Parallel computing on the Grid

Size: px
Start display at page:

Download "Parallel computing on the Grid"

Transcription

1 arallel computing on the Grid and application porting examples Roberto Alfieri - arma University & INFN Italy Comput-er.it Meeting - arma 21/06/2011 1

2 Current MI support in Grid (glite middleware) Issue Solution Description Multiple CU request JDL file CUnumber=4 Multiple MI version/flavour support Get the MI machinefile from the job manager mpi-start tool mpi-start tool openmpi mpich mpich2 Automatic management (BS LSF SGE) Files distribution among nodes mpi-start tool Automatic management (home shared not shared) CUnumber=4; Executable= "mpi-start"; Arguments= my-mpi-prog OENMI"; InputSandbox="my-mpi-prog";. 2

3 MI-start MpiStart (developed by HLRS Stuttgart) is a set of scripts that ease the execution of MI programs by using a unique and stable interface to the middleware. The adoption of MpiStart in Grid comes from the EGEE MI-WG recommendations Mpi-start frameworks: 1) Batch scheduler - BS, LSF, SGE,.. 2) MI implementations - openmi, MpiCh2,.. 3) Workflow control - Files distribution (if needed) - user's pre/post execution scripts Mpi-start maintainer web page: 4/13/2011 arallel computing on the Grid CCR-InfnGrid Workshop

4 Memory architecture on multicore processors In modern multicore processors the memory architecture is NUMA - Cpu/memory affinity is the ability to bind a process to a specific CU/memory bank p p p p p Measured network performance (using NetIE): Comm Type Latency MAX Bandw. 1 Intra-socket 640 ns 14 GBytes/s 2 Intra-board 820 ns 12 GBytes/s 3 infiniband 3300 ns 11 GBytes/s Memory performance (peak): Memory Type Latency MAX Bandw. L3 cache 35 ns DDR3 50 ns 32 GBytes/s Numa (HT or QI) 90 ns 11 GBytes/s 4 4

5 Forthcoming MI support (EMI middleware) Issue Solution Description Multiple CU request with granularity selection JDL file New features WholeNodes=true HostNumber=2 SMgranularity=8 openm support Mpi-start MI_USE_OM=1 pnode pcore psocket CU Affinity support Mpi-start MI_USE_AFFINITY=1 #CUnumber=4; Executable= "mpi-start"; Arguments= -t openmpi -pcore -d MI_USE_OM=1 -- my-prog"; InputSandbox="my-prog"; Wholenodes=true; HostNumber=2; SMGranularity=8; 5

6 arallel job examples 1 MI rank per node Executable= "mpi-start"; Arguments= -t openmpi -- my-mpi-prog"; InputSandbox="my-mpi-prog"; CUnumber=2; SMGranularity=1; 2 whole nodes, 1 MI rank per core Executable= "mpi-start"; Arguments= -t openmpi -- my-mpi-prog"; InputSandbox="my-mpi-prog"; Wholenodes=true; HostNumber=2; SMGranularity=8; Multi-thread job Executable= "my-openmp-prog"; Arguments= "; InputSandbox="my-openmp-prog"; Wholenodes=true; HostNumber=1; SMGranularity=8; 1 MI rank per socket, 4 threads per MI rank Executable= "mpi-start"; Arguments= -t openmpi d MI_USE_OENM=1 d MI_USE_AFFINITY=1 psocket -- my-prog"; InputSandbox="my-prog"; Wholenodes=true; HostNumber=2; SMGranularity=8;

7 arallel scientific applications Widely used application examples: Name Description MI Multi thread Einstein tk relativistic astrophysics C/C++/F90 YES YES NO Q-Espresso electronic structure F90 YES experimental with openmp GU Beta (May2011) Namd molecular dynamics C++ YES YES YES Chroma lattice field theory C++ YES NO YES Gromacs molecular dynamics C YES since v.4.5 with pthreads YES (Aug 2010) Since the INFN-ARMA grid parallel cluster (8 WNs 8 cores each, BS, openmi) supports a preliminary version of the new JDL syntax (WholeNodes attributes) and of the new mpi-start tool (openm and affinity support), it has been possible to start porting on the grid some widely used parallel applications. 7

8 orting example: Quantum Espresso QUANTUM ESRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling. The maintenance and further development is promoted by the DEMOCRITOS National Simulation Center of IOM-CNR under the terms of the GNU General ublic License. arallel execution: In Quantum Espresso several parallelization levels are implemented with MI. Typical execution command on C clusters: mpirun -np 16 $BINDIR/pw.x < file.in >file.out Explicit OpenM is a very recent addition, still at an experimental stage. For execution using OpenM on N threads: env OM_NUM_THREADS=N $BINDIR/pw.x < file.in > file.out Hybrid parallelization (MI/openM) should be executed carefully to prevent conflicts: env OM_NUM_THREADS=N mpirun -np 8 $BINDIR/pw.x < file.in > file.out 8

9 espresso.jdl Executable = "espresso.sh"; StdOutput = "std.out"; StdError = "std.err"; InputSandbox = {"espresso.sh, file.in }; OutputSandbox = {"std.err","std.out, file.out }; espresso.sh Running QE on the Grid WholeNodes=true HostNumber=2 Granularity selection SMGranularity=8 #Requirements=(other.GlueCEUniqueID=="cream-ce.pr.infn.it:8443/cream-pbs-parallel"); #!/bin/bash #install wget tar xzvf espresso tar.gz cd $ESRESSO/espresso /configure #-enable-openmp make all # or whatever you need #execute $W=$ESRESSO/espresso-4.3.1/bin/pw.x mpi-start -t openmpi -psoket -d MI_USE_OM=1 -d MI_USE_AFFINITY=1 -- $W < file.in > file.out flavour MI rocess/thread distribution 9

10 orting example: Einstein toolkit Eintstein toolkit is an open software for relativistic astrophysics with mixed MI and openm parallelization. Evolution of a stable general relativistic TOV-Star. Hydro-dynamical Simulation of a perfect fluid coupled to the full Einstein Equations (dynamical space-time) on a 3-dimensional grid with 5-level of refinement spanning an octant of radius 177 km with a maximum resolution within the star of 740 m. Newly support mpi-start has adaptive way to mix openm and MI process. The best performance depends on the Hardware characteristic of the node: MI M Time (s) mpi-start -pcore mpi-start -psocket mpi-start -pnode Thanks to R. De ietri (arma Univ.) 10

11 orting example: NAMD NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. arallel execution: NAMD uses the Charm++ communications layer to launch namd2 processes. SM builds of Charm++ can be used with multiple threads on a single node or across the network. Typical parallel execution command: charmrun namd2 +p16 +ppn 8 <configfile> In case of MI-based SM builds: mpiexec np 16 namd2 +ppn 8 <configfile> NAMD may use specific syntax to start parallel executions, so a customization of the execution script is needed to adapt this application in the Grid environment. 11

12 namd.jdl Running parallel NAMD on the Grid Executable = namd.sh"; InputSandbox = { namd.sh, NAMD_2.8_Source.tar.gz, configfile }; WholeNodes=true HostNumber=2 SMGranularity=8 namd.sh #!/bin/bash #install tar xzf NAMD_2.8_Source.tar.gz make #execute set NODES = `cat $BS_HOSTFILE` set NODELIST = namd2.nodelist echo group main >! $NODELIST foreach node ( $nodes ) echo host $node >> $NODELIST NUMROCS = 2 * $#NODES charmrun namd2 +p$numrocs ++nodelist $NODELIST <configfile> 12

13 Thank you for your attention! 13

Future of Grid parallel exploitation

Future of Grid parallel exploitation Future of Grid parallel exploitation Roberto Alfieri - arma University & INFN Italy SuperbB Computing R&D Workshop - Ferrara 6/07/2011 1 Outline MI support in the current grid middleware (glite) MI and

More information

Cluster Nazionale CSN4

Cluster Nazionale CSN4 CCR Workshop - Stato e Prospettive del Calcolo Scientifico Cluster Nazionale CSN4 Parallel computing and scientific activity Roberto Alfieri - Parma University & INFN, Gr.Coll. di Parma LNL - 16/02/2011

More information

Roberto Alfieri. Parma University & INFN Italy

Roberto Alfieri. Parma University & INFN Italy EGI-InSPIRE TheoMpi: a large MPI cluster on the grid for Theoretical Physics Roberto Alfieri Parma University & INFN Italy Co-authors: S. Arezzini, A. Ciampa, E. Mazzoni (INFN-PI), A. Gianelle, M. Sgaravatto

More information

Multi-thread and Mpi usage in GRID Roberto Alfieri - Parma University & INFN, Gr.Coll. di Parma

Multi-thread and Mpi usage in GRID Roberto Alfieri - Parma University & INFN, Gr.Coll. di Parma SuperB Computing R&D Workshop Multi-thread and Mpi usage in GRID Roberto Alfieri - Parma University & INFN, Gr.Coll. di Parma Ferrara, Thursday, March 11, 2010 1 Outline MPI and multi-thread support in

More information

A unified user experience for MPI jobs in EMI

A unified user experience for MPI jobs in EMI A unified user experience for MPI jobs in EMI Enol Fernández (CSIC) glite MPI PT Outline Parallel Jobs EMI middleware stacks approaches How to execute a simple MPI job with 16 process with ARC/gLite/UNICORE?

More information

Parallel Job Support in the Spanish NGI! Enol Fernández del Cas/llo Ins/tuto de Física de Cantabria (IFCA) Spain

Parallel Job Support in the Spanish NGI! Enol Fernández del Cas/llo Ins/tuto de Física de Cantabria (IFCA) Spain Parallel Job Support in the Spanish NGI! Enol Fernández del Cas/llo Ins/tuto de Física de Cantabria (IFCA) Spain Introduction (I)! Parallel applica/ons are common in clusters and HPC systems Grid infrastructures

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

PoS(EGICF12-EMITC2)057

PoS(EGICF12-EMITC2)057 Enol Fernandez-del-Castillo Instituto de Fisica de Cantabria (IFCA), CSIC-UC, Spain E-mail: enolfc@ifca.unican.es John Walsh Trinity College Dublin, Ireland E-mail: John.Walsh@scss.tcd.ie CESGA, Spain

More information

Kohinoor queuing document

Kohinoor queuing document List of SGE Commands: qsub : Submit a job to SGE Kohinoor queuing document qstat : Determine the status of a job qdel : Delete a job qhost : Display Node information Some useful commands $qstat f -- Specifies

More information

MPI SUPPORT ON THE GRID. Kiril Dichev, Sven Stork, Rainer Keller. Enol Fernández

MPI SUPPORT ON THE GRID. Kiril Dichev, Sven Stork, Rainer Keller. Enol Fernández Computing and Informatics, Vol. 27, 2008, 213 222 MPI SUPPORT ON THE GRID Kiril Dichev, Sven Stork, Rainer Keller High Performance Computing Center University of Stuttgart Nobelstrasse 19 70569 Stuttgart,

More information

How to use computing resources at Grid

How to use computing resources at Grid How to use computing resources at Grid Nikola Grkic ngrkic@ipb.ac.rs Scientific Computing Laboratory Institute of Physics Belgrade, Serbia Academic and Educat ional Gr id Init iat ive of S er bia Oct.

More information

Practical Introduction to

Practical Introduction to 1 2 Outline of the workshop Practical Introduction to What is ScaleMP? When do we need it? How do we run codes on the ScaleMP node on the ScaleMP Guillimin cluster? How to run programs efficiently on ScaleMP?

More information

International Collaboration to Extend and Advance Grid Education. glite WMS Workload Management System

International Collaboration to Extend and Advance Grid Education. glite WMS Workload Management System International Collaboration to Extend and Advance Grid Education glite WMS Workload Management System Marco Pappalardo Consorzio COMETA & INFN Catania, Italy ITIS Ferraris, Acireale, Tutorial GRID per

More information

Parallel Computing in EGI

Parallel Computing in EGI Parallel Computing in EGI V. Šipková, M. Dobrucký, and P. Slížik Ústav informatiky, Slovenská akadémia vied 845 07 Bratislava, Dúbravská cesta 9 http://www.ui.sav.sk/ {Viera.Sipkova, Miroslav.Dobrucky,

More information

Performance comparison between a massive SMP machine and clusters

Performance comparison between a massive SMP machine and clusters Performance comparison between a massive SMP machine and clusters Martin Scarcia, Stefano Alberto Russo Sissa/eLab joint Democritos/Sissa Laboratory for e-science Via Beirut 2/4 34151 Trieste, Italy Stefano

More information

MPI Applications with the Grid Engine

MPI Applications with the Grid Engine The EPIKH Project (Exchange Programme to advance e-infrastructure Know-How) MPI Applications with the Grid Engine Riccardo Rotondo (riccardo.rotondo@garr.it) Joint CHAIN/EUMEDGRID-Support/EPIKH School

More information

Hybrid MPI/OpenMP parallelization. Recall: MPI uses processes for parallelism. Each process has its own, separate address space.

Hybrid MPI/OpenMP parallelization. Recall: MPI uses processes for parallelism. Each process has its own, separate address space. Hybrid MPI/OpenMP parallelization Recall: MPI uses processes for parallelism. Each process has its own, separate address space. Thread parallelism (such as OpenMP or Pthreads) can provide additional parallelism

More information

Architecture of the WMS

Architecture of the WMS Architecture of the WMS Dr. Giuliano Taffoni INFORMATION SYSTEMS UNIT Outline This presentation will cover the following arguments: Overview of WMS Architecture Job Description Language Overview WMProxy

More information

OPEN MP and MPI on Kingspeak chpc cluster

OPEN MP and MPI on Kingspeak chpc cluster OPEN MP and MPI on Kingspeak chpc cluster Command to compile the code with openmp and mpi /uufs/kingspeak.peaks/sys/pkg/openmpi/std_intel/bin/mpicc -o hem hemhotlz.c -I /uufs/kingspeak.peaks/sys/pkg/openmpi/std_intel/include

More information

Our new HPC-Cluster An overview

Our new HPC-Cluster An overview Our new HPC-Cluster An overview Christian Hagen Universität Regensburg Regensburg, 15.05.2009 Outline 1 Layout 2 Hardware 3 Software 4 Getting an account 5 Compiling 6 Queueing system 7 Parallelization

More information

Advanced Job Submission on the Grid

Advanced Job Submission on the Grid Advanced Job Submission on the Grid Antun Balaz Scientific Computing Laboratory Institute of Physics Belgrade http://www.scl.rs/ 30 Nov 11 Dec 2009 www.eu-egee.org Scope User Interface Submit job Workload

More information

Content. MPIRUN Command Environment Variables LoadLeveler SUBMIT Command IBM Simple Scheduler. IBM PSSC Montpellier Customer Center

Content. MPIRUN Command Environment Variables LoadLeveler SUBMIT Command IBM Simple Scheduler. IBM PSSC Montpellier Customer Center Content IBM PSSC Montpellier Customer Center MPIRUN Command Environment Variables LoadLeveler SUBMIT Command IBM Simple Scheduler Control System Service Node (SN) An IBM system-p 64-bit system Control

More information

Cerebro Quick Start Guide

Cerebro Quick Start Guide Cerebro Quick Start Guide Overview of the system Cerebro consists of a total of 64 Ivy Bridge processors E5-4650 v2 with 10 cores each, 14 TB of memory and 24 TB of local disk. Table 1 shows the hardware

More information

glite Advanced Job Management

glite Advanced Job Management The EPIKH Project (Exchange Programme to advance e-infrastructure Know-How) glite Advanced Job Management Porting Application School Cesar Fernández (cesar.fernandez@usm.cl) Valparaíso, 30 November 2010

More information

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Why serial is not enough Computing architectures Parallel paradigms Message Passing Interface How

More information

Running applications on the Cray XC30

Running applications on the Cray XC30 Running applications on the Cray XC30 Running on compute nodes By default, users do not access compute nodes directly. Instead they launch jobs on compute nodes using one of three available modes: 1. Extreme

More information

Advanced Message-Passing Interface (MPI)

Advanced Message-Passing Interface (MPI) Outline of the workshop 2 Advanced Message-Passing Interface (MPI) Bart Oldeman, Calcul Québec McGill HPC Bart.Oldeman@mcgill.ca Morning: Advanced MPI Revision More on Collectives More on Point-to-Point

More information

Parallelism. Wolfgang Kastaun. May 9, 2008

Parallelism. Wolfgang Kastaun. May 9, 2008 Parallelism Wolfgang Kastaun May 9, 2008 Outline Parallel computing Frameworks MPI and the batch system Running MPI code at TAT The CACTUS framework Overview Mesh refinement Writing Cactus modules Links

More information

Installation and Test of Molecular Dynamics Simulation Packages on SGI Altix and Hydra-Cluster at JKU Linz

Installation and Test of Molecular Dynamics Simulation Packages on SGI Altix and Hydra-Cluster at JKU Linz Installation and Test of Molecular Dynamics Simulation Packages on SGI Altix and Hydra-Cluster at JKU Linz Rene Kobler May 25, 25 Contents 1 Abstract 2 2 Status 2 3 Changelog 2 4 Installation Notes 3 4.1

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Introduction to Parallel Programming with MPI

Introduction to Parallel Programming with MPI Introduction to Parallel Programming with MPI PICASso Tutorial October 25-26, 2006 Stéphane Ethier (ethier@pppl.gov) Computational Plasma Physics Group Princeton Plasma Physics Lab Why Parallel Computing?

More information

Introduction to CINECA Computer Environment

Introduction to CINECA Computer Environment Introduction to CINECA Computer Environment Today you will learn... Basic commands for UNIX environment @ CINECA How to submitt your job to the PBS queueing system on Eurora Tutorial #1: Example: launch

More information

Introduction to Unix Environment: modules, job scripts, PBS. N. Spallanzani (CINECA)

Introduction to Unix Environment: modules, job scripts, PBS. N. Spallanzani (CINECA) Introduction to Unix Environment: modules, job scripts, PBS N. Spallanzani (CINECA) Bologna PATC 2016 In this tutorial you will learn... How to get familiar with UNIX environment @ CINECA How to submit

More information

MPICH User s Guide Version Mathematics and Computer Science Division Argonne National Laboratory

MPICH User s Guide Version Mathematics and Computer Science Division Argonne National Laboratory MPICH User s Guide Version 3.1.4 Mathematics and Computer Science Division Argonne National Laboratory Pavan Balaji Wesley Bland William Gropp Rob Latham Huiwei Lu Antonio J. Peña Ken Raffenetti Sangmin

More information

Hybrid Model Parallel Programs

Hybrid Model Parallel Programs Hybrid Model Parallel Programs Charlie Peck Intermediate Parallel Programming and Cluster Computing Workshop University of Oklahoma/OSCER, August, 2010 1 Well, How Did We Get Here? Almost all of the clusters

More information

A Login Shell interface for INFN-GRID

A Login Shell interface for INFN-GRID A Login Shell interface for INFN-GRID S.Pardi2,3, E. Calloni1,2, R. De Rosa1,2, F. Garufi1,2, L. Milano1,2, G. Russo1,2 1Università degli Studi di Napoli Federico II, Dipartimento di Scienze Fisiche, Complesso

More information

GRID Testing and Profiling. November 2017

GRID Testing and Profiling. November 2017 GRID Testing and Profiling November 2017 2 GRID C++ library for Lattice Quantum Chromodynamics (Lattice QCD) calculations Developed by Peter Boyle (U. of Edinburgh) et al. Hybrid MPI+OpenMP plus NUMA aware

More information

Domain Decomposition: Computational Fluid Dynamics

Domain Decomposition: Computational Fluid Dynamics Domain Decomposition: Computational Fluid Dynamics May 24, 2015 1 Introduction and Aims This exercise takes an example from one of the most common applications of HPC resources: Fluid Dynamics. We will

More information

Problemi di schedulazione distribuita su Grid

Problemi di schedulazione distribuita su Grid Problemi di schedulazione distribuita su Grid Ivan Porro Università degli Studi di Genova, DIST, Laboratorio BioLab pivan@unige.it 010-3532789 Riadattato da materiale realizzato da INFN Catania per il

More information

Operating two InfiniBand grid clusters over 28 km distance

Operating two InfiniBand grid clusters over 28 km distance Operating two InfiniBand grid clusters over 28 km distance Sabine Richling, Steffen Hau, Heinz Kredel, Hans-Günther Kruse IT-Center University of Heidelberg, Germany IT-Center University of Mannheim, Germany

More information

Batch environment PBS (Running applications on the Cray XC30) 1/18/2016

Batch environment PBS (Running applications on the Cray XC30) 1/18/2016 Batch environment PBS (Running applications on the Cray XC30) 1/18/2016 1 Running on compute nodes By default, users do not log in and run applications on the compute nodes directly. Instead they launch

More information

SGE Roll: Users Guide. Version Edition

SGE Roll: Users Guide. Version Edition SGE Roll: Users Guide Version 4.2.1 Edition SGE Roll: Users Guide : Version 4.2.1 Edition Published Sep 2006 Copyright 2006 University of California and Scalable Systems This document is subject to the

More information

The glite middleware. Ariel Garcia KIT

The glite middleware. Ariel Garcia KIT The glite middleware Ariel Garcia KIT Overview Background The glite subsystems overview Security Information system Job management Data management Some (my) answers to your questions and random rumblings

More information

Getting computing into the classroom: building a cluster

Getting computing into the classroom: building a cluster Getting computing into the classroom: building a cluster Erik Spence SciNet HPC Consortium 2 April 2015 Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 1 / 31 Today s class High Performance

More information

UL HPC Monitoring in practice: why, what, how, where to look

UL HPC Monitoring in practice: why, what, how, where to look C. Parisot UL HPC Monitoring in practice: why, what, how, where to look 1 / 22 What is HPC? Best Practices Getting Fast & Efficient UL HPC Monitoring in practice: why, what, how, where to look Clément

More information

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed Multicore Performance and Tools Part 1: Topology, affinity, clock speed Tools for Node-level Performance Engineering Gather Node Information hwloc, likwid-topology, likwid-powermeter Affinity control and

More information

AGATA Analysis on the GRID

AGATA Analysis on the GRID AGATA Analysis on the GRID R.M. Pérez-Vidal IFIC-CSIC For the e682 collaboration What is GRID? Grid technologies allow that computers share trough Internet or other telecommunication networks not only

More information

Cluster Clonetroop: HowTo 2014

Cluster Clonetroop: HowTo 2014 2014/02/25 16:53 1/13 Cluster Clonetroop: HowTo 2014 Cluster Clonetroop: HowTo 2014 This section contains information about how to access, compile and execute jobs on Clonetroop, Laboratori de Càlcul Numeric's

More information

: A new version of Supercomputing or life after the end of the Moore s Law

: A new version of Supercomputing or life after the end of the Moore s Law : A new version of Supercomputing or life after the end of the Moore s Law Dr.-Ing. Alexey Cheptsov SEMAPRO 2015 :: 21.07.2015 :: Dr. Alexey Cheptsov OUTLINE About us Convergence of Supercomputing into

More information

Computing with the Moore Cluster

Computing with the Moore Cluster Computing with the Moore Cluster Edward Walter An overview of data management and job processing in the Moore compute cluster. Overview Getting access to the cluster Data management Submitting jobs (MPI

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

Grid Scheduling Architectures with Globus

Grid Scheduling Architectures with Globus Grid Scheduling Architectures with Workshop on Scheduling WS 07 Cetraro, Italy July 28, 2007 Ignacio Martin Llorente Distributed Systems Architecture Group Universidad Complutense de Madrid 1/38 Contents

More information

UAntwerpen, 24 June 2016

UAntwerpen, 24 June 2016 Tier-1b Info Session UAntwerpen, 24 June 2016 VSC HPC environment Tier - 0 47 PF Tier -1 623 TF Tier -2 510 Tf 16,240 CPU cores 128/256 GB memory/node IB EDR interconnect Tier -3 HOPPER/TURING STEVIN THINKING/CEREBRO

More information

CALMIP : HIGH PERFORMANCE COMPUTING

CALMIP : HIGH PERFORMANCE COMPUTING CALMIP : HIGH PERFORMANCE COMPUTING Nicolas.renon@univ-tlse3.fr Emmanuel.courcelle@inp-toulouse.fr CALMIP (UMS 3667) Espace Clément Ader www.calmip.univ-toulouse.fr CALMIP :Toulouse University Computing

More information

Grid Examples. Steve Gallo Center for Computational Research University at Buffalo

Grid Examples. Steve Gallo Center for Computational Research University at Buffalo Grid Examples Steve Gallo Center for Computational Research University at Buffalo Examples COBALT (Computational Fluid Dynamics) Ercan Dumlupinar, Syracyse University Aerodynamic loads on helicopter rotors

More information

HPC Issues for DFT Calculations. Adrian Jackson EPCC

HPC Issues for DFT Calculations. Adrian Jackson EPCC HC Issues for DFT Calculations Adrian Jackson ECC Scientific Simulation Simulation fast becoming 4 th pillar of science Observation, Theory, Experimentation, Simulation Explore universe through simulation

More information

Guillimin HPC Users Meeting March 17, 2016

Guillimin HPC Users Meeting March 17, 2016 Guillimin HPC Users Meeting March 17, 2016 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News System Status Software Updates Training

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Ambiente CINECA: moduli, job scripts, PBS. A. Grottesi (CINECA)

Ambiente CINECA: moduli, job scripts, PBS. A. Grottesi (CINECA) Ambiente HPC @ CINECA: moduli, job scripts, PBS A. Grottesi (CINECA) Bologna 2017 In this tutorial you will learn... How to get familiar with UNIX environment @ CINECA How to submit your job to the PBS

More information

MAKING CONTAINERS EASIER WITH HPC CONTAINER MAKER. Scott McMillan September 2018

MAKING CONTAINERS EASIER WITH HPC CONTAINER MAKER. Scott McMillan September 2018 MAKING CONTAINERS EASIER WITH HPC CONTAINER MAKER Scott McMillan September 2018 NVIDIA GPU CLOUD (NGC) Simple Access to Ready to-run, GPU-Accelerated Software Discover 35 GPU-Accelerated Containers Deep

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Agenda 1 Agenda-Day 1 HPC Overview What is a cluster? Shared v.s. Distributed Parallel v.s. Massively Parallel Interconnects

More information

Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine

Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine Partners Funding Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike

More information

Message Passing Interface (MPI) on Intel Xeon Phi coprocessor

Message Passing Interface (MPI) on Intel Xeon Phi coprocessor Message Passing Interface (MPI) on Intel Xeon Phi coprocessor Special considerations for MPI on Intel Xeon Phi and using the Intel Trace Analyzer and Collector Gergana Slavova gergana.s.slavova@intel.com

More information

The RWTH Compute Cluster Environment

The RWTH Compute Cluster Environment The RWTH Compute Cluster Environment Tim Cramer 29.07.2013 Source: D. Both, Bull GmbH Rechen- und Kommunikationszentrum (RZ) The RWTH Compute Cluster (1/2) The Cluster provides ~300 TFlop/s No. 32 in TOP500

More information

Gergely Sipos MTA SZTAKI

Gergely Sipos MTA SZTAKI Application development on EGEE with P-GRADE Portal Gergely Sipos MTA SZTAKI sipos@sztaki.hu EGEE Training and Induction EGEE Application Porting Support www.lpds.sztaki.hu/gasuc www.portal.p-grade.hu

More information

Towards Exascale: Leveraging InfiniBand to accelerate the performance and scalability of Slurm jobstart.

Towards Exascale: Leveraging InfiniBand to accelerate the performance and scalability of Slurm jobstart. Towards Exascale: Leveraging InfiniBand to accelerate the performance and scalability of Slurm jobstart. Artem Y. Polyakov, Joshua S. Ladd, Boris I. Karasev Nov 16, 2017 Agenda Problem description Slurm

More information

Tutorial on MPI: part I

Tutorial on MPI: part I Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 Tutorial on MPI: part I Stefano Cozzini CNR/INFM Democritos and SISSA/eLab Agenda first part WRAP UP of the yesterday's

More information

Advanced Job Launching. mapping applications to hardware

Advanced Job Launching. mapping applications to hardware Advanced Job Launching mapping applications to hardware A Quick Recap - Glossary of terms Hardware This terminology is used to cover hardware from multiple vendors Socket The hardware you can touch and

More information

MPI History. MPI versions MPI-2 MPICH2

MPI History. MPI versions MPI-2 MPICH2 MPI versions MPI History Standardization started (1992) MPI-1 completed (1.0) (May 1994) Clarifications (1.1) (June 1995) MPI-2 (started: 1995, finished: 1997) MPI-2 book 1999 MPICH 1.2.4 partial implemention

More information

Practical Introduction to Message-Passing Interface (MPI)

Practical Introduction to Message-Passing Interface (MPI) 1 Outline of the workshop 2 Practical Introduction to Message-Passing Interface (MPI) Bart Oldeman, Calcul Québec McGill HPC Bart.Oldeman@mcgill.ca Theoretical / practical introduction Parallelizing your

More information

The GPU-Cluster. Sandra Wienke Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

The GPU-Cluster. Sandra Wienke Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky The GPU-Cluster Sandra Wienke wienke@rz.rwth-aachen.de Fotos: Christian Iwainsky Rechen- und Kommunikationszentrum (RZ) The GPU-Cluster GPU-Cluster: 57 Nvidia Quadro 6000 (29 nodes) innovative computer

More information

Practical Introduction to Message-Passing Interface (MPI)

Practical Introduction to Message-Passing Interface (MPI) 1 Practical Introduction to Message-Passing Interface (MPI) October 1st, 2015 By: Pier-Luc St-Onge Partners and Sponsors 2 Setup for the workshop 1. Get a user ID and password paper (provided in class):

More information

MIC Lab Parallel Computing on Stampede

MIC Lab Parallel Computing on Stampede MIC Lab Parallel Computing on Stampede Aaron Birkland and Steve Lantz Cornell Center for Advanced Computing June 11 & 18, 2013 1 Interactive Launching This exercise will walk through interactively launching

More information

NUMA Control for Hybrid Applications. Hang Liu TACC February 7 th, 2011

NUMA Control for Hybrid Applications. Hang Liu TACC February 7 th, 2011 NUMA Control for Hybrid Applications Hang Liu TACC February 7 th, 2011 Hybrid Applications Typical definition of hybrid application Uses both message passing (MPI) and a form of shared memory algorithm

More information

SPGrid Efforts in Italy

SPGrid Efforts in Italy INFN - Ferrara BaBarGrid Meeting SPGrid Efforts in Italy BaBar Collaboration Meeting - SLAC December 11, 2002 Enrica Antonioli - Paolo Veronesi Topics Ferrara Farm Configuration First SP submissions through

More information

Research on the Implementation of MPI on Multicore Architectures

Research on the Implementation of MPI on Multicore Architectures Research on the Implementation of MPI on Multicore Architectures Pengqi Cheng Department of Computer Science & Technology, Tshinghua University, Beijing, China chengpq@gmail.com Yan Gu Department of Computer

More information

Performance Impact of Resource Contention in Multicore Systems

Performance Impact of Resource Contention in Multicore Systems Performance Impact of Resource Contention in Multicore Systems R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas Commodity Multicore Chips in NASA HEC 2004:

More information

Shell Scripting. With Applications to HPC. Edmund Sumbar Copyright 2007 University of Alberta. All rights reserved

Shell Scripting. With Applications to HPC. Edmund Sumbar Copyright 2007 University of Alberta. All rights reserved AICT High Performance Computing Workshop With Applications to HPC Edmund Sumbar research.support@ualberta.ca Copyright 2007 University of Alberta. All rights reserved High performance computing environment

More information

Quick Start Guide. by Burak Himmetoglu. Supercomputing Consultant. Enterprise Technology Services & Center for Scientific Computing

Quick Start Guide. by Burak Himmetoglu. Supercomputing Consultant. Enterprise Technology Services & Center for Scientific Computing Quick Start Guide by Burak Himmetoglu Supercomputing Consultant Enterprise Technology Services & Center for Scientific Computing E-mail: bhimmetoglu@ucsb.edu Contents User access, logging in Linux/Unix

More information

SCALABLE HYBRID PROTOTYPE

SCALABLE HYBRID PROTOTYPE SCALABLE HYBRID PROTOTYPE Scalable Hybrid Prototype Part of the PRACE Technology Evaluation Objectives Enabling key applications on new architectures Familiarizing users and providing a research platform

More information

Installing and running COMSOL 4.3a on a Linux cluster COMSOL. All rights reserved.

Installing and running COMSOL 4.3a on a Linux cluster COMSOL. All rights reserved. Installing and running COMSOL 4.3a on a Linux cluster 2012 COMSOL. All rights reserved. Introduction This quick guide explains how to install and operate COMSOL Multiphysics 4.3a on a Linux cluster. It

More information

Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows. Swen Boehm Wael Elwasif Thomas Naughton, Geoffroy R.

Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows. Swen Boehm Wael Elwasif Thomas Naughton, Geoffroy R. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows Swen Boehm Wael Elwasif Thomas Naughton, Geoffroy R. Vallee Motivation & Challenges Bigger machines (e.g., TITAN, upcoming Exascale

More information

Running LAMMPS on CC servers at IITM

Running LAMMPS on CC servers at IITM Running LAMMPS on CC servers at IITM Srihari Sundar September 9, 2016 This tutorial assumes prior knowledge about LAMMPS [2, 1] and deals with running LAMMPS scripts on the compute servers at the computer

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

No Time to Read This Book?

No Time to Read This Book? Chapter 1 No Time to Read This Book? We know what it feels like to be under pressure. Try out a few quick and proven optimization stunts described below. They may provide a good enough performance gain

More information

Cluster Computing. Resource and Job Management for HPC 16/08/2010 SC-CAMP. ( SC-CAMP) Cluster Computing 16/08/ / 50

Cluster Computing. Resource and Job Management for HPC 16/08/2010 SC-CAMP. ( SC-CAMP) Cluster Computing 16/08/ / 50 Cluster Computing Resource and Job Management for HPC SC-CAMP 16/08/2010 ( SC-CAMP) Cluster Computing 16/08/2010 1 / 50 Summary 1 Introduction Cluster Computing 2 About Resource and Job Management Systems

More information

RWTH GPU-Cluster. Sandra Wienke March Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

RWTH GPU-Cluster. Sandra Wienke March Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky RWTH GPU-Cluster Fotos: Christian Iwainsky Sandra Wienke wienke@rz.rwth-aachen.de March 2012 Rechen- und Kommunikationszentrum (RZ) The GPU-Cluster GPU-Cluster: 57 Nvidia Quadro 6000 (29 nodes) innovative

More information

CCS HPC. Interconnection Network. PC MPP (Massively Parallel Processor) MPP IBM

CCS HPC. Interconnection Network. PC MPP (Massively Parallel Processor) MPP IBM CCS HC taisuke@cs.tsukuba.ac.jp 1 2 CU memoryi/o 2 2 4single chipmulti-core CU 10 C CM (Massively arallel rocessor) M IBM BlueGene/L 65536 Interconnection Network 3 4 (distributed memory system) (shared

More information

CSinParallel Workshop. OnRamp: An Interactive Learning Portal for Parallel Computing Environments

CSinParallel Workshop. OnRamp: An Interactive Learning Portal for Parallel Computing Environments CSinParallel Workshop : An Interactive Learning for Parallel Computing Environments Samantha Foley ssfoley@cs.uwlax.edu http://cs.uwlax.edu/~ssfoley Josh Hursey jjhursey@cs.uwlax.edu http://cs.uwlax.edu/~jjhursey/

More information

NovoalignMPI User Guide

NovoalignMPI User Guide MPI User Guide MPI is a messaging passing version of that allows the alignment process to be spread across multiple servers in a cluster or other network of computers 1. Multiple servers can be used to

More information

Parallel Computing at DESY Zeuthen. Introduction to Parallel Computing at DESY Zeuthen and the new cluster machines

Parallel Computing at DESY Zeuthen. Introduction to Parallel Computing at DESY Zeuthen and the new cluster machines Parallel Computing at DESY Zeuthen. Introduction to Parallel Computing at DESY Zeuthen and the new cluster machines Götz Waschk Technical Seminar, Zeuthen April 27, 2010 > Introduction > Hardware Infiniband

More information

Writing MPI Programs for Odyssey. Teresa Kaltz, PhD Research Computing

Writing MPI Programs for Odyssey. Teresa Kaltz, PhD Research Computing Writing MPI Programs for Odyssey Teresa Kaltz, PhD Research Computing 1 FAS IT Research Computing Provide compute resources to FAS and SEAS for research purposes Leverage FAS IT infrastructure Architect

More information

Centre de Calcul de l Institut National de Physique Nucléaire et de Physique des Particules. Singularity overview. Vanessa HAMAR

Centre de Calcul de l Institut National de Physique Nucléaire et de Physique des Particules. Singularity overview. Vanessa HAMAR Centre de Calcul de l Institut National de Physique Nucléaire et de Physique des Particules Singularity overview Vanessa HAMAR Disclaimer } The information in this presentation was compiled from different

More information

HPCC - Hrothgar Getting Started User Guide Gromacs

HPCC - Hrothgar Getting Started User Guide Gromacs HPCC - Hrothgar Getting Started User Guide Gromacs High Performance Computing Center Texas Tech University HPCC - Hrothgar 2 Table of Contents 1. Introduction... 3 2. Setting up the environment... 3 For

More information

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Why the Grid? Science is becoming increasingly digital and needs to deal with increasing amounts of

More information

glite Middleware Usage

glite Middleware Usage glite Middleware Usage Dusan Vudragovic dusan@phy.bg.ac.yu Scientific Computing Laboratory Institute of Physics Belgrade, Serbia Nov. 18, 2008 www.eu-egee.org EGEE and glite are registered trademarks Usage

More information

Lab: Hybrid Programming and NUMA Control

Lab: Hybrid Programming and NUMA Control Lab: Hybrid Programming and NUMA Control Steve Lantz Workshop: Parallel Computing on Ranger and Longhorn May 17, 2012 Based on materials developed by by Kent Milfeld at TACC 1 What You Will Learn How to

More information

Grid Compute Resources and Job Management

Grid Compute Resources and Job Management Grid Compute Resources and Job Management How do we access the grid? Command line with tools that you'll use Specialised applications Ex: Write a program to process images that sends data to run on the

More information

NovoalignMPI User Guide

NovoalignMPI User Guide Bioinformatics Specialists Sequence Analysis Software DNA/RNA Sequencing Service Consulting User Guide is a messaging passing version of that allows the alignment process to be spread across multiple servers

More information

Why you should care about hardware locality and how.

Why you should care about hardware locality and how. Why you should care about hardware locality and how. Brice Goglin TADaaM team Inria Bordeaux Sud-Ouest Agenda Quick example as an introduction Bind your processes What's the actual problem? Convenient

More information