Stuart

Size: px
Start display at page:

Download "Stuart"

Transcription

1 Clojure Time Stuart Copyright Relevance, Inc. This presentation is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. See 1

2 the plan modeling the world total control model concurrency and parallelism an approach 2 2

3 time when things happen before/after later concurrency now relative 3 3

4 identity continuity over time built by minds sameness across a series of perceptions not a name, but can be named can be composite 4 4

5 perception becoming aware via the senses uncoordinated provides values (snapshots) contemplate values for as long as you like 5 5

6 values units of perception points in time of identities immutable possibly composite 6 6

7 action change to identity(ies) over time independent of other perceivers makes new values available to perceivers many possible semantics might be coordinated 7 7

8 total control model global, total control one processor one memory anything else is deep voodoo roll-your-own time model 8 8

9 difficulties with rolling your own time identity perception values action present unreliable, past nonexistent locking + convention ad hoc (copying?) class-level convention? side effects everywhere 9 9

10 the problems with convention 10 10

11 add concurrency and parallelism to the mix 11 11

12 where did this dangerous assumption that Parallelism == Concurrency come from?

13 we need to switch mental models 13 13

14 Clojure s approach 14 14

15 syntax 15 15

16 atomic data types type example java equivalent string "foo" String character \f Character regex #"fo*" Pattern integer 42 Long a.r. integer 42N BigInteger double Double a.p. double M BigDecimal boolean true Boolean nil nil null ratio 22/7 N/A symbol foo, + N/A 16 keyword :foo, ::foo N/A 16

17 data literals type properties example list vector map singly-linked, insert at front indexed, insert at rear key/value (1 2 3) [1 2 3] {:a 100 :b 90} set key #{:a :b} 17 17

18 function call semantics: fn call arg (println "Hello World") structure: symbol string list 18 18

19 function definition define a fn fn name docstring arguments (defn greet "Returns a friendly greeting" [your-name] (str "Hello, " your-name)) fn body 19 19

20 it's all data symbol symbol string vector (defn greet "Returns a friendly greeting" [your-name] (str "Hello, " your-name)) list 20 20

21 metadata prefix with ^ class name or arbitrary map (defn ^String greet "Returns a friendly greeting" [your-name] (str "Hello, " your-name)) 21 21

22 values 22 22

23 persistent data structures immutable change by function application maintain performance guarantees full-fidelity old versions 23 23

24 persistent example: linked list your my list list newt tern rabbit tiger 24 24

25 bit-partitioned tries your trie my trie 25 25

26 32-way tries

27 identities 27 27

28 refs explicit semantic ref value value ref value state 28 28

29 life with variables? variable??? variable??? 29 29

30 perceptions 30 30

31 Epochal Time Model Process events (pure functions) F F F v1 v2 v3 v4 States Identity (succession of states) (immutable values) Observers/perception/memory 31 31

32 actions 32 32

33 unified update model (change-state ref fn [args*]) fn gets current state of ref fn return becomes next state of ref snapshot always available no user locking no deadlocks writers never impede readers 33 33

34 unified update ;refs (dosync (alter foo assoc :a "lucy")) ;agents (send foo assoc :a "lucy") ;atoms (swap! foo assoc :a "lucy") 34 34

35 atoms 35 35

36 cas as time construct F vn vn+1 F F vns v2 v3 v4 AtomicReference 36 (swap! an-atom f args) (f vn args) becomes vn+1 - can automate spin 1:1 timeline/identity Point-in-time value Atomic state succession perception 36

37

38 board is just a value (defn new-board "Create a new board with about half the cells set to :on." ([] (apply new-board dim-board)) ([dim-x dim-y] (for [x (range dim-x)] (for [y (range dim-y)] (if (< 50 (rand-int 100)) :on :off)))))) distinct bodies by arity 38 38

39 update is just a function rules (defn step "Advance the automation by one step, updating all cells." [board] (doall (map (fn [window] (apply #(doall (apply map rules %&)) (doall (map torus-window window)))) (torus-window board)))) cursor over previous, me, next 39 39

40 state is trivial identity initial value (let [stage (atom (new-board))]...) (defn update-stage "Update the automaton." [stage] (swap! stage step)) apply a fn update fn 40 40

41 software transactional memory 41 41

42 stm as time construct v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 F F F F Transactions F F F F F F F F 42 42

43 ref example: chat identity (def messages (ref [])) initial value 43 43

44 reading value (deref messages) => => [] 44 44

45 alter (alter r update-fn & args) oldval r (apply update-fn oldval args) newval 45 45

46 updating apply an... (defn add-message [msg] (dosync (alter messages conj msg))) scope a...update fn transaction 46 46

47 stms are not all created equal 47 47

48 Clojure s stm not lock free uses locks, latches, to avoid churn deadlock detection & barging no read tracking readers never impede writers nobody ever impedes readers commute ensure 48 48

49 agents 49 49

50 agents as time construct F F F F F F vn vn+1 (send aref f args) returns immediately vns queue enforces serialization 50 (f vn args) becomes vn+1 happens asynchronously in thread pool thread 1:1 timeline/identity Atomic state succession Point-in-time value perception 50

51 agents are not actors actors can distribute this queue F F F F F F vn vn+1 vns but at a price: 1. no snapshot observers X X 2. no deadlock prevention 51 51

52 locks stm actors is not a useful partition 52 52

53 richer taxonomy semantics leverage locality presume distance uncoordinated synchronous atoms N/A coordinated synchronous stm, pods N/A uncoordinated asynchronous agents actors 53 53

54 the devil is in the details 54 54

55 thread ready all Clojure constructs work from any thread fns are Callable and Runnable use (future...) to throw work to a thread pool (defn fight [term1 term2] (let [r1 (future (estimated-hits-for term1)) r2 (future (estimated-hits-for term2))] (future

56 transients 56 Persistent data structures are slower in sequential use (especially writing ) But - no one can see what happens inside F vn I.e. the birthing process of the next value can use our old (and new) performance tricks: F vn+1 Mutation and parallelism Parallel map on persistent vector same speed as loop on j.u.arraylist on quad-core Safe transient versions of PDS possible, with O(1) conversions between persistent/transient 56

57 use commute when update can happen anytime 57 57

58 not safe for commute (defn next-id "Get the next available id." [] (dosync (alter ids inc))) 58 58

59 safe! (defn increment-counter "Bump the internal count." [] (dosync (alter ids inc)) nil) 59 59

60 prefer send-off if agent ops might block 60 60

61 send caller (send a fn & args) agent fixed thread pool (apply fn oldval args) 61 61

62 send-off caller agent cached thread pool (send a fn & args) (apply fn oldval args) 62 62

63 use ref-set to set initial/base state 63 63

64 unified update, revisited update mechanism pure function application pure function (commutative) pure function (blocking) ref atom agent alter swap! send commute send-off setter ref-set reset!

65 validation 65 65

66 create a function that checks every item... (def validate-message-list (partial every? #(and (:sender %) (:text %)))) (def messages for some criteria (ref () :validator validate-message-list)) and associate fn with updates to a ref 66 66

67 sending to agents from within transactions 67 67

68 tying agent to a tx (defn add-message-with-backup [msg] (dosync (let [snapshot (alter messages conj msg)] (send-off backup-agent (fn [filename]!!! (spit filename snapshot)!!! filename)) snapshot))) exactly once if tx succeeds 68 68

69 where are we? time model beats control model resembles reality more closely makes design/code/test easier in general now is a good time to switch easier concurrency easier parallelism Clojure s provides an approach that is unified multi-faceted 69 69

70 thanks!

The Curious Clojureist

The Curious Clojureist The Curious Clojureist NEAL FORD director / software architect meme wrangler ThoughtWorks nford@thoughtworks.com 2002 Summit Boulevard, Atlanta, GA 30319 nealford.com thoughtworks.com memeagora.blogspot.com

More information

Identity, State and Values

Identity, State and Values Identity, State and Values Clojure s approach to concurrency Rich Hickey Agenda Functions and processes Identity, State, and Values Persistent Data Structures Clojure s Managed References Q&A Functions

More information

Persistent Data Structures and Managed References

Persistent Data Structures and Managed References Persistent Data Structures and Managed References Clojure s approach to Identity and State Rich Hickey Agenda Functions and processes Identity, State, and Values Persistent Data Structures Clojure s Managed

More information

Clojure. A Dynamic Programming Language for the JVM. Rich Hickey

Clojure. A Dynamic Programming Language for the JVM. Rich Hickey Clojure A Dynamic Programming Language for the JVM Rich Hickey Clojure Fundamentals 3 years in development, released 10/2007 A new Lisp, not Common Lisp or Scheme Functional emphasis on immutability Supporting

More information

Modeling Process. Rich Hickey

Modeling Process. Rich Hickey Modeling Process Rich Hickey Which are more fundamental? Messages, classes, encapsulation, inheritance, dispatch... Time, value, identity, state, persistence, transience, place, perception, visibility,

More information

Clojure Concurrency Constructs. CSCI 5828: Foundations of Software Engineering Lecture 12 10/02/2014

Clojure Concurrency Constructs. CSCI 5828: Foundations of Software Engineering Lecture 12 10/02/2014 Clojure Concurrency Constructs CSCI 5828: Foundations of Software Engineering Lecture 12 10/02/2014 1 Goals Cover the material presented in Chapters 3 & 4 of our concurrency textbook! Books examples from

More information

Clojure Lisp for the Real clojure.com

Clojure Lisp for the Real clojure.com Clojure Lisp for the Real World @stuartsierra clojure.com Stuart Sierra Relevance, Inc. Clojure/core Clojure contributor Values Values 3 Values 3 + 2 = 5 Values let x = 3 Values let x = 3 let x = 5 Values

More information

Introduction Basics Concurrency Conclusion. Clojure. Marcel Klinzing. December 13, M. Klinzing Clojure 1/18

Introduction Basics Concurrency Conclusion. Clojure. Marcel Klinzing. December 13, M. Klinzing Clojure 1/18 Clojure Marcel Klinzing December 13, 2012 M. Klinzing Clojure 1/18 Overview/History Functional programming language Lisp dialect Compiles to Java Bytecode Implemented in Java Created by Rich Hickey Version

More information

Clojure Lisp for the Real #clojure

Clojure Lisp for the Real #clojure Clojure Lisp for the Real World @stuartsierra #clojure 1 Bullet Points Values Code is data Generic data access Concurrency 2 Stuart Sierra Relevance, Inc. Clojure/core Clojure contributor 3 Values 4 Values

More information

Reference types in Clojure. April 2, 2014

Reference types in Clojure. April 2, 2014 Reference types in Clojure April 2, 2014 Clojure atoms, vars, refs, agents Software transactional memory 2 / 15 From The Joy of Clojure book Time The relative moments when events occur State A snapshot

More information

Seminar on Languages for Scientific Computing Aachen, 6 Feb Navid Abbaszadeh.

Seminar on Languages for Scientific Computing Aachen, 6 Feb Navid Abbaszadeh. Scientific Computing Aachen, 6 Feb 2014 navid.abbaszadeh@rwth-aachen.de Overview Trends Introduction Paradigms, Data Structures, Syntax Compilation & Execution Concurrency Model Reference Types Performance

More information

Clojure is. A dynamic, LISP-based. programming language. running on the JVM

Clojure is. A dynamic, LISP-based. programming language. running on the JVM (first '(Clojure.)) Clojure is A dynamic, LISP-based programming language running on the JVM Origin 2007, Rich Hickey.. 1958, John McCarthy Features Functional Homoiconic Immutability (persistent data

More information

Clojure. A (not-so-pure) functional approach to concurrency. Paolo Baldan Linguaggi per il Global Computing AA 2016/2017

Clojure. A (not-so-pure) functional approach to concurrency. Paolo Baldan Linguaggi per il Global Computing AA 2016/2017 Clojure A (not-so-pure) functional approach to concurrency Paolo Baldan Linguaggi per il Global Computing AA 2016/2017 In the words of the inventor Functional programming (rooted in Lisp, from 60s old

More information

Multi-core Parallelization in Clojure - a Case Study

Multi-core Parallelization in Clojure - a Case Study Multi-core Parallelization in Clojure - a Case Study Johann M. Kraus and Hans A. Kestler AG Bioinformatics and Systems Biology Institute of Neural Information Processing University of Ulm 29.06.2009 Outline

More information

.consulting.solutions.partnership. Clojure by Example. A practical introduction to Clojure on the JVM

.consulting.solutions.partnership. Clojure by Example. A practical introduction to Clojure on the JVM .consulting.solutions.partnership Clojure by Example A practical introduction to Clojure on the JVM Clojure By Example 1 Functional Progamming Concepts 3 2 Clojure Basics 4 3 Clojure Examples 5 4 References

More information

Tackling Concurrency With STM. Mark Volkmann 10/22/09

Tackling Concurrency With STM. Mark Volkmann 10/22/09 Tackling Concurrency With Mark Volkmann mark@ociweb.com 10/22/09 Two Flavors of Concurrency Divide and conquer divide data into subsets and process it by running the same code on each subset concurrently

More information

Tackling Concurrency With STM

Tackling Concurrency With STM Tackling Concurrency With Mark Volkmann mark@ociweb.com 10/22/09 Two Flavors of Concurrency Divide and conquer divide data into subsets and process it by running the same code on each subset concurrently

More information

Clojure. A Dynamic Programming Language for the JVM. (and CLR) Rich Hickey

Clojure. A Dynamic Programming Language for the JVM. (and CLR) Rich Hickey Clojure A Dynamic Programming Language for the JVM (and CLR) Rich Hickey Agenda Fundamentals Rationale Feature Tour Integration with the JVM Q&A Clojure Fundamentals Dynamic a new Lisp, not Common Lisp

More information

Introduction to Locks. Intrinsic Locks

Introduction to Locks. Intrinsic Locks CMSC 433 Programming Language Technologies and Paradigms Spring 2013 Introduction to Locks Intrinsic Locks Atomic-looking operations Resources created for sequential code make certain assumptions, a large

More information

ClojureScript. as a compilation target to JS. Michiel Vijay FP AMS October 16th 2014

ClojureScript. as a compilation target to JS. Michiel Vijay FP AMS October 16th 2014 ClojureScript as a compilation target to JS Michiel Borkent @borkdude Vijay Kiran @vijaykiran FP AMS October 16th 2014 This work is licensed under a Creative Commons Attribution 4.0 International License.

More information

Clojure: Enemy of the State

Clojure: Enemy of the State Clojure: Enemy of the State * * Not actually an enemy of the state, or state in general. :) Alex Miller @puredanger Roadmap Values vs objects Collections Sequences Generic data interfaces Identity and

More information

CPL 2016, week 10. Clojure functional core. Oleg Batrashev. April 11, Institute of Computer Science, Tartu, Estonia

CPL 2016, week 10. Clojure functional core. Oleg Batrashev. April 11, Institute of Computer Science, Tartu, Estonia CPL 2016, week 10 Clojure functional core Oleg Batrashev Institute of Computer Science, Tartu, Estonia April 11, 2016 Overview Today Clojure language core Next weeks Immutable data structures Clojure simple

More information

What if Type Systems were more like Linters?

What if Type Systems were more like Linters? Typed Clojure An optional type system for Clojure What if Type Systems were more like Linters? Ambrose Bonnaire-Sergeant Me A Practical Optional Type System for Clojure (2012) Typed Clojure Indiegogo Campaign

More information

1) If a location is initialized to 0, what will the first invocation of TestAndSet on that location return?

1) If a location is initialized to 0, what will the first invocation of TestAndSet on that location return? Synchronization Part 1: Synchronization - Locks Dekker s Algorithm and the Bakery Algorithm provide software-only synchronization. Thanks to advancements in hardware, synchronization approaches have been

More information

Lazytest Better Living Through Protocols. Stuart Sierra. Clojure NYC April 15, 2010

Lazytest Better Living Through Protocols. Stuart Sierra. Clojure NYC April 15, 2010 Lazytest Better Living Through Protocols Stuart Sierra Clojure NYC April 15, 2010 @stuartsierra #clojure clojure.core: tests as metadata (defn add ([x y] (+ x y)) {:test (fn [] (assert (= 7 (add 3 4))))})

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 9: Readers-Writers and Language Support for Synchronization 9.1.2 Constraints 1. Readers can access database

More information

Reagent. a ClojureScript interface to React. React Amsterdam Meetup 12 Feb. 2015

Reagent. a ClojureScript interface to React. React Amsterdam Meetup 12 Feb. 2015 Reagent a ClojureScript interface to React React Amsterdam Meetup 12 Feb. 2015 Michiel Borkent Twitter: @borkdude Email: michielborkent@gmail.com Clojure(Script) developer at Clojure since 2009 Former

More information

Synchronization SPL/2010 SPL/20 1

Synchronization SPL/2010 SPL/20 1 Synchronization 1 Overview synchronization mechanisms in modern RTEs concurrency issues places where synchronization is needed structural ways (design patterns) for exclusive access 2 Overview synchronization

More information

3. Java - Language Constructs I

3. Java - Language Constructs I Educational Objectives 3. Java - Language Constructs I Names and Identifiers, Variables, Assignments, Constants, Datatypes, Operations, Evaluation of Expressions, Type Conversions You know the basic blocks

More information

Introducing Wybe a language for everyone

Introducing Wybe a language for everyone Introducing Wybe a language for everyone Peter Schachte joint work with Matthew Giuca The University of Melbourne Department of Computing and Information Systems 4 December 2013 Peter Schachte (Melbourne)

More information

Java Threads and intrinsic locks

Java Threads and intrinsic locks Java Threads and intrinsic locks 1. Java and OOP background fundamentals 1.1. Objects, methods and data One significant advantage of OOP (object oriented programming) is data encapsulation. Each object

More information

Subclass Gist Example: Chess Super Keyword Shadowing Overriding Why? L10 - Polymorphism and Abstract Classes The Four Principles of Object Oriented

Subclass Gist Example: Chess Super Keyword Shadowing Overriding Why? L10 - Polymorphism and Abstract Classes The Four Principles of Object Oriented Table of Contents L01 - Introduction L02 - Strings Some Examples Reserved Characters Operations Immutability Equality Wrappers and Primitives Boxing/Unboxing Boxing Unboxing Formatting L03 - Input and

More information

This tutorial is designed for all those software professionals who are keen on learning the basics of Clojure and how to put it into practice.

This tutorial is designed for all those software professionals who are keen on learning the basics of Clojure and how to put it into practice. About the Tutorial Clojure is a high level, dynamic functional programming language. It is designed, based on the LISP programming language, and has compilers that makes it possible to be run on both Java

More information

Concurrent & Distributed Systems Supervision Exercises

Concurrent & Distributed Systems Supervision Exercises Concurrent & Distributed Systems Supervision Exercises Stephen Kell Stephen.Kell@cl.cam.ac.uk November 9, 2009 These exercises are intended to cover all the main points of understanding in the lecture

More information

Advanced MEIC. (Lesson #18)

Advanced MEIC. (Lesson #18) Advanced Programming @ MEIC (Lesson #18) Last class Data races Java Memory Model No out-of-thin-air values Data-race free programs behave as expected Today Finish with the Java Memory Model Introduction

More information

Quote of the Day. CS Functional Programming. Introductory Notes on Lisp/Clojure. Another Quote. What is Clojure? 1-4

Quote of the Day. CS Functional Programming. Introductory Notes on Lisp/Clojure. Another Quote. What is Clojure? 1-4 Quote of the Day CS 326 - Functional Programming Introductory Notes on Lisp/Clojure Dr. Stephen P. Carl By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more

More information

Simon Peyton Jones (Microsoft Research) Tokyo Haskell Users Group April 2010

Simon Peyton Jones (Microsoft Research) Tokyo Haskell Users Group April 2010 Simon Peyton Jones (Microsoft Research) Tokyo Haskell Users Group April 2010 Geeks Practitioners 1,000,000 10,000 100 1 The quick death 1yr 5yr 10yr 15yr Geeks Practitioners 1,000,000 10,000 100 The slow

More information

Problems with Concurrency. February 19, 2014

Problems with Concurrency. February 19, 2014 with Concurrency February 19, 2014 s with concurrency interleavings race conditions dead GUI source of s non-determinism deterministic execution model 2 / 30 General ideas Shared variable Access interleavings

More information

A Transactional Model and Platform for Designing and Implementing Reactive Systems

A Transactional Model and Platform for Designing and Implementing Reactive Systems A Transactional Model and Platform for Designing and Implementing Reactive Systems Justin R. Wilson A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial

More information

Composable Shared Memory Transactions Lecture 20-2

Composable Shared Memory Transactions Lecture 20-2 Composable Shared Memory Transactions Lecture 20-2 April 3, 2008 This was actually the 21st lecture of the class, but I messed up the naming of subsequent notes files so I ll just call this one 20-2. This

More information

Chapter 5 Asynchronous Concurrent Execution

Chapter 5 Asynchronous Concurrent Execution Chapter 5 Asynchronous Concurrent Execution Outline 5.1 Introduction 5.2 Mutual Exclusion 5.2.1 Java Multithreading Case Study 5.2.2 Critical Sections 5.2.3 Mutual Exclusion Primitives 5.3 Implementing

More information

CMSC 330: Organization of Programming Languages. OCaml Imperative Programming

CMSC 330: Organization of Programming Languages. OCaml Imperative Programming CMSC 330: Organization of Programming Languages OCaml Imperative Programming CMSC330 Spring 2018 1 So Far, Only Functional Programming We haven t given you any way so far to change something in memory

More information

CSE 230. Concurrency: STM. Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart

CSE 230. Concurrency: STM. Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart CSE 230 Concurrency: STM Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart The Grand Challenge How to properly use multi-cores? Need new programming models! Parallelism vs Concurrency

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

Vectors in Scheme. Data Structures in Scheme

Vectors in Scheme. Data Structures in Scheme Data Structures in Scheme Vectors in Scheme In Scheme, lists and S-expressions are basic. Arrays can be simulated using lists, but access to elements deep in the list can be slow (since a list is a linked

More information

The Java Memory Model

The Java Memory Model The Java Memory Model What is it and why would I want one? Jörg Domaschka. ART Group, Institute for Distributed Systems Ulm University, Germany December 14, 2009 public class WhatDoIPrint{ static int x

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

Concurrency on x86-64; Threads Programming Tips

Concurrency on x86-64; Threads Programming Tips Concurrency on x86-64; Threads Programming Tips Brad Karp UCL Computer Science CS 3007 22 nd March 2018 (lecture notes derived from material from Eddie Kohler, David Mazières, Phil Gibbons, Dave O Hallaron,

More information

Other consistency models

Other consistency models Last time: Symmetric multiprocessing (SMP) Lecture 25: Synchronization primitives Computer Architecture and Systems Programming (252-0061-00) CPU 0 CPU 1 CPU 2 CPU 3 Timothy Roscoe Herbstsemester 2012

More information

Conflict Detection and Validation Strategies for Software Transactional Memory

Conflict Detection and Validation Strategies for Software Transactional Memory Conflict Detection and Validation Strategies for Software Transactional Memory Michael F. Spear, Virendra J. Marathe, William N. Scherer III, and Michael L. Scott University of Rochester www.cs.rochester.edu/research/synchronization/

More information

Inside core.async Channels. Rich Hickey

Inside core.async Channels. Rich Hickey Inside core.async s Rich Hickey Warning! Implementation details Subject to change The Problems Single channel implementation For use from both dedicated threads and go threads simultaneously, on same channel

More information

Clojure for OOP folks Stefan innoq

Clojure for OOP folks Stefan innoq Clojure for OOP folks Stefan Tilkov @stilkov innoq 1 Motivation 2 Syntax Idioms 3 OOP Thinking model domains with classes & interfaces encapsulate data in objects prefer specific over generic solutions

More information

Problem. Context. Hash table

Problem. Context. Hash table Problem In many problems, it is natural to use Hash table as their data structures. How can the hash table be efficiently accessed among multiple units of execution (UEs)? Context Hash table is used when

More information

CS Programming Languages: Scala

CS Programming Languages: Scala CS 3101-2 - Programming Languages: Scala Lecture 6: Actors and Concurrency Daniel Bauer (bauer@cs.columbia.edu) December 3, 2014 Daniel Bauer CS3101-2 Scala - 06 - Actors and Concurrency 1/19 1 Actors

More information

Ruby: Objects and Dynamic Types

Ruby: Objects and Dynamic Types Ruby: Objects and Dynamic Types Computer Science and Engineering College of Engineering The Ohio State University Lecture 5 Primitive vs Reference Types Recall Java type dichotomy: Primitive: int, float,

More information

CMSC 330: Organization of Programming Languages. OCaml Imperative Programming

CMSC 330: Organization of Programming Languages. OCaml Imperative Programming CMSC 330: Organization of Programming Languages OCaml Imperative Programming CMSC330 Fall 2017 1 So Far, Only Functional Programming We haven t given you any way so far to change something in memory All

More information

A Deterministic Concurrent Language for Embedded Systems

A Deterministic Concurrent Language for Embedded Systems A Deterministic Concurrent Language for Embedded Systems Stephen A. Edwards Columbia University Joint work with Olivier Tardieu SHIM:A Deterministic Concurrent Language for Embedded Systems p. 1/30 Definition

More information

Transactum Business Process Manager with High-Performance Elastic Scaling. November 2011 Ivan Klianev

Transactum Business Process Manager with High-Performance Elastic Scaling. November 2011 Ivan Klianev Transactum Business Process Manager with High-Performance Elastic Scaling November 2011 Ivan Klianev Transactum BPM serves three primary objectives: To make it possible for developers unfamiliar with distributed

More information

The Actor Model. CSCI 5828: Foundations of Software Engineering Lecture 13 10/04/2016

The Actor Model. CSCI 5828: Foundations of Software Engineering Lecture 13 10/04/2016 The Actor Model CSCI 5828: Foundations of Software Engineering Lecture 13 10/04/2016 1 Goals Introduce the Actor Model of Concurrency isolation, message passing, message patterns Present examples from

More information

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability Topics COS 318: Operating Systems File Performance and Reliability File buffer cache Disk failure and recovery tools Consistent updates Transactions and logging 2 File Buffer Cache for Performance What

More information

NON-BLOCKING DATA STRUCTURES AND TRANSACTIONAL MEMORY. Tim Harris, 31 October 2012

NON-BLOCKING DATA STRUCTURES AND TRANSACTIONAL MEMORY. Tim Harris, 31 October 2012 NON-BLOCKING DATA STRUCTURES AND TRANSACTIONAL MEMORY Tim Harris, 31 October 2012 Lecture 6 Linearizability Lock-free progress properties Queues Reducing contention Explicit memory management Linearizability

More information

Favoring Isolated Mutability The Actor Model of Concurrency. CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012

Favoring Isolated Mutability The Actor Model of Concurrency. CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012 Favoring Isolated Mutability The Actor Model of Concurrency CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012 1 Goals Review the material in Chapter 8 of the Concurrency textbook that

More information

A Deterministic Concurrent Language for Embedded Systems

A Deterministic Concurrent Language for Embedded Systems A Deterministic Concurrent Language for Embedded Systems Stephen A. Edwards Columbia University Joint work with Olivier Tardieu SHIM:A Deterministic Concurrent Language for Embedded Systems p. 1/38 Definition

More information

A Non-Blocking Concurrent Queue Algorithm

A Non-Blocking Concurrent Queue Algorithm A Non-Blocking Concurrent Queue Algorithm Bruno Didot bruno.didot@epfl.ch June 2012 Abstract This report presents a new non-blocking concurrent FIFO queue backed by an unrolled linked list. Enqueue and

More information

CS3733: Operating Systems

CS3733: Operating Systems Outline CS3733: Operating Systems Topics: Synchronization, Critical Sections and Semaphores (SGG Chapter 6) Instructor: Dr. Tongping Liu 1 Memory Model of Multithreaded Programs Synchronization for coordinated

More information

Declarative concurrency. March 3, 2014

Declarative concurrency. March 3, 2014 March 3, 2014 (DP) what is declarativeness lists, trees iterative comutation recursive computation (DC) DP and DC in Haskell and other languages 2 / 32 Some quotes What is declarativeness? ness is important

More information

Java Platform Concurrency Gotchas

Java Platform Concurrency Gotchas Java Platform Concurrency Gotchas Alex Miller Terracotta Questions to answer > What are common concurrency problems? > Why are they problems? > How do I detect these problems? > How do I correct these

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Multithreading Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to large compute clusters Can perform multiple

More information

Threads Questions Important Questions

Threads Questions Important Questions Threads Questions Important Questions https://dzone.com/articles/threads-top-80-interview https://www.journaldev.com/1162/java-multithreading-concurrency-interviewquestions-answers https://www.javatpoint.com/java-multithreading-interview-questions

More information

Applied Unified Ownership. Capabilities for Sharing Across Threads

Applied Unified Ownership. Capabilities for Sharing Across Threads Applied Unified Ownership or Capabilities for Sharing Across Threads Elias Castegren Tobias Wrigstad DRF transfer parallel programming AppliedUnified Ownership memory management placement in pools (previous

More information

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei Non-blocking Array-based Algorithms for Stacks and Queues Niloufar Shafiei Outline Introduction Concurrent stacks and queues Contributions New algorithms New algorithms using bounded counter values Correctness

More information

OCaml Language Choices CMSC 330: Organization of Programming Languages

OCaml Language Choices CMSC 330: Organization of Programming Languages OCaml Language Choices CMSC 330: Organization of Programming Languages! Implicit or explicit declarations?! Explicit variables must be introduced with let before use! But you don t need to specify types

More information

Reminder from last time

Reminder from last time Concurrent systems Lecture 7: Crash recovery, lock-free programming, and transactional memory DrRobert N. M. Watson 1 Reminder from last time History graphs; good (and bad) schedules Isolation vs. strict

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

June 27, 2014 EuroClojure 2014 Krakow, Poland. Components. Just Enough

June 27, 2014 EuroClojure 2014 Krakow, Poland. Components. Just Enough June 27, 2014 EuroClojure 2014 Krakow, Poland Components Just Enough Structure @stuartsierra Presentation Business Logic DB SMS Email Presentation Thread Pool Business Logic Queues Public API Private API

More information

Java Memory Model for practitioners. by Vadym Kazulkin and Rodion Alukhanov, ip.labs GmbH

Java Memory Model for practitioners. by Vadym Kazulkin and Rodion Alukhanov, ip.labs GmbH Java Memory Model for practitioners by Vadym Kazulkin and Rodion Alukhanov, ip.labs GmbH Topics Hardware Memory Model Java Memory Model Practical examples related to Java Memory Model JcStress Tool The

More information

Programming Clojure. Extracted from: Second Edition. The Pragmatic Bookshelf

Programming Clojure. Extracted from: Second Edition. The Pragmatic Bookshelf Extracted from: Programming Clojure Second Edition This PDF file contains pages extracted from Programming Clojure, published by the Pragmatic Bookshelf. For more information or to purchase a paperback

More information

3. Java - Language Constructs I

3. Java - Language Constructs I Names and Identifiers A program (that is, a class) needs a name public class SudokuSolver {... 3. Java - Language Constructs I Names and Identifiers, Variables, Assignments, Constants, Datatypes, Operations,

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

Cache Coherence and Atomic Operations in Hardware

Cache Coherence and Atomic Operations in Hardware Cache Coherence and Atomic Operations in Hardware Previously, we introduced multi-core parallelism. Today we ll look at 2 things: 1. Cache coherence 2. Instruction support for synchronization. And some

More information

The Actor Model. Towards Better Concurrency. By: Dror Bereznitsky

The Actor Model. Towards Better Concurrency. By: Dror Bereznitsky The Actor Model Towards Better Concurrency By: Dror Bereznitsky 1 Warning: Code Examples 2 Agenda Agenda The end of Moore law? Shared state concurrency Message passing concurrency Actors on the JVM More

More information

A Deterministic Concurrent Language for Embedded Systems

A Deterministic Concurrent Language for Embedded Systems SHIM:A A Deterministic Concurrent Language for Embedded Systems p. 1/28 A Deterministic Concurrent Language for Embedded Systems Stephen A. Edwards Columbia University Joint work with Olivier Tardieu SHIM:A

More information

Bw-Tree. Josef Schmeißer. January 9, Josef Schmeißer Bw-Tree January 9, / 25

Bw-Tree. Josef Schmeißer. January 9, Josef Schmeißer Bw-Tree January 9, / 25 Bw-Tree Josef Schmeißer January 9, 2018 Josef Schmeißer Bw-Tree January 9, 2018 1 / 25 Table of contents 1 Fundamentals 2 Tree Structure 3 Evaluation 4 Further Reading Josef Schmeißer Bw-Tree January 9,

More information

The concept of concurrency is fundamental to all these areas.

The concept of concurrency is fundamental to all these areas. Chapter 5 Concurrency(I) The central themes of OS are all concerned with the management of processes and threads: such as multiprogramming, multiprocessing, and distributed processing. The concept of concurrency

More information

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008 Process Synchronization Mehdi Kargahi School of ECE University of Tehran Spring 2008 Producer-Consumer (Bounded Buffer) Producer Consumer Race Condition Producer Consumer Critical Sections Structure of

More information

Pace University. Fundamental Concepts of CS121 1

Pace University. Fundamental Concepts of CS121 1 Pace University Fundamental Concepts of CS121 1 Dr. Lixin Tao http://csis.pace.edu/~lixin Computer Science Department Pace University October 12, 2005 This document complements my tutorial Introduction

More information

Consistency: Strict & Sequential. SWE 622, Spring 2017 Distributed Software Engineering

Consistency: Strict & Sequential. SWE 622, Spring 2017 Distributed Software Engineering Consistency: Strict & Sequential SWE 622, Spring 2017 Distributed Software Engineering Review: Real Architectures N-Tier Web Architectures Internet Clients External Cache Internal Cache Web Servers Misc

More information

Ruby: Introduction, Basics

Ruby: Introduction, Basics Ruby: Introduction, Basics Computer Science and Engineering College of Engineering The Ohio State University Lecture 3 Ruby vs Java: Similarities Imperative and object-oriented Classes and instances (ie

More information

ECE 587 Hardware/Software Co-Design Lecture 07 Concurrency in Practice Shared Memory I

ECE 587 Hardware/Software Co-Design Lecture 07 Concurrency in Practice Shared Memory I ECE 587 Hardware/Software Co-Design Spring 2018 1/15 ECE 587 Hardware/Software Co-Design Lecture 07 Concurrency in Practice Shared Memory I Professor Jia Wang Department of Electrical and Computer Engineering

More information

CSCI 136 Written Exam #1 Fundamentals of Computer Science II Spring 2013

CSCI 136 Written Exam #1 Fundamentals of Computer Science II Spring 2013 CSCI 136 Written Exam #1 Fundamentals of Computer Science II Spring 2013 Name: This exam consists of 5 problems on the following 6 pages. You may use your double-sided hand-written 8 ½ x 11 note sheet

More information

Chapter 4 Defining Classes I

Chapter 4 Defining Classes I Chapter 4 Defining Classes I This chapter introduces the idea that students can create their own classes and therefore their own objects. Introduced is the idea of methods and instance variables as the

More information

Michiel DomCode, May 26th 2015

Michiel DomCode, May 26th 2015 ClojureScript ReactJS Michiel Borkent @borkdude DomCode, May 26th 2015 Michiel Borkent (@borkdude) Clojure(Script) developer at Clojure since 2009 Former lecturer, taught Clojure Agenda Part 1: ClojureScript

More information

Shared state model. April 3, / 29

Shared state model. April 3, / 29 Shared state April 3, 2012 1 / 29 the s s limitations of explicit state: cells equivalence of the two s programming in limiting interleavings locks, monitors, transactions comparing the 3 s 2 / 29 Message

More information

Message Passing. Frédéric Haziza Summer Department of Computer Systems Uppsala University

Message Passing. Frédéric Haziza Summer Department of Computer Systems Uppsala University Message Passing Frédéric Haziza Department of Computer Systems Uppsala University Summer 2009 MultiProcessor world - Taxonomy SIMD MIMD Message Passing Shared Memory Fine-grained Coarse-grained

More information

Multiple Inheritance. Computer object can be viewed as

Multiple Inheritance. Computer object can be viewed as Multiple Inheritance We have seen that a class may be derived from a given parent class. It is sometimes useful to allow a class to be derived from more than one parent, inheriting members of all parents.

More information

CMSC 433 Spring 2013 Exam 1

CMSC 433 Spring 2013 Exam 1 CMSC 433 Spring 2013 Exam 1 Name: _ EXAMPLE SOLUTIONS Directions: Test is closed book, closed notes, closed electronics. Answer every question; write your answers in the spaces provided. If you need extra

More information

Threads and Parallelism in Java

Threads and Parallelism in Java Threads and Parallelism in Java Java is one of the few main stream programming languages to explicitly provide for user-programmed parallelism in the form of threads. A Java programmer may organize a program

More information

COP4020 Programming Assignment 1 - Spring 2011

COP4020 Programming Assignment 1 - Spring 2011 COP4020 Programming Assignment 1 - Spring 2011 In this programming assignment we design and implement a small imperative programming language Micro-PL. To execute Mirco-PL code we translate the code to

More information

Threads and Locks, Part 2. CSCI 5828: Foundations of Software Engineering Lecture 08 09/18/2014

Threads and Locks, Part 2. CSCI 5828: Foundations of Software Engineering Lecture 08 09/18/2014 Threads and Locks, Part 2 CSCI 5828: Foundations of Software Engineering Lecture 08 09/18/2014 1 Goals Cover the material presented in Chapter 2 of our concurrency textbook In particular, selected material

More information