Eraser by Savage et al)

37 Critical Points Example Local Var 1 Thread 1 lock access unlock All lock accesses access unlock protected by lock Shared Var Lock Thread 2 All accesses protected by lock lock access unlock All accesses protected by lock Local variables don t need locking Local Var 1

38 Fewer Schedules Fewer critical points than switches Reduces number of schedules Example: Two s, but no communication N = 1 Unit tests are small Reduces number of schedules Hopefully comprehensive simulation is tractable If not, heuristics are still better than nothing

39 Limitations Improvements only check chosen schedule A different schedule may still fail Requires comprehensive testing to be meaningful May still miss uncaught exceptions Specify absolute parent group, not relative Cannot detect uncaught exceptions in a program s uncaught exception handler (JLS limitation) details

40 Extra: Limitations May still miss uncaught exceptions Specify absolute parent group, not relative (rare) Koders.com: 913 matches ThreadGroup vs. 49,329 matches for Thread Cannot detect uncaught exceptions in a program s uncaught exception handler (JLS limitation) Koders.com: 32 method definitions for uncaughtexception method back

41 Extra: DrJava Statistics Unit tests passed failed not run Invariants met failed % failed KLOC event % % back

Test-First Java Concurrency for the Classroom

Test-First Java Concurrency for the Classroom Test-First Java Concurrency for the Classroom Mathias Ricken Dept. of Computer Science Rice University Houston, TX 77005, USA +1-713-348-3836 mgricken@rice.edu Robert Cartwright Dept. of Computer Science

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Multithreading Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to large compute clusters Can perform multiple

More information

The Java Memory Model

The Java Memory Model The Java Memory Model What is it and why would I want one? Jörg Domaschka. ART Group, Institute for Distributed Systems Ulm University, Germany December 14, 2009 public class WhatDoIPrint{ static int x

More information

CMSC 132: Object-Oriented Programming II. Threads in Java

CMSC 132: Object-Oriented Programming II. Threads in Java CMSC 132: Object-Oriented Programming II Threads in Java 1 Problem Multiple tasks for computer Draw & display images on screen Check keyboard & mouse input Send & receive data on network Read & write files

More information

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007 CMSC 433 Programming Language Technologies and Paradigms Spring 2007 Threads and Synchronization May 8, 2007 Computation Abstractions t1 t1 t4 t2 t1 t2 t5 t3 p1 p2 p3 p4 CPU 1 CPU 2 A computer Processes

More information

Problems with Concurrency

Problems with Concurrency with Concurrency February 14, 2012 1 / 27 s with concurrency race conditions deadlocks GUI source of s non-determinism deterministic execution model interleavings 2 / 27 General ideas Shared variable Shared

More information

Parallelism Marco Serafini

Parallelism Marco Serafini Parallelism Marco Serafini COMPSCI 590S Lecture 3 Announcements Reviews First paper posted on website Review due by this Wednesday 11 PM (hard deadline) Data Science Career Mixer (save the date!) November

More information

THREADS & CONCURRENCY

THREADS & CONCURRENCY 27/04/2018 Sorry for the delay in getting slides for today 2 Another reason for the delay: Yesterday: 63 posts on the course Piazza yesterday. A7: If you received 100 for correctness (perhaps minus a late

More information

Concurrency in Object Oriented Programs 1. Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter

Concurrency in Object Oriented Programs 1. Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter Concurrency in Object Oriented Programs 1 Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter Outline Concurrency: the Future of Computing Java Concurrency Thread Safety

More information

Lecture 24: Java Threads,Java synchronized statement

Lecture 24: Java Threads,Java synchronized statement COMP 322: Fundamentals of Parallel Programming Lecture 24: Java Threads,Java synchronized statement Zoran Budimlić and Mack Joyner {zoran, mjoyner@rice.edu http://comp322.rice.edu COMP 322 Lecture 24 9

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming https://wiki.rice.edu/confluence/display/parprog/comp322 Lecture 28: Java Threads (contd), synchronized statement Vivek Sarkar Department of Computer Science

More information

Assertions, pre/postconditions

Assertions, pre/postconditions Programming as a contract Assertions, pre/postconditions Assertions: Section 4.2 in Savitch (p. 239) Specifying what each method does q Specify it in a comment before method's header Precondition q What

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

Chapter 4 Defining Classes I

Chapter 4 Defining Classes I Chapter 4 Defining Classes I This chapter introduces the idea that students can create their own classes and therefore their own objects. Introduced is the idea of methods and instance variables as the

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II Synchronization in Java Department of Computer Science University of Maryland, College Park Multithreading Overview Motivation & background Threads Creating Java

More information

Lecture 32: Volatile variables, Java memory model

Lecture 32: Volatile variables, Java memory model COMP 322: Fundamentals of Parallel Programming Lecture 32: Volatile variables, Java memory model Vivek Sarkar Department of Computer Science, Rice University vsarkar@rice.edu https://wiki.rice.edu/confluence/display/parprog/comp322

More information

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections Thread Safety Today o Confinement o Threadsafe datatypes Required reading Concurrency Wrapper Collections Optional reading The material in this lecture and the next lecture is inspired by an excellent

More information

Threads and Java Memory Model

Threads and Java Memory Model Threads and Java Memory Model Oleg Šelajev @shelajev oleg@zeroturnaround.com October 6, 2014 Agenda Threads Basic synchronization Java Memory Model Concurrency Concurrency - several computations are executing

More information

Java Threads. COMP 585 Noteset #2 1

Java Threads. COMP 585 Noteset #2 1 Java Threads The topic of threads overlaps the boundary between software development and operation systems. Words like process, task, and thread may mean different things depending on the author and the

More information

Ch 9: Control flow. Sequencers. Jumps. Jumps

Ch 9: Control flow. Sequencers. Jumps. Jumps Ch 9: Control flow Sequencers We will study a number of alternatives traditional sequencers: sequential conditional iterative jumps, low-level sequencers to transfer control escapes, sequencers to transfer

More information

Testing Concurrent Software

Testing Concurrent Software Testing Concurrent Software Bill Pugh Professor of Computer Science, University of Maryland Brian Goetz Senior Staff Engineer, Sun Microsystems Cliff Click Distinguished Engineer, Azul Systems TS-2220

More information

Problems with Concurrency. February 19, 2014

Problems with Concurrency. February 19, 2014 with Concurrency February 19, 2014 s with concurrency interleavings race conditions dead GUI source of s non-determinism deterministic execution model 2 / 30 General ideas Shared variable Access interleavings

More information

Java s Implementation of Concurrency, and how to use it in our applications.

Java s Implementation of Concurrency, and how to use it in our applications. Java s Implementation of Concurrency, and how to use it in our applications. 1 An application running on a single CPU often appears to perform many tasks at the same time. For example, a streaming audio/video

More information

Software Speculative Multithreading for Java

Software Speculative Multithreading for Java Software Speculative Multithreading for Java Christopher J.F. Pickett and Clark Verbrugge School of Computer Science, McGill University {cpicke,clump}@sable.mcgill.ca Allan Kielstra IBM Toronto Lab kielstra@ca.ibm.com

More information

Threads Questions Important Questions

Threads Questions Important Questions Threads Questions Important Questions https://dzone.com/articles/threads-top-80-interview https://www.journaldev.com/1162/java-multithreading-concurrency-interviewquestions-answers https://www.javatpoint.com/java-multithreading-interview-questions

More information

Program Correctness and Efficiency. Chapter 2

Program Correctness and Efficiency. Chapter 2 Program Correctness and Efficiency Chapter 2 Chapter Objectives To understand the differences between the three categories of program errors To understand the effect of an uncaught exception and why you

More information

The New Java Technology Memory Model

The New Java Technology Memory Model The New Java Technology Memory Model java.sun.com/javaone/sf Jeremy Manson and William Pugh http://www.cs.umd.edu/~pugh 1 Audience Assume you are familiar with basics of Java technology-based threads (

More information

CMSC 433 Programming Language Technologies and Paradigms. Concurrency

CMSC 433 Programming Language Technologies and Paradigms. Concurrency CMSC 433 Programming Language Technologies and Paradigms Concurrency What is Concurrency? Simple definition Sequential programs have one thread of control Concurrent programs have many Concurrency vs.

More information

Monitors; Software Transactional Memory

Monitors; Software Transactional Memory Monitors; Software Transactional Memory Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 18, 2012 CPD (DEI / IST) Parallel and

More information

Modular Reasoning about Aliasing using Permissions

Modular Reasoning about Aliasing using Permissions Modular Reasoning about Aliasing using Permissions John Boyland University of Wisconsin- Milwaukee FOAL 2015 Summary Permissions are non-duplicable tokens that give access to state. Permissions give effective

More information

Java Threads. Introduction to Java Threads

Java Threads. Introduction to Java Threads Java Threads Resources Java Threads by Scott Oaks & Henry Wong (O Reilly) API docs http://download.oracle.com/javase/6/docs/api/ java.lang.thread, java.lang.runnable java.lang.object, java.util.concurrent

More information

Advances in Programming Languages

Advances in Programming Languages O T Y H Advances in Programming Languages APL8: ESC/Java2 David Aspinall (including slides by Ian Stark and material adapted from ESC/Java2 tutorial by David Cok, Joe Kiniry and Erik Poll) School of Informatics

More information

Comp 311 Principles of Programming Languages Lecture 21 Semantics of OO Languages. Corky Cartwright Mathias Ricken October 20, 2010

Comp 311 Principles of Programming Languages Lecture 21 Semantics of OO Languages. Corky Cartwright Mathias Ricken October 20, 2010 Comp 311 Principles of Programming Languages Lecture 21 Semantics of OO Languages Corky Cartwright Mathias Ricken October 20, 2010 Overview I In OO languages, data values (except for designated non-oo

More information

Object Oriented Software Design - I

Object Oriented Software Design - I Object Oriented Software Design - I Unit Testing Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa November 28, 2011 G. Lipari (Scuola Superiore Sant Anna) Unit Testing November

More information

Synchronization in Java

Synchronization in Java Synchronization in Java Nelson Padua-Perez Bill Pugh Department of Computer Science University of Maryland, College Park Synchronization Overview Unsufficient atomicity Data races Locks Deadlock Wait /

More information

Runtime assertion checking of multithreaded Java programs

Runtime assertion checking of multithreaded Java programs Master Thesis Runtime assertion checking of multithreaded Java programs An extension of the STROBE framework Author: Jorne Kandziora Supervisors: dr. M. Huisman dr. C.M. Bockisch M. Zaharieva-Stojanovski,

More information

High Performance Computing Course Notes Shared Memory Parallel Programming

High Performance Computing Course Notes Shared Memory Parallel Programming High Performance Computing Course Notes 2009-2010 2010 Shared Memory Parallel Programming Techniques Multiprocessing User space multithreading Operating system-supported (or kernel) multithreading Distributed

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Computer Systems Engineering: Spring Quiz I Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Computer Systems Engineering: Spring Quiz I Solutions Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.033 Computer Systems Engineering: Spring 2011 Quiz I Solutions There are 10 questions and 12 pages in this

More information

Message Passing. Advanced Operating Systems Tutorial 7

Message Passing. Advanced Operating Systems Tutorial 7 Message Passing Advanced Operating Systems Tutorial 7 Tutorial Outline Review of Lectured Material Discussion: Erlang and message passing 2 Review of Lectured Material Message passing systems Limitations

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

CSE 230. Concurrency: STM. Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart

CSE 230. Concurrency: STM. Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart CSE 230 Concurrency: STM Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart The Grand Challenge How to properly use multi-cores? Need new programming models! Parallelism vs Concurrency

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 10: Monitors Monitors A monitor is a programming language construct that controls access to shared data Synchronization code added by compiler, enforced

More information

Principles of Software Construction: Concurrency, Part 2

Principles of Software Construction: Concurrency, Part 2 Principles of Software Construction: Concurrency, Part 2 Josh Bloch Charlie Garrod School of Computer Science 1 Administrivia Homework 5a due now Homework 5 framework goals: Functionally correct Well documented

More information

Multithreading and Interactive Programs

Multithreading and Interactive Programs Multithreading and Interactive Programs CS160: User Interfaces John Canny. Last time Model-View-Controller Break up a component into Model of the data supporting the App View determining the look of the

More information

A Deterministic Concurrent Language for Embedded Systems

A Deterministic Concurrent Language for Embedded Systems A Deterministic Concurrent Language for Embedded Systems Stephen A. Edwards Columbia University Joint work with Olivier Tardieu SHIM:A Deterministic Concurrent Language for Embedded Systems p. 1/38 Definition

More information

Thread Synchronization Policies in DrJava

Thread Synchronization Policies in DrJava Thread Synchronization Policies in DrJava Since DrJava is built using the Java Swing library, it must conform to the synchronization policies for Swing. Unfortunately, the official Swing documentation

More information

Object Oriented Programming. Week 10 Part 1 Threads

Object Oriented Programming. Week 10 Part 1 Threads Object Oriented Programming Week 10 Part 1 Threads Lecture Concurrency, Multitasking, Process and Threads Thread Priority and State Java Multithreading Extending the Thread Class Defining a Class that

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

Advances in Programming Languages

Advances in Programming Languages Advances in Programming Languages Lecture 8: Concurrency Ian Stark School of Informatics The University of Edinburgh Thursday 11 October 2018 Semester 1 Week 4 https://wp.inf.ed.ac.uk/apl18 https://course.inf.ed.uk/apl

More information

Testing Concurrent Software

Testing Concurrent Software Testing Concurrent Software Bill Pugh Professor of Computer Science, University of Maryland Brian Goetz Senior Staff Engineer, Sun Microsystems Cliff Click Distinguished Engineer, Azul Systems TS-2220

More information

Specification of a transacted memory for smart cards in Java and JML

Specification of a transacted memory for smart cards in Java and JML Specification of a transacted memory for smart cards in Java and JML Erik Poll University of Nijmegen, NL Pieter Hartel Eduard de Jong Joint work with University of Twente Sun Microsystems Transacted Memory

More information

Synchronization SPL/2010 SPL/20 1

Synchronization SPL/2010 SPL/20 1 Synchronization 1 Overview synchronization mechanisms in modern RTEs concurrency issues places where synchronization is needed structural ways (design patterns) for exclusive access 2 Overview synchronization

More information

THREADS & CONCURRENCY

THREADS & CONCURRENCY 4/26/16 Announcements BRING YOUR CORNELL ID TO THE PRELIM. 2 You need it to get in THREADS & CONCURRENCY Prelim 2 is next Tonight BRING YOUR CORNELL ID! A7 is due Thursday. Our Heap.java: on Piazza (A7

More information

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS PAUL L. BAILEY Abstract. This documents amalgamates various descriptions found on the internet, mostly from Oracle or Wikipedia. Very little of this

More information

Concurrency. Glossary

Concurrency. Glossary Glossary atomic Executing as a single unit or block of computation. An atomic section of code is said to have transactional semantics. No intermediate state for the code unit is visible outside of the

More information

Operating Systems 2 nd semester 2016/2017. Chapter 4: Threads

Operating Systems 2 nd semester 2016/2017. Chapter 4: Threads Operating Systems 2 nd semester 2016/2017 Chapter 4: Threads Mohamed B. Abubaker Palestine Technical College Deir El-Balah Note: Adapted from the resources of textbox Operating System Concepts, 9 th edition

More information

Concurrency: Past and Present

Concurrency: Past and Present Concurrency: Past and Present Implications for Java Developers Brian Goetz Senior Staff Engineer, Sun Microsystems brian.goetz@sun.com About the speaker Professional software developer for 20 years > Sr.

More information

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit Threads Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multitasking Thread-based multitasking Multitasking

More information

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012 Eike Ritter 1 Modified: October 16, 2012 Lecture 8: Operating Systems with C/C++ School of Computer Science, University of Birmingham, UK 1 Based on material by Matt Smart and Nick Blundell Outline 1 Concurrent

More information

THREADS AND CONCURRENCY

THREADS AND CONCURRENCY THREADS AND CONCURRENCY Lecture 22 CS2110 Spring 2013 Graphs summary 2 Dijkstra: given a vertex v, finds shortest path from v to x for each vertex x in the graph Key idea: maintain a 5-part invariant on

More information

Exception Handling Introduction. Error-Prevention Tip 13.1 OBJECTIVES

Exception Handling Introduction. Error-Prevention Tip 13.1 OBJECTIVES 1 2 13 Exception Handling It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something. Franklin Delano Roosevelt O throw away the worser

More information

Multithreading and Interactive Programs

Multithreading and Interactive Programs Multithreading and Interactive Programs CS160: User Interfaces John Canny. This time Multithreading for interactivity need and risks Some design patterns for multithreaded programs Debugging multithreaded

More information

Why testing and analysis. Software Testing. A framework for software testing. Outline. Software Qualities. Dependability Properties

Why testing and analysis. Software Testing. A framework for software testing. Outline. Software Qualities. Dependability Properties Why testing and analysis Software Testing Adapted from FSE 98 Tutorial by Michal Young and Mauro Pezze Software is never correct no matter what developing testing technique is used All software must be

More information

Threads SPL/2010 SPL/20 1

Threads SPL/2010 SPL/20 1 Threads 1 Today Processes and Scheduling Threads Abstract Object Models Computation Models Java Support for Threads 2 Process vs. Program processes as the basic unit of execution managed by OS OS as any

More information

Fortgeschrittene objektorientierte Programmierung (Advanced Object-Oriented Programming)

Fortgeschrittene objektorientierte Programmierung (Advanced Object-Oriented Programming) 2014-03-07 Preface Fortgeschrittene objektorientierte Programmierung (Advanced Object-Oriented Programming) Coordinates: Lecturer: Web: Studies: Requirements: No. 185.211, VU, 3 ECTS Franz Puntigam http://www.complang.tuwien.ac.at/franz/foop.html

More information

INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY. Instructors: Crista Lopes Copyright Instructors. INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY Instructors: Crista Lopes Copyright Instructors. Basics Concurrent Programming More than one thing at a time Examples: Network server handling hundreds of clients

More information

CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections. Tyler Robison Summer 2010

CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections. Tyler Robison Summer 2010 CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections Tyler Robison Summer 2010 1 Concurrency: where are we Done: The semantics of locks Locks in Java Using locks for mutual

More information

MuClipse Requirements Specification

MuClipse Requirements Specification MuClipse Requirements Specification v0.4 Project Team: 12/6/2006 Document Author(s): Project Sponsor: Dr. Laurie Williams 1. Introduction There are already several open source Java mutation (JMutation)

More information

Embedded System Programming

Embedded System Programming Embedded System Programming Multicore ES (Module 40) Yann-Hang Lee Arizona State University yhlee@asu.edu (480) 727-7507 Summer 2014 The Era of Multi-core Processors RTOS Single-Core processor SMP-ready

More information

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition Module 6: Process Synchronization 6.1 Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers 1 Critical sections and atomicity We have been seeing that sharing mutable objects between different threads is tricky We need some

More information

CMSC 330: Organization of Programming Languages. Concurrency & Multiprocessing

CMSC 330: Organization of Programming Languages. Concurrency & Multiprocessing CMSC 330: Organization of Programming Languages Concurrency & Multiprocessing Multiprocessing Multiprocessing: The use of multiple parallel computations We have entered an era of multiple cores... Hyperthreading

More information

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci v1.0 20130323 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module lab 2.1] CONCURRENT PROGRAMMING IN JAVA: INTRODUCTION 1 CONCURRENT

More information

Introduction to Concurrency Principles of Concurrent System Design

Introduction to Concurrency Principles of Concurrent System Design Introduction to Concurrency 4010-441 Principles of Concurrent System Design Texts Logistics (On mycourses) Java Concurrency in Practice, Brian Goetz, et. al. Programming Concurrency on the JVM, Venkat

More information

Software Project Seminar VII: Tools of the Craft. 23 march 2006 Jevgeni Kabanov

Software Project Seminar VII: Tools of the Craft. 23 march 2006 Jevgeni Kabanov Software Project Seminar VII: Tools of the Craft 23 march 2006 Jevgeni Kabanov Administrative Info Send your troubles to tarkvaraprojekt@webmedia.ee, not to Ivo directly Next time will be an additional

More information

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Frequently asked questions from the previous class survey

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Threads block when they can t get that lock Wanna have your threads stall? Go ahead, synchronize it all The antidote to this liveness pitfall? Keeping

More information

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Java: concurrency Outline Java threads thread implementation sleep, interrupt, and join threads that return values Thread synchronization

More information

Thread Programming. Comp-303 : Programming Techniques Lecture 11. Alexandre Denault Computer Science McGill University Winter 2004

Thread Programming. Comp-303 : Programming Techniques Lecture 11. Alexandre Denault Computer Science McGill University Winter 2004 Thread Programming Comp-303 : Programming Techniques Lecture 11 Alexandre Denault Computer Science McGill University Winter 2004 February 16, 2004 Lecture 11 Comp 303 : Programming Techniques Page 1 Announcements

More information

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016 Java Memory Model Jian Cao Department of Electrical and Computer Engineering Rice University Sep 22, 2016 Content Introduction Java synchronization mechanism Double-checked locking Out-of-Thin-Air violation

More information

So#ware Architecture

So#ware Architecture Chair of Software Engineering So#ware Architecture Bertrand Meyer, Michela Pedroni ETH Zurich, February May 2010 Lecture 14: Designing for concurrency (Material prepared by Sebastian Nanz) Chair of Software

More information

OS06: Monitors in Java

OS06: Monitors in Java OS06: Monitors in Java Based on Chapter 4 of [Hai17] Jens Lechtenbörger Computer Structures and Operating Systems 2018 1 Introduction 1.1 OS Plan ˆ OS Motivation (Wk 23) ˆ OS Introduction (Wk 23) ˆ Interrupts

More information

Casting -Allows a narrowing assignment by asking the Java compiler to "trust us"

Casting -Allows a narrowing assignment by asking the Java compiler to trust us Primitives Integral types: int, short, long, char, byte Floating point types: double, float Boolean types: boolean -passed by value (copied when returned or passed as actual parameters) Arithmetic Operators:

More information

Advanced MEIC. (Lesson #18)

Advanced MEIC. (Lesson #18) Advanced Programming @ MEIC (Lesson #18) Last class Data races Java Memory Model No out-of-thin-air values Data-race free programs behave as expected Today Finish with the Java Memory Model Introduction

More information

OPERATING SYSTEM. Chapter 4: Threads

OPERATING SYSTEM. Chapter 4: Threads OPERATING SYSTEM Chapter 4: Threads Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples Objectives To

More information

Monitors; Software Transactional Memory

Monitors; Software Transactional Memory Monitors; Software Transactional Memory Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico March 17, 2016 CPD (DEI / IST) Parallel and Distributed

More information

User Space Multithreading. Computer Science, University of Warwick

User Space Multithreading. Computer Science, University of Warwick User Space Multithreading 1 Threads Thread short for thread of execution/control B efore create Global During create Global Data Data Executing Code Code Stack Stack Stack A fter create Global Data Executing

More information

Thread-Local. Lecture 27: Concurrency 3. Dealing with the Rest. Immutable. Whenever possible, don t share resources

Thread-Local. Lecture 27: Concurrency 3. Dealing with the Rest. Immutable. Whenever possible, don t share resources Thread-Local Lecture 27: Concurrency 3 CS 62 Fall 2016 Kim Bruce & Peter Mawhorter Some slides based on those from Dan Grossman, U. of Washington Whenever possible, don t share resources Easier to have

More information

Introduction to JUnit. Data Structures and Algorithms for Language Processing

Introduction to JUnit. Data Structures and Algorithms for Language Processing Data Structures and Algorithms for Language Processing What is JUnit JUnit is a small, but powerful Java framework to create and execute automatic unit tests Unit testing is the test of a part of a program

More information

Chapter 4: Threads. Chapter 4: Threads

Chapter 4: Threads. Chapter 4: Threads Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

CSE 160 Lecture 7. C++11 threads C++11 memory model

CSE 160 Lecture 7. C++11 threads C++11 memory model CSE 160 Lecture 7 C++11 threads C++11 memory model Today s lecture C++ threads The C++11 Memory model 2013 Scott B. Baden / CSE 160 / Winter 2013 2 C++11 Threads Via , C++ supports a threading

More information

Objectives for this class meeting. 1. Conduct review of core concepts concerning contracts and pre/post conditions

Objectives for this class meeting. 1. Conduct review of core concepts concerning contracts and pre/post conditions CSE1720 Click to edit Master Week text 01, styles Lecture 02 Second level Third level Fourth level Fifth level Winter 2015! Thursday, Jan 8, 2015 1 Objectives for this class meeting 1. Conduct review of

More information

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 5 Programming with Locks and Critical Sections

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 5 Programming with Locks and Critical Sections A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 5 Programming with Locks and Critical Sections Dan Grossman Last Updated: May 2012 For more information, see http://www.cs.washington.edu/homes/djg/teachingmaterials/

More information

Discussion CSE 224. Week 4

Discussion CSE 224. Week 4 Discussion CSE 224 Week 4 Midterm The midterm will cover - 1. Topics discussed in lecture 2. Research papers from the homeworks 3. Textbook readings from Unit 1 and Unit 2 HW 3&4 Clarifications 1. The

More information

11/19/2013. Imperative programs

11/19/2013. Imperative programs if (flag) 1 2 From my perspective, parallelism is the biggest challenge since high level programming languages. It s the biggest thing in 50 years because industry is betting its future that parallel programming

More information

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction : A Distributed Shared Memory System Based on Multiple Java Virtual Machines X. Chen and V.H. Allan Computer Science Department, Utah State University 1998 : Introduction Built on concurrency supported

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Key-value store with eventual consistency without trusting individual nodes

Key-value store with eventual consistency without trusting individual nodes basementdb Key-value store with eventual consistency without trusting individual nodes https://github.com/spferical/basementdb 1. Abstract basementdb is an eventually-consistent key-value store, composed

More information

Project Loom Ron Pressler, Alan Bateman June 2018

Project Loom Ron Pressler, Alan Bateman June 2018 Project Loom Ron Pressler, Alan Bateman June 2018 Copyright 2018, Oracle and/or its affiliates. All rights reserved.!1 Safe Harbor Statement The following is intended to outline our general product direction.

More information

Object Oriented Programming and Design in Java. Session 18 Instructor: Bert Huang

Object Oriented Programming and Design in Java. Session 18 Instructor: Bert Huang Object Oriented Programming and Design in Java Session 18 Instructor: Bert Huang Announcements Homework 4 due Mon. Apr. 19 No multithreading in programming part Final Exam Monday May 10, 9 AM - noon, 173

More information