Audio and video compression

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Audio and video compression"

Transcription

1 Audio and video compression 4.1 introduction Unlike text and images, both audio and most video signals are continuously varying analog signals. Compression algorithms associated with digitized audio and video are different from those associated with text and images. 4.2 Audio compression Speech and non-speech signals are encoded in different approaches Speech coding Differential pulse code modulation (DPCM) is a derivative of standard PCM and exploits the fact that, for most audio signals, the range of the differences in amplitude between successive samples of the audio waveform is less than the range of the actual sample amplitudes. (G.711) In Adaptive differential PCM (ADPCM), fewer bits are used to encode smaller difference values than for larger values. (G.721, G.722 & G.726) DPCM and ADPCM can also be used to encode nonspeech signals. In linear predictive coding (LPC), a speech signal is analyzed to extract its perceptual features including pitch and format frequencies and these features are then encoded. (LPC-10, G.728, G.723 & G.729) CYH/MMT/CmpAV/p.1 CYH/MMT/CmpAV/p.2

2 Summary of speech compression standards and their applications: Standard Compression technique Compressed bit rate (kbps) Quality Example applications G.711 PCM+ companding 64 Good PSTN/ISDN telephony G.721 ADPCM Good Fair Telephony at reduced bit rates G.722 ADPCM with subband coding 64 56/48 Excellent Good Audio conferencing G.726 ADPCM with subband coding 40/32 24/16 Good Fair General telephony at reduced bit rates LPC-10 LPC 2.4/1.2 Poor Telephony in military networks G.728 Code-excited LPC (CELP) 16 Good Low delay/low bit rate telephony G.729 CELP 8 Good Telephony in cellular networks G.729(A) CELP 8 Good Simultaneous telephony and data (fax) G CELP Good Fair Video and internet telephony Perceptual coding Audio signal is coded based on a psychoacoustic model which describes the limitations of the human ear. Ear is more sensitive to some signals than others. Frequency masking: A strong signal may reduce the level of sensitivity of the ear to other signals which are near to it in frequency. Temporal masking: When the ear hears a loud sound, it takes a short but finite time before it can hear a quieter sound. CYH/MMT/CmpAV/p.3 CYH/MMT/CmpAV/p.4

3 CYH/MMT/CmpAV/p.5 CYH/MMT/CmpAV/p.6

4 MPEG audio coders An international standard based on this approach is defined in ISO Recommendation Summary of MPEG layer 1, 2 and 3 perceptual encoders Layer Application Compressed bit rate 1 Digital audio cassette 2 Digital audio and digital video broadcasting 3 CD-quality audio over low bit rate channel Quality kbps Hi-fi quality at 192kbps per channel kbps Near CDquality at 128 kbps per channel 64 kbps CD-quality at 64 kbps per channel Example input-tooutput delay 20ms 40ms 60ms A higher layer makes a better use of the psychoacoustic model and hence higher compression rate can be achieved. The 3 layers require increasing levels of complexity (and hence cost) to achieve a particular perceived quality, the choice of layer and bit rate is often a compromise between the desired perceived quality and the available bit rate. CYH/MMT/CmpAV/p.7 CYH/MMT/CmpAV/p.8

5 Dolby audio coders In AC-1, the bit allocation information of the quantized subband samples is directly encoded and embedded in the bit-stream. In AC-2, this information is indirectly encoded and has to be estimated at the decoder. In AC-3, additional information is transmitted to compensate for the estimation error. The acoustic quality of both the MPEG and Dolby audio coders were found to be comparable. Summary of compression standards for general audio: Standard Compressed bit rate MPEG Layer kbps Audio Layer kbps Dolby audio coders Quality Example applications Hi-fi quality Digital audio at 192kbps cassettes Near CD at Digital audio and 128 kbps digital video broadcasting Layer 3 64kbps CD quality CD-quality over low bit rate channels AC-1 512kbps Hi-fi quality Radio and television satellite relays AC-2 256kbps Hi-fi quality PC sound cards AC-3 192kbps Near CD quality Digital video broadcasting CYH/MMT/CmpAV/p.9 CYH/MMT/CmpAV/p.10

6 4.3 Video compression There is not just a single standard associated with video but rather a range of standards, each targeted at a particular application domain Video compression principles Video is simply a sequence of digitized pictures and it is also referred to as moving pictures. A video sequence can be encoded with JPEG algorithm frame by frame and this approach is known as motion JPEG. In addition to the spatial redundancy present in each frame, considerable redundancy is often present between successive frames. Frames are classified as 1 of 3 basic frame types (I-, P- and B- frames) and encoded differently. CYH/MMT/CmpAV/p.11 CYH/MMT/CmpAV/p.12

7 I-frames: I-frames are encoded independently using the JPEG algorithm. I-frames are inserted into the output stream relatively frequently. I-frames are used as access points for random access and FF/FR functionality in the bit stream. P-frames: Frames are partitioned into blocks of size 16x16 (macroblocks). To encode a P-frame, the contents of each macroblock in the target frame are compared on a pixel-by-pixel basis with the contents of the reference frame to find a best-matched block of equal size. The reference frame can be a P- or I- frame. The (x,y) offset of the macroblock being encoded and the best-matched block is known as motion vector. This motion-vector-searching process is known as motion estimation. CYH/MMT/CmpAV/p.13 CYH/MMT/CmpAV/p.14

8 A prediction of the target frame is made with the reference frame based on the motion vectors obtained. The difference between the predicted frame and the actual target frame is known as the prediction error. Motion compensation: Additional bits are required to encode the prediction error so as to compensate for the difference if necessary. B-frames: To encoded a B-frame, any motion is estimated with reference to both the immediately preceding I- or P- frame and the immediately succeeding P- or I-frame. B-frames provide the highest level of compression. B-frames are not involved in the coding of other frames and hence they do not propagate errors. CYH/MMT/CmpAV/p.15 CYH/MMT/CmpAV/p.16

9 The number of frames between successive I-frames is known as a group of pictures (GOP). The number of frames between a P-frame and the immediately preceding I- or P-frame is called the prediction span. The order of encoding and transmission of the frames is changed to minimize the time required to decode the frames. A 4 th type of frame known as a PB-frame has also been defined. Two neighboring P- and B-frames are encoded as if they were a single frame. A 5 th type of frame known as a D-frame has been defined for use in movie/video-on-demand applications. CYH/MMT/CmpAV/p.17 CYH/MMT/CmpAV/p.18

10 Basic bitstream format: Type : type of frame, I, P or B Address : identifies the location of the macroblock in the frame Quantization value: the threshold value used to quantize all DCT coefficients in the macroblock. Motion vector: encoded vector Block present: indicates which block in the macroblock are present Typical figures of the compression ratios I-frames: 10~20:1 P-frames: 20~30:1 B-frames: 30~50:1 CYH/MMT/CmpAV/p.19 CYH/MMT/CmpAV/p.20

11 4.3.2 H.261 H.261 has been defined by the ITU-T for the provision of video telephony and videoconferencing services over an ISDN. Supports I- and P-frames only. Encoding format: Type: indicates if the macroblock is intracoded or intercoded Address: identifies the location of the macroblock in the frame Quantization value: the threshold value used to quantize all DCT coefficients in the macroblock. Motion vector: encoded vector Coded block pattern: indicates which block in the macroblock are present Picture start code: indicates the start of a new frame. Temporal reference: a timestamp for the decoder to synchronize the video information with the audio information. Picture type: indicates if the frame is encoded as I- or P-frame. GOB start code: is a resynchronization marker which is used for resynchronization in case of error. Group of (macro)block (GOP) is a structure consists of 3x11 macroblocks. CYH/MMT/CmpAV/p.21 CYH/MMT/CmpAV/p.22

12 4.3.3 H.263 H.263 has been defined by the ITU-T for use in a range of real-time video applications over wireless and PSTNs. The applications include video telephony, videoconferencing, security surveillance, interactive games playing and so on. H.263 standard has a number of advanced coding options compared with H.261: Progressive scanning with a refresh rate of either 15 or 7.5 fps. Support I-, P-, B- and PB- frames Motion vectors, if necessary, are allowed to point outside of the frame area. Schemes such as error tracking, independent segment decoding and reference picture selection are included in the standard that aim at minimizing the effects of errors on neighboring GOBs. Error concealment scheme is incorporated into the decoder to mask the error from the viewer. CYH/MMT/CmpAV/p.23 CYH/MMT/CmpAV/p.24

13 4.3.4 MPEG The Motion Pictures Expert Group (MPEG) was formed by the ISO to formulate a set of standards relating to a range of multimedia applications that involve the use of video with sound. Typical figures of the compression ratios I-frames: 10:1 P-frames: 20:1 B-frames: 50:1 MPEG1 : ISO Recommendation Similar video compression technique as H.261. Progressive scanning with a refresh rate of 30Hz (for NTSC) and 25Hz (for PAL) Support I-, P- and B- frames I-frames must be used for the various random-access functions associated with VCRs. Improvement with respect to H.261: 1. A new layer called slice is added in the structure of the stream such that the decoder can resynchronize more quickly in case of error. 2. support B-frames 3. larger searching window of motion vectors and finer resolution of its representation CYH/MMT/CmpAV/p.25 CYH/MMT/CmpAV/p.26

14 Bitstream format: Sequence start code: indicates the start of a sequence CYH/MMT/CmpAV/p.27 CYH/MMT/CmpAV/p.28

15 Video parameters: specify the screen size and aspect ratio Bitstream parameters: indicate the bit rate and the size of the memory/ frame buffers that are required Quantization parameters: contain the contents of the quantization tables that are to be used. - GOP start code: indicates the start of a GOP Time stamp: used for synchronization purposes Parameters: defines the particular sequence of frame types that are used in each GOP (e.g. IPPBPP) - Picture start code: indicates the start of a frame Type: indicates if it's a I-, P- or B-frame Buffer parameters: indicate how full the buffer should be before the decoding operation should start Encode parameters: indicate the resolution of a motion vector. - Slice start code: indicates the start of a slice Vertical position: indicates the scan line in which the slice is Quantization parameters: indicates the scaling factor that applies to this slice. MPEG2 : ISO Recommendation It supports four levels - low, main, high 1440 and high - each targeted at a particular application domain. There are 5 profiles associated with each level: simple, main, spatial resolution, quantization accuracy and high. The different combinations of levels and profiles form a framework for all standards activities associated with MPEG-2. One of the most popular setting is the standard which is for digital television broadcasting. There are 3 standards associated with HDTV: advanced television (ATV) in North America, digital video broadcast (DVB) in Europe, and multiple sub-nyquist sampling encoding (MUSE) in Japan. ATV DVB MUSE Aspect ratio 16/9 4/3 16/9 Resolution 1280x x x1035 Compression (video) Compression (Audio) of MPEG2 Dolby AC-3 of MPEG2 MP2 Similar to CYH/MMT/CmpAV/p.29 CYH/MMT/CmpAV/p.30

16 Summary of video compression standards Standard Digitization Compressed Example applications format bit rate H.261 CIF/QCIF x64kbps Video telephony/ conferencing over ISDN and LANs H.263 S-QCIF/ QCIF <64kbps Video telephony/ conferencing and security surveillance over low bit rate channels SIF <1.5Mbps Storage of VHS-quality video on CD-ROMs MPEG-1/ ISO11172 MPEG-2/ ISO13818 Low SIF <4Mbps Recording of VHS-quality video Main 4:2:0 <15Mbps 4:2:2 <20Mbps High :2:0 <60Mbps 4:2:2 <80Mbps High 4:2:0 <80Mbps 4:2:2 <100Mbps MPEG-4 Various 5kbpstens Mbps Digital video broadcasting HDTV (4/3 aspect ratio) HDTV (16/9 aspect ratio) Versatile multimedia coding standard CYH/MMT/CmpAV/p.31

Audio Compression. Audio Compression. Absolute Threshold. CD quality audio:

Audio Compression. Audio Compression. Absolute Threshold. CD quality audio: Audio Compression Audio Compression CD quality audio: Sampling rate = 44 KHz, Quantization = 16 bits/sample Bit-rate = ~700 Kb/s (1.41 Mb/s if 2 channel stereo) Telephone-quality speech Sampling rate =

More information

2.4 Audio Compression

2.4 Audio Compression 2.4 Audio Compression 2.4.1 Pulse Code Modulation Audio signals are analog waves. The acoustic perception is determined by the frequency (pitch) and the amplitude (loudness). For storage, processing and

More information

Mpeg 1 layer 3 (mp3) general overview

Mpeg 1 layer 3 (mp3) general overview Mpeg 1 layer 3 (mp3) general overview 1 Digital Audio! CD Audio:! 16 bit encoding! 2 Channels (Stereo)! 44.1 khz sampling rate 2 * 44.1 khz * 16 bits = 1.41 Mb/s + Overhead (synchronization, error correction,

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. The Video Data Type Coding & Compression Basics

COMP 249 Advanced Distributed Systems Multimedia Networking. The Video Data Type Coding & Compression Basics COMP 9 Advanced Distributed Systems Multimedia Networking The Video Data Type Coding & Compression Basics Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu

More information

MPEG-2. ISO/IEC (or ITU-T H.262)

MPEG-2. ISO/IEC (or ITU-T H.262) MPEG-2 1 MPEG-2 ISO/IEC 13818-2 (or ITU-T H.262) High quality encoding of interlaced video at 4-15 Mbps for digital video broadcast TV and digital storage media Applications Broadcast TV, Satellite TV,

More information

What is multimedia? Multimedia. Continuous media. Most common media types. Continuous media processing. Interactivity. What is multimedia?

What is multimedia? Multimedia. Continuous media. Most common media types. Continuous media processing. Interactivity. What is multimedia? Multimedia What is multimedia? Media types +Text + Graphics + Audio +Image +Video Interchange formats What is multimedia? Multimedia = many media User interaction = interactivity Script = time 1 2 Most

More information

Multimedia. What is multimedia? Media types. Interchange formats. + Text +Graphics +Audio +Image +Video. Petri Vuorimaa 1

Multimedia. What is multimedia? Media types. Interchange formats. + Text +Graphics +Audio +Image +Video. Petri Vuorimaa 1 Multimedia What is multimedia? Media types + Text +Graphics +Audio +Image +Video Interchange formats Petri Vuorimaa 1 What is multimedia? Multimedia = many media User interaction = interactivity Script

More information

Digital Video Processing

Digital Video Processing Video signal is basically any sequence of time varying images. In a digital video, the picture information is digitized both spatially and temporally and the resultant pixel intensities are quantized.

More information

Chapter 14 MPEG Audio Compression

Chapter 14 MPEG Audio Compression Chapter 14 MPEG Audio Compression 14.1 Psychoacoustics 14.2 MPEG Audio 14.3 Other Commercial Audio Codecs 14.4 The Future: MPEG-7 and MPEG-21 14.5 Further Exploration 1 Li & Drew c Prentice Hall 2003 14.1

More information

CSCD 443/533 Advanced Networks Fall 2017

CSCD 443/533 Advanced Networks Fall 2017 CSCD 443/533 Advanced Networks Fall 2017 Lecture 18 Compression of Video and Audio 1 Topics Compression technology Motivation Human attributes make it possible Audio Compression Video Compression Performance

More information

10.2 Video Compression with Motion Compensation 10.4 H H.263

10.2 Video Compression with Motion Compensation 10.4 H H.263 Chapter 10 Basic Video Compression Techniques 10.11 Introduction to Video Compression 10.2 Video Compression with Motion Compensation 10.3 Search for Motion Vectors 10.4 H.261 10.5 H.263 10.6 Further Exploration

More information

Ch. 4: Video Compression Multimedia Systems

Ch. 4: Video Compression Multimedia Systems Ch. 4: Video Compression Multimedia Systems Prof. Ben Lee (modified by Prof. Nguyen) Oregon State University School of Electrical Engineering and Computer Science 1 Outline Introduction MPEG Overview MPEG

More information

Ch 4: Multimedia. Fig.4.1 Internet Audio/Video

Ch 4: Multimedia. Fig.4.1 Internet Audio/Video Ch 4: Multimedia Recent advances in technology have changed our use of audio and video. In the past, we listened to an audio broadcast through a radio and watched a video program broadcast through a TV.

More information

Digital Speech Coding

Digital Speech Coding Digital Speech Processing David Tipper Associate Professor Graduate Program of Telecommunications and Networking University of Pittsburgh Telcom 2700/INFSCI 1072 Slides 7 http://www.sis.pitt.edu/~dtipper/tipper.html

More information

Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding.

Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding. Introduction to Digital Audio Compression B. Cavagnolo and J. Bier Berkeley Design Technology, Inc. 2107 Dwight Way, Second Floor Berkeley, CA 94704 (510) 665-1600 info@bdti.com http://www.bdti.com INTRODUCTION

More information

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Perceptual Coding Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Part II wrap up 6.082 Fall 2006 Perceptual Coding, Slide 1 Lossless vs.

More information

Lecture 4: Video Compression Standards (Part1) Tutorial 2 : Image/video Coding Techniques. Basic Transform coding Tutorial 2

Lecture 4: Video Compression Standards (Part1) Tutorial 2 : Image/video Coding Techniques. Basic Transform coding Tutorial 2 Lecture 4: Video Compression Standards (Part1) Tutorial 2 : Image/video Coding Techniques Dr. Jian Zhang Conjoint Associate Professor NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006 jzhang@cse.unsw.edu.au

More information

Audio Coding and MP3

Audio Coding and MP3 Audio Coding and MP3 contributions by: Torbjørn Ekman What is Sound? Sound waves: 20Hz - 20kHz Speed: 331.3 m/s (air) Wavelength: 165 cm - 1.65 cm 1 Analogue audio frequencies: 20Hz - 20kHz mono: x(t)

More information

Multimedia Signals and Systems Motion Picture Compression - MPEG

Multimedia Signals and Systems Motion Picture Compression - MPEG Multimedia Signals and Systems Motion Picture Compression - MPEG Kunio Takaya Electrical and Computer Engineering University of Saskatchewan March 9, 2008 MPEG video coding A simple introduction Dr. S.R.

More information

CS 335 Graphics and Multimedia. Image Compression

CS 335 Graphics and Multimedia. Image Compression CS 335 Graphics and Multimedia Image Compression CCITT Image Storage and Compression Group 3: Huffman-type encoding for binary (bilevel) data: FAX Group 4: Entropy encoding without error checks of group

More information

5LSE0 - Mod 10 Part 1. MPEG Motion Compensation and Video Coding. MPEG Video / Temporal Prediction (1)

5LSE0 - Mod 10 Part 1. MPEG Motion Compensation and Video Coding. MPEG Video / Temporal Prediction (1) 1 Multimedia Video Coding & Architectures (5LSE), Module 1 MPEG-1/ Standards: Motioncompensated video coding 5LSE - Mod 1 Part 1 MPEG Motion Compensation and Video Coding Peter H.N. de With (p.h.n.de.with@tue.nl

More information

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications:

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Chapter 11.3 MPEG-2 MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2,

More information

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201 Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

More information

Parametric Coding of High-Quality Audio

Parametric Coding of High-Quality Audio Parametric Coding of High-Quality Audio Prof. Dr. Gerald Schuller Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany 1 Waveform vs Parametric Waveform Filter-bank approach Mainly exploits

More information

Chapter 2 MPEG Video Compression Basics

Chapter 2 MPEG Video Compression Basics Chapter 2 MPEG Video Compression Basics B.G. Haskell and A. Puri 2.1 Video Coding Basics Video signals differ from image signals in several important characteristics. Of course the most important difference

More information

Compressed-Domain Video Processing and Transcoding

Compressed-Domain Video Processing and Transcoding Compressed-Domain Video Processing and Transcoding Susie Wee, John Apostolopoulos Mobile & Media Systems Lab HP Labs Stanford EE392J Lecture 2006 Hewlett-Packard Development Company, L.P. The information

More information

About MPEG Compression. More About Long-GOP Video

About MPEG Compression. More About Long-GOP Video About MPEG Compression HD video requires significantly more data than SD video. A single HD video frame can require up to six times more data than an SD frame. To record such large images with such a low

More information

Compression and File Formats

Compression and File Formats Compression and File Formats 1 Compressing Moving Images Methods: Motion JPEG, Cinepak, Indeo, MPEG Known as CODECs compression / decompression algorithms hardware and software implementations symmetrical

More information

The Gullibility of Human Senses

The Gullibility of Human Senses The Gullibility of Human Senses Three simple tricks for producing LBSC 690: Week 9 Multimedia Jimmy Lin College of Information Studies University of Maryland Monday, April 2, 2007 Images Video Audio But

More information

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION 15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories:

More information

AUDIO AND VIDEO COMMUNICATION MEEC EXERCISES. (with abbreviated solutions) Fernando Pereira

AUDIO AND VIDEO COMMUNICATION MEEC EXERCISES. (with abbreviated solutions) Fernando Pereira AUDIO AND VIDEO COMMUNICATION MEEC EXERCISES (with abbreviated solutions) Fernando Pereira INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores September 2014 1. Photographic

More information

Chapter 7 Multimedia Operating Systems

Chapter 7 Multimedia Operating Systems MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 7 Multimedia Operating Systems Introduction To Multimedia (1) Figure 7-1. Video on demand using different local distribution technologies.

More information

Introduction to Video Coding

Introduction to Video Coding Introduction to Video Coding o Motivation & Fundamentals o Principles of Video Coding o Coding Standards Special Thanks to Hans L. Cycon from FHTW Berlin for providing first-hand knowledge and much of

More information

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event - compression and decompression 1 Compression categories Compression = Image coding Still-image

More information

MPEG-1. Overview of MPEG-1 1 Standard. Introduction to perceptual and entropy codings

MPEG-1. Overview of MPEG-1 1 Standard. Introduction to perceptual and entropy codings MPEG-1 Overview of MPEG-1 1 Standard Introduction to perceptual and entropy codings Contents History Psychoacoustics and perceptual coding Entropy coding MPEG-1 Layer I/II Layer III (MP3) Comparison and

More information

A real-time SNR scalable transcoder for MPEG-2 video streams

A real-time SNR scalable transcoder for MPEG-2 video streams EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science A real-time SNR scalable transcoder for MPEG-2 video streams by Mohammad Al-khrayshah Supervisors: Prof. J.J. Lukkien Eindhoven

More information

MPEG-l.MPEG-2, MPEG-4

MPEG-l.MPEG-2, MPEG-4 The MPEG Handbook MPEG-l.MPEG-2, MPEG-4 Second edition John Watkinson PT ^PVTPR AMSTERDAM BOSTON HEIDELBERG LONDON. NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Focal Press is an

More information

ZEN / ZEN Vision Series Video Encoding Guidelines

ZEN / ZEN Vision Series Video Encoding Guidelines CREATIVE LABS, INC. Digital Media Relations Americas 1901 McCarthy Boulevard Milpitas, CA 95035 USA +1 408 432-6717 fax Europe 3DLabs Building Meadlake Place Thorpe Lea Road Egham, Surrey, TW20 8HE UK

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 13 Audio Signal Processing 14/04/01 http://www.ee.unlv.edu/~b1morris/ee482/

More information

CS 260: Seminar in Computer Science: Multimedia Networking

CS 260: Seminar in Computer Science: Multimedia Networking CS 260: Seminar in Computer Science: Multimedia Networking Jiasi Chen Lectures: MWF 4:10-5pm in CHASS http://www.cs.ucr.edu/~jiasi/teaching/cs260_spring17/ Multimedia is User perception Content creation

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking Principles Classify multimedia applications Identify the network services and the requirements the apps need Making the best of best effort service Mechanisms for providing

More information

Video Codec Design Developing Image and Video Compression Systems

Video Codec Design Developing Image and Video Compression Systems Video Codec Design Developing Image and Video Compression Systems Iain E. G. Richardson The Robert Gordon University, Aberdeen, UK JOHN WILEY & SONS, LTD Contents 1 Introduction l 1.1 Image and Video Compression

More information

DAB. Digital Audio Broadcasting

DAB. Digital Audio Broadcasting DAB Digital Audio Broadcasting DAB history DAB has been under development since 1981 at the Institut für Rundfunktechnik (IRT). In 1985 the first DAB demonstrations were held at the WARC-ORB in Geneva

More information

Multimedia Communications Multimedia Technologies & Applications. Prof. Dr. Abdulmotaleb El Saddik

Multimedia Communications Multimedia Technologies & Applications. Prof. Dr. Abdulmotaleb El Saddik Multimedia Communications Multimedia Technologies & Applications Prof. Dr. Abdulmotaleb El Saddik Multimedia Communications Research Laboratory School of Information Technology and Engineering University

More information

ADAPTIVE PICTURE SLICING FOR DISTORTION-BASED CLASSIFICATION OF VIDEO PACKETS

ADAPTIVE PICTURE SLICING FOR DISTORTION-BASED CLASSIFICATION OF VIDEO PACKETS ADAPTIVE PICTURE SLICING FOR DISTORTION-BASED CLASSIFICATION OF VIDEO PACKETS E. Masala, D. Quaglia, J.C. De Martin Λ Dipartimento di Automatica e Informatica/ Λ IRITI-CNR Politecnico di Torino, Italy

More information

VIDEO COMPRESSION. Image Compression. Multimedia File Formats. Lossy Compression. Multimedia File Formats. October 8, 2009

VIDEO COMPRESSION. Image Compression. Multimedia File Formats. Lossy Compression. Multimedia File Formats. October 8, 2009 File Formats Lossy Compression Image Compression File Formats VIDEO COMPRESSION 121 (Basics) video := time sequence of single images frequent point of view: video compression = image compression with a

More information

Multimedia networked applications: standards, protocols and research trends

Multimedia networked applications: standards, protocols and research trends Multimedia networked applications: standards, protocols and research trends Maria Teresa Andrade FEUP / INESC Porto mandrade@fe.up.pt ; maria.andrade@inescporto.pt http://www.fe.up.pt/~mandrade/ ; http://www.inescporto.pt

More information

ADAPTIVE JOINT H.263-CHANNEL CODING FOR MEMORYLESS BINARY CHANNELS

ADAPTIVE JOINT H.263-CHANNEL CODING FOR MEMORYLESS BINARY CHANNELS ADAPTIVE JOINT H.263-CHANNEL ING FOR MEMORYLESS BINARY CHANNELS A. Navarro, J. Tavares Aveiro University - Telecommunications Institute, 38 Aveiro, Portugal, navarro@av.it.pt Abstract - The main purpose

More information

Compression; Error detection & correction

Compression; Error detection & correction Compression; Error detection & correction compression: squeeze out redundancy to use less memory or use less network bandwidth encode the same information in fewer bits some bits carry no information some

More information

Video Coding in H.26L

Video Coding in H.26L Royal Institute of Technology MASTER OF SCIENCE THESIS Video Coding in H.26L by Kristofer Dovstam April 2000 Work done at Ericsson Radio Systems AB, Kista, Sweden, Ericsson Research, Department of Audio

More information

Video Compression Using Spatial and Temporal Redundancy A Comparative Study

Video Compression Using Spatial and Temporal Redundancy A Comparative Study Video Compression Using Spatial and Temporal Redundancy A Comparative Study Kusuma.H.R 1, Dr.Mahesh Rao 2 P.G Student, Department of Electronics and Communication, MIT Mysore, Karnataka, India 1 Professor,

More information

Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Module 7 VIDEO CODING AND MOTION ESTIMATION Lesson 20 Basic Building Blocks & Temporal Redundancy Instructional Objectives At the end of this lesson, the students should be able to: 1. Name at least five

More information

TKT-2431 SoC design. Introduction to exercises. SoC design / September 10

TKT-2431 SoC design. Introduction to exercises. SoC design / September 10 TKT-2431 SoC design Introduction to exercises Assistants: Exercises and the project work Juha Arvio juha.arvio@tut.fi, Otto Esko otto.esko@tut.fi In the project work, a simplified H.263 video encoder is

More information

Compression Part 2 Lossy Image Compression (JPEG) Norm Zeck

Compression Part 2 Lossy Image Compression (JPEG) Norm Zeck Compression Part 2 Lossy Image Compression (JPEG) General Compression Design Elements 2 Application Application Model Encoder Model Decoder Compression Decompression Models observe that the sensors (image

More information

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University ECE 499/599 Data Compression & Information Theory Thinh Nguyen Oregon State University Adminstrivia Office Hours TTh: 2-3 PM Kelley Engineering Center 3115 Class homepage http://www.eecs.orst.edu/~thinhq/teaching/ece499/spring06/spring06.html

More information

Triveni Digital Inc. MPEG Technology Series. MPEG 101 (MPEG 2 with a dash of MPEG 4 thrown in) Copyright 2011 Triveni Digital, Inc.

Triveni Digital Inc. MPEG Technology Series. MPEG 101 (MPEG 2 with a dash of MPEG 4 thrown in) Copyright 2011 Triveni Digital, Inc. Triveni Digital Inc. MPEG Technology Series MPEG 101 (MPEG 2 with a dash of MPEG 4 thrown in) An LG Electronics Company Copyright 2011 Triveni Digital, Inc. Course Sections Encoding Basics Transport Stream

More information

3G Services Present New Challenges For Network Performance Evaluation

3G Services Present New Challenges For Network Performance Evaluation 3G Services Present New Challenges For Network Performance Evaluation 2004-29-09 1 Outline Synopsis of speech, audio, and video quality evaluation metrics Performance evaluation challenges related to 3G

More information

Megapixel Video for. Part 2 of 4. Brought to You by. Presented by Video Security Consultants

Megapixel Video for. Part 2 of 4. Brought to You by. Presented by Video Security Consultants rought to You by 2009 Video Security Consultants Presented by Part 2 of 4 A1 Part 2 of 4 How to Avert a Compression Depression Illustration by Jerry King While bandwidth is widening, larger video systems

More information

CMPT 365 Multimedia Systems. Media Compression - Video

CMPT 365 Multimedia Systems. Media Compression - Video CMPT 365 Multimedia Systems Media Compression - Video Spring 2017 Edited from slides by Dr. Jiangchuan Liu CMPT365 Multimedia Systems 1 Introduction What s video? a time-ordered sequence of frames, i.e.,

More information

H.261. Lecture Special Topics in Signal Processing. Multimedia Communications: Coding, Systems, and Networking

H.261. Lecture Special Topics in Signal Processing. Multimedia Communications: Coding, Systems, and Networking 8-899 Special Topics in Signal Processing Multimedia Communications: Coding, Sstems, and Networking Prof. Tsuhan Chen tsuhan@ece.cmu.edu Lecture 4 H.6 H.6 ITU-T Stud Group 5, 984-99 Videophone and video

More information

IMPROVED CONTEXT-ADAPTIVE ARITHMETIC CODING IN H.264/AVC

IMPROVED CONTEXT-ADAPTIVE ARITHMETIC CODING IN H.264/AVC 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 IMPROVED CONTEXT-ADAPTIVE ARITHMETIC CODING IN H.264/AVC Damian Karwowski, Marek Domański Poznań University

More information

End-to-End Data. Presentation Formatting. Difficulties. Outline Formatting Compression

End-to-End Data. Presentation Formatting. Difficulties. Outline Formatting Compression End-to-End Data Outline Formatting Compression Spring 2009 CSE30264 1 Presentation Formatting Marshalling (encoding) application data into messages Unmarshalling (decoding) messages into application data

More information

SCALABLE HYBRID VIDEO CODERS WITH DOUBLE MOTION COMPENSATION

SCALABLE HYBRID VIDEO CODERS WITH DOUBLE MOTION COMPENSATION SCALABLE HYBRID VIDEO CODERS WITH DOUBLE MOTION COMPENSATION Marek Domański, Łukasz Błaszak, Sławomir Maćkowiak, Adam Łuczak Poznań University of Technology, Institute of Electronics and Telecommunications,

More information

Digital Video Compression and H.261 Recommendation

Digital Video Compression and H.261 Recommendation Digital Video Compression and H.261 Recommendation Fernando Pereira Klagenfurt, Austria, October 2008 Video versus Images Still Image Services No strong temporal requirements; no realtime notion. Video

More information

Fundamentals of Multimedia

Fundamentals of Multimedia Ze-Nian Li Mark S. Drew Jiangchuan Liu Fundamentals of Multimedia Second Edition Springer Contents Part I Introduction and Multimedia Data Representations 1 Introduction to Multimedia 3 1.1 What is Multimedia?

More information

MPEG-4 General Audio Coding

MPEG-4 General Audio Coding MPEG-4 General Audio Coding Jürgen Herre Fraunhofer Institute for Integrated Circuits (IIS) Dr. Jürgen Herre, hrr@iis.fhg.de 1 General Audio Coding Solid state players, Internet audio, terrestrial and

More information

Perceptual Pre-weighting and Post-inverse weighting for Speech Coding

Perceptual Pre-weighting and Post-inverse weighting for Speech Coding Perceptual Pre-weighting and Post-inverse weighting for Speech Coding Niranjan Shetty and Jerry D. Gibson Department of Electrical and Computer Engineering University of California, Santa Barbara, CA,

More information

MPEG - The Standards and History

MPEG - The Standards and History By Les Simmonds MPEG - The Standards and History There has been a lot written about MPEG, some accurate, and some not accurate, so we thought it might be a good idea to present the history of MPEG using

More information

In the first part of our project report, published

In the first part of our project report, published Editor: Harrick Vin University of Texas at Austin Multimedia Broadcasting over the Internet: Part II Video Compression Borko Furht Florida Atlantic University Raymond Westwater Future Ware Jeffrey Ice

More information

The Steganography In Inactive Frames Of Voip

The Steganography In Inactive Frames Of Voip The Steganography In Inactive Frames Of Voip This paper describes a novel high-capacity steganography algorithm for embedding data in the inactive frames of low bit rate audio streams encoded by G.723.1

More information

COMPARATIVE ANALYSIS OF DIRAC PRO-VC-2, H.264 AVC AND AVS CHINA-P7

COMPARATIVE ANALYSIS OF DIRAC PRO-VC-2, H.264 AVC AND AVS CHINA-P7 COMPARATIVE ANALYSIS OF DIRAC PRO-VC-2, H.264 AVC AND AVS CHINA-P7 A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master

More information

IO [io] MAYAH. IO [io] Audio Video Codec Systems

IO [io] MAYAH. IO [io] Audio Video Codec Systems IO [io] MAYAH IO [io] Audio Video Codec Systems MPEG 4 Audio Video Embedded 24/7 Real-Time Solution MPEG 4 Audio Video Production and Streaming Solution ISMA compliant 24/7 Audio Video Realtime Solution

More information

Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy

Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy Patrick Brown EE382C Embedded Software Systems May 10, 2000 $EVWUDFW MPEG Audio Layer-3 is a standard for the compression of high-quality digital audio.

More information

Distributed Video Coding

Distributed Video Coding Distributed Video Coding Bernd Girod Anne Aaron Shantanu Rane David Rebollo-Monedero David Varodayan Information Systems Laboratory Stanford University Outline Lossless and lossy compression with receiver

More information

Technical PapER. between speech and audio coding. Fraunhofer Institute for Integrated Circuits IIS

Technical PapER. between speech and audio coding. Fraunhofer Institute for Integrated Circuits IIS Technical PapER Extended HE-AAC Bridging the gap between speech and audio coding One codec taking the place of two; one unified system bridging a troublesome gap. The fifth generation MPEG audio codec

More information

ISO/IEC INTERNATIONAL STANDARD. Information technology Generic coding of moving pictures and associated audio information Part 2: Video

ISO/IEC INTERNATIONAL STANDARD. Information technology Generic coding of moving pictures and associated audio information Part 2: Video INTERNATIONAL STANDARD ISO/IEC 13818-2 Third edition 2013-10-01 Information technology Generic coding of moving pictures and associated audio information Part 2: Video Technologies de l'information Codage

More information

ERROR-ROBUST INTER/INTRA MACROBLOCK MODE SELECTION USING ISOLATED REGIONS

ERROR-ROBUST INTER/INTRA MACROBLOCK MODE SELECTION USING ISOLATED REGIONS ERROR-ROBUST INTER/INTRA MACROBLOCK MODE SELECTION USING ISOLATED REGIONS Ye-Kui Wang 1, Miska M. Hannuksela 2 and Moncef Gabbouj 3 1 Tampere International Center for Signal Processing (TICSP), Tampere,

More information

IMAGE COMPRESSION. Chapter - 5 : (Basic)

IMAGE COMPRESSION. Chapter - 5 : (Basic) Chapter - 5 : IMAGE COMPRESSION (Basic) Q() Explain the different types of redundncies that exists in image.? (8M May6 Comp) [8M, MAY 7, ETRX] A common characteristic of most images is that the neighboring

More information

Very Low Bit Rate Color Video

Very Low Bit Rate Color Video 1 Very Low Bit Rate Color Video Coding Using Adaptive Subband Vector Quantization with Dynamic Bit Allocation Stathis P. Voukelatos and John J. Soraghan This work was supported by the GEC-Marconi Hirst

More information

RECOMMENDATION ITU-R BT.1720 *

RECOMMENDATION ITU-R BT.1720 * Rec. ITU-R BT.1720 1 RECOMMENDATION ITU-R BT.1720 * Quality of service ranking and measurement methods for digital video broadcasting services delivered over broadband Internet protocol networks (Question

More information

DSP. Presented to the IEEE Central Texas Consultants Network by Sergio Liberman

DSP. Presented to the IEEE Central Texas Consultants Network by Sergio Liberman DSP The Technology Presented to the IEEE Central Texas Consultants Network by Sergio Liberman Abstract The multimedia products that we enjoy today share a common technology backbone: Digital Signal Processing

More information

MULTIMEDIA COMMUNICATIONS

MULTIMEDIA COMMUNICATIONS MULTIMEDIA COMMUNICATIONS Protocols and Applications Edited by: Franklin F. Kuo Wolfgang Effelsberg J.J. Garcia-Luna-Aceves To join a Prentice Hall PTR Internet mailing list, point to: http://www.prenhall.com/mailjists/

More information

STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC)

STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC) STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC) EE 5359-Multimedia Processing Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) OBJECTIVE A study, implementation and comparison

More information

JPEG. Wikipedia: Felis_silvestris_silvestris.jpg, Michael Gäbler CC BY 3.0

JPEG. Wikipedia: Felis_silvestris_silvestris.jpg, Michael Gäbler CC BY 3.0 JPEG Wikipedia: Felis_silvestris_silvestris.jpg, Michael Gäbler CC BY 3.0 DFT vs. DCT Image Compression Image compression system Input Image MAPPER QUANTIZER SYMBOL ENCODER Compressed output Image Compression

More information

01-VOIP-ADVANCED Agenda Voice over IP RTP SIP

01-VOIP-ADVANCED Agenda Voice over IP RTP SIP Voice over IP (VoIP) VoIP Fundamentals RTP, SIP Agenda Voice over IP RTP SIP VOIP-ADVANCED 2 Page 01-1 Voice over IP (VoIP) VoIP begins with digital voice A D Analog-to-digital conversion speech sampling

More information

Video Encoding with. Multicore Processors. March 29, 2007 REAL TIME HD

Video Encoding with. Multicore Processors. March 29, 2007 REAL TIME HD Video Encoding with Multicore Processors March 29, 2007 Video is Ubiquitous... Demand for Any Content Any Time Any Where Resolution ranges from 128x96 pixels for mobile to 1920x1080 pixels for full HD

More information

For Mac and iphone. James McCartney Core Audio Engineer. Eric Allamanche Core Audio Engineer

For Mac and iphone. James McCartney Core Audio Engineer. Eric Allamanche Core Audio Engineer For Mac and iphone James McCartney Core Audio Engineer Eric Allamanche Core Audio Engineer 2 3 James McCartney Core Audio Engineer 4 Topics About audio representation formats Converting audio Processing

More information

7.5 Dictionary-based Coding

7.5 Dictionary-based Coding 7.5 Dictionary-based Coding LZW uses fixed-length code words to represent variable-length strings of symbols/characters that commonly occur together, e.g., words in English text LZW encoder and decoder

More information

Multimedia Decoder Using the Nios II Processor

Multimedia Decoder Using the Nios II Processor Multimedia Decoder Using the Nios II Processor Third Prize Multimedia Decoder Using the Nios II Processor Institution: Participants: Instructor: Indian Institute of Science Mythri Alle, Naresh K. V., Svatantra

More information

The new Hybrid approach to protect MPEG-2 video header

The new Hybrid approach to protect MPEG-2 video header The new Hybrid approach to protect MPEG-2 video header *YUK YING CHUNG, *XIANG ZHANG, *XIAOMING CHEN, *MOHD AFIZI MOHD SHUKRAN, **CHANGSEOK BAE *School of Information Technologies, University of Sydney,

More information

OVERVIEW OF IEEE 1857 VIDEO CODING STANDARD

OVERVIEW OF IEEE 1857 VIDEO CODING STANDARD OVERVIEW OF IEEE 1857 VIDEO CODING STANDARD Siwei Ma, Shiqi Wang, Wen Gao {swma,sqwang, wgao}@pku.edu.cn Institute of Digital Media, Peking University ABSTRACT IEEE 1857 is a multi-part standard for multimedia

More information

Emerging Architectures for HD Video Transcoding. Jeremiah Golston CTO, Digital Entertainment Products Texas Instruments

Emerging Architectures for HD Video Transcoding. Jeremiah Golston CTO, Digital Entertainment Products Texas Instruments Emerging Architectures for HD Video Transcoding Jeremiah Golston CTO, Digital Entertainment Products Texas Instruments Overview The Need for Transcoding System Challenges Transcoding Approaches and Issues

More information

The MPEG-4 General Audio Coder

The MPEG-4 General Audio Coder The MPEG-4 General Audio Coder Bernhard Grill Fraunhofer Institute for Integrated Circuits (IIS) grl 6/98 page 1 Outline MPEG-2 Advanced Audio Coding (AAC) MPEG-4 Extensions: Perceptual Noise Substitution

More information

Lecture 5: Video Compression Standards (Part2) Tutorial 3 : Introduction to Histogram

Lecture 5: Video Compression Standards (Part2) Tutorial 3 : Introduction to Histogram Lecture 5: Video Compression Standards (Part) Tutorial 3 : Dr. Jian Zhang Conjoint Associate Professor NICTA & CSE UNSW COMP9519 Multimedia Systems S 006 jzhang@cse.unsw.edu.au Introduction to Histogram

More information

MPEG-4 aacplus - Audio coding for today s digital media world

MPEG-4 aacplus - Audio coding for today s digital media world MPEG-4 aacplus - Audio coding for today s digital media world Whitepaper by: Gerald Moser, Coding Technologies November 2005-1 - 1. Introduction Delivering high quality digital broadcast content to consumers

More information

Compressed Audio Demystified by Hendrik Gideonse and Connor Smith. All Rights Reserved.

Compressed Audio Demystified by Hendrik Gideonse and Connor Smith. All Rights Reserved. Compressed Audio Demystified Why Music Producers Need to Care About Compressed Audio Files Download Sales Up CD Sales Down High-Definition hasn t caught on yet Consumers don t seem to care about high fidelity

More information

Rate-Distortion Optimized Layered Coding with Unequal Error Protection for Robust Internet Video

Rate-Distortion Optimized Layered Coding with Unequal Error Protection for Robust Internet Video IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001 357 Rate-Distortion Optimized Layered Coding with Unequal Error Protection for Robust Internet Video Michael Gallant,

More information

Interframe coding of video signals

Interframe coding of video signals Interframe coding of video signals Adaptive intra-interframe prediction Conditional replenishment Rate-distortion optimized mode selection Motion-compensated prediction Hybrid coding: combining interframe

More information

Context based optimal shape coding

Context based optimal shape coding IEEE Signal Processing Society 1999 Workshop on Multimedia Signal Processing September 13-15, 1999, Copenhagen, Denmark Electronic Proceedings 1999 IEEE Context based optimal shape coding Gerry Melnikov,

More information

COMPRESSION TECHNIQUES

COMPRESSION TECHNIQUES Table of Contents Preface xvii INTRODUCTION 1 1.1 Introduction 1 1.2 A little bit of history 1 1.3 Information 8 1.4 Digital versus analogue 9 1.5 Conversion to digital 10 1.6 Sampling theory 11 1.7 Quantization

More information