Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. C. V. Hollot, V. Misra, D. Towsley and W. Gong

Size: px
Start display at page:

Download "Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. C. V. Hollot, V. Misra, D. Towsley and W. Gong"

Transcription

1 A Study Group Presentation Analysis and esign of Controllers for AQM outers Supporting TCP Flows C. V. Hollot, V. Misra,. Towsley and W. Gong Presented by: Tan Chee-Wei Advisors: Professor Winston Chiu, Professor John Lui The Chinese University of Hong Kong

2 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

3 Introduction TCP is a protocol that sits between application and network The Internet is powered by TCP/IP TCP characteristics: Acknowledgement etransmission Flow control Congestion avoidance

4 TCP Window ynamics Additive Increase eceiver Time Time Sender

5 TCP Window ynamics Multiplicative ecrease eceiver Time Packet rop Time Sender

6 What Are The Factors Affecting TCP Throughput Number of TCP Sessions ound Trip Time Link Capacity of Network Buffer Capacity of Network

7 Why Active Queue Management Passive Queue Management has only two states No packet drop No early congestion warning packet drop All senders back off Goal of AQM is to avoid the above problems Characteristics of AQM andom packet drop is performed before buffer is full The probability of packet drop increases with congestion level

8 A Single Bottlenecked Queue

9 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

10 The ole Of Buffer-based AQM Introduction TCP Queue elay secs AQM

11 ', * - ' ' ' ), ' ' ' #" A Fluid-flow Model of TCP Behavior Windows dynamic Queue dynamic probability of packet mark trip time round (secs) link capacity (packets/sec) propagation delay (secs) number of TCP sessions average queue length (packets) average TCP time window size (packets) +* ( $ % &!

12 TCP Congestion Avoidance Mode / delay 8 7 8

13 : ' : ' : TCP Model Is Non Linear First step: Simplify TCP model Employ small signal linearization about steady state operating points Perturbed variables about operating point ' Second step: Concentrate only on nominal dynamic behavior

14 : ) 8 : ) < )=< > < > A@ B 6 : < > Linearalized TCP Connection First step: Simplify TCP model

15 : 8 : > < F HG B ) < 6 : C Linearized TCP ynamic And High Frequency Parasitic Second step: Concentrate only on nominal dynamic behavior Isolate high frequency parasitic C

16 . I K J I Negative Feedback Control Loop eference signal Output signal Stable plant Controller I 8 K L J stable The case of a regulator with disturbance rejection,

17 M AQM As Feedback Control Plant model consists of Window and Queue dynamics : N24 : C P(s) > AQM control law

18 : 8 6 : > 01E24 AQM As Feedback Control esign a that stabilizes M > and gain-stabilizes P(s) C(s) C C

19 P M M Nyquist Stability Criterion Assume does not encircle the point in the clockwise direction in the complex plane, then the system is asymptotically stable. and are stable. If the Nyquist plot of O

20 S Q elative Stability Frequency domain performance specifications Phase Margin Close Loop System Bandwidth

21 Z C P T P P T P T.U ) VXW Y B U Stabilizing AQM Control Laws V(s) Using Small Gain Theorem, will not encircle -1 for all frequencies. Z\[ C C

22 Z T b C C M a _^ `, ] - AQM Proposition 1 Given feasible network parameters, the linearized AQM control system is stable if * and operating point stabilizes the delayed nominal plant > the high frequency parasitic i.e.,, P P Z [ is gain stabilized,.

23 F, * f f f f e B < d f k BY k k, then stabilizes the perturbed plant Z P M P ) - i j * g f f f g a f f f ] f and operating - f B * f, f d< a ` ] stabilizes the delayed nominal plant - M > g. k c < V W M > c < V W BY AQM Proposition 2 Given feasible network parameters, assume Further, for feasible network parameters point, suppose that If is stable, -, ^ `hg., is monotonically nonincreasing and. where., j ( ^, and operating point *

24 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

25 vu tsr xwr nvm,op q Tuning E E takes an average measure of the queue length and randomly drop packets that are within a threshold between and minl maxl OGradient uv ropping probability 1 p_max 0 Average queue length min_th max_th

26 O {z ~} AQM Using E The low pass filter pole yis a function of the averaging weight and sampling frequency Transfer function of V W c < nvm O z B.z.e d< ~} Y B Select ysuch that it lies outside the loop s bandwidth or less than corner frequencies of Mthe. Let pole ydominates the system s transient response.

27 S j S z O ƒ AQM Using E Evaluate system at unity gain cross-over frequency Phase response of P must satisfy arctan y(queue averag- A tradeoff between ing) (Speed of response) and Using the general relationship j For a desired phase margin, an increase in queue averaging leads to smaller system bandwidth

28 Š - ˆ An Example Of Using E Consider the network parameters and 0.246s. pkts/s, flows Plant have poles at < ' y & 'min % ' ' ' ) ' ' and Take rads To satisfy phase constraint, we get ominant pole is too near to Imaginary Axis.

29 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

30 y Œ S AQM Using Proportional Control E results in small Sluggish performance emove the low pass filter in E to improve transient response c < V W B.e O d< Ž Y B U y Under the likely case O, phase response of P ' ˆ Guarantees Close Loop Stability Using previous example, we have rads which is almost 30 times that of E

31 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

32 AQM Using Proportional-Integral Control Both E and Proportional Controller results in finite steady state error in queue length Use an Integrator with Proportional Controller to drive steady state error to zero / 5 b constant if and only if.a@ c < V W.. š B.e O d< Ž Y B U y b PI zero to coincide with TCP Window Pole First Order System Given a desired phase margin, select that satisfies arctan

33 j j S j ' j ' ' esigning PI Control Using the previous example, we select rads, and we have a phase margin of and a system bandwidth of Stability margin decreases with increased link capacity ound Trip Time or decreased number of TCP flows, increased Need to avoid integrator windup due to control saturation since dropping probability is

34 Comparing PI Control With E Using NS Simulations Consider 60 TCP flows and 180 HTTP sessions A queue with buffer size 800 packets esire a steady state queue length of 200 packets Load variation At Time, 20 TCP flows drop out At Time, 20 TCP flows return

35 PI egulates Queue Length Independent Of TCP Flow Level

36 Increasing TCP Flow ecreases The System Bandwidth Smaller system bandwidth S dampens system transient response

37 Phase Margin ecreases With Increasing TCP Flows Lower Phase Margin More Oscillations

38 PI Continues To egulate Queue Length At High TCP Load E and Proportional controllers exhibit large steady state errors

39 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

40 œ elated Work L. Le, J. Aikat, K. Jeffay and F.. Smith, "The Effects of Active Queue Management on Web Performance", ACM SIGCOMM 2003 H. G. Zhang, C. V. Hollot,. Towsley and V. Misra, "A Self-tuning Structure for Adaptation in TCP/AQM Networks", IEEE Globecom 2003 Y. Gao and J. C. Hou, "A State Feedback Control Approach to Stabilizing Queues for ECN-Enabled TCP Connections", IEEE INFO- COM 2003 P. F. Quet and H. zbay, "On the esign of AQM Supporting TCP Flows Using obust Control Theory", IEEE Transactions on Automatic Control, 2004 C. G. Wang, B. Li, Y. T. Hou, K. Sohraby and Y. Lin, "LE: A obust Active Queue Management Scheme Based on Packet Loss atio", IEEE INFOCOM 2004

41 Contents Introduction The AQM Control Problem AQM Using andom Early etection AQM Using Proportional Control AQM Using Proportional-Integral Control elated Work Conclusion

42 Conclusion A model for a single bottlenecked link Apply classical control theory to Internet congestion avoidance A set of design rules for tuning packet dropping probability Queue averaging in E is not recommended Tradeoff between low queueing delay and high link utilization

43 , ), j * - [ - j g ( f f f g Comments Other dynamic behavior Modeling issue Congestion window < is not gradually decreased at a rate of, but suddenly halved upon receipt of congestion Model assumes only long-lived TCP connections (Elephants). Ignores short-lived HTTP connections (Mice) and UP connections

44 What s Next More robust and adaptive AQM schemes for "Elephants" and "Mice" Multiple bottlenecks in network Exploit traffic characteristic, e.g., Long ange ependence, for predictive control Feasibility of implementation of discretized PI controller in Today s high-speed routers

Three-section Random Early Detection (TRED)

Three-section Random Early Detection (TRED) Three-section Random Early Detection (TRED) Keerthi M PG Student Federal Institute of Science and Technology, Angamaly, Kerala Abstract There are many Active Queue Management (AQM) mechanisms for Congestion

More information

Analysis and Design of Controllers for AQM Routers Supporting TCP Flows

Analysis and Design of Controllers for AQM Routers Supporting TCP Flows IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 6, JUNE 2002 945 Analysis Design of Controllers for AQM Routers Supporting TCP Flows C. V. Hollot, Member, IEEE, Vishal Misra, Member, IEEE, Donald

More information

! Network bandwidth shared by all users! Given routing, how to allocate bandwidth. " efficiency " fairness " stability. !

! Network bandwidth shared by all users! Given routing, how to allocate bandwidth.  efficiency  fairness  stability. ! Motivation Network Congestion Control EL 933, Class10 Yong Liu 11/22/2005! Network bandwidth shared by all users! Given routing, how to allocate bandwidth efficiency fairness stability! Challenges distributed/selfish/uncooperative

More information

An Adaptive Neuron AQM for a Stable Internet

An Adaptive Neuron AQM for a Stable Internet An Adaptive Neuron AQM for a Stable Internet Jinsheng Sun and Moshe Zukerman The ARC Special Research Centre for Ultra-Broadband Information Networks, Department of Electrical and Electronic Engineering,

More information

ACTIVE QUEUE MANAGEMENT ALGORITHM WITH A RATE REGULATOR. Hyuk Lim, Kyung-Joon Park, Eun-Chan Park and Chong-Ho Choi

ACTIVE QUEUE MANAGEMENT ALGORITHM WITH A RATE REGULATOR. Hyuk Lim, Kyung-Joon Park, Eun-Chan Park and Chong-Ho Choi Copyright 22 IFAC 15th Triennial World Congress, Barcelona, Spain ACTIVE QUEUE MANAGEMENT ALGORITHM WITH A RATE REGULATOR Hyuk Lim, Kyung-Joon Park, Eun-Chan Park and Chong-Ho Choi School of Electrical

More information

RECENT advances in the modeling and analysis of TCP/IP networks have led to better understanding of AQM dynamics.

RECENT advances in the modeling and analysis of TCP/IP networks have led to better understanding of AQM dynamics. IEEE GLOBECOM 23 Conference Paper; ACM SIGMETRICS 23 Student Poster A Self-Tuning Structure for Adaptation in TCP/AQM Networks 1 Honggang Zhang, C. V. Hollot, Don Towsley and Vishal Misra Abstract Since

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

Router s Queue Management

Router s Queue Management Router s Queue Management Manages sharing of (i) buffer space (ii) bandwidth Q1: Which packet to drop when queue is full? Q2: Which packet to send next? FIFO + Drop Tail Keep a single queue Answer to Q1:

More information

An Analytical RED Function Design Guaranteeing Stable System Behavior

An Analytical RED Function Design Guaranteeing Stable System Behavior An Analytical RED Function Design Guaranteeing Stable System Behavior Erich Plasser, Thomas Ziegler Telecommunications Research Center Vienna {plasser, ziegler}@ftw.at Abstract This paper introduces the

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-6 Router Congestion Control TCP & Routers RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay

More information

On the Deployment of AQM Algorithms in the Internet

On the Deployment of AQM Algorithms in the Internet On the Deployment of AQM Algorithms in the Internet PAWEL MROZOWSKI and ANDRZEJ CHYDZINSKI Silesian University of Technology Institute of Computer Sciences Akademicka 16, Gliwice POLAND pmrozo@go2.pl andrzej.chydzinski@polsl.pl

More information

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers TCP & Routers 15-744: Computer Networking RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay Product Networks L-6

More information

Adaptive RED: An Algorithm for Increasing the Robustness of RED s Active Queue Management or How I learned to stop worrying and love RED

Adaptive RED: An Algorithm for Increasing the Robustness of RED s Active Queue Management or How I learned to stop worrying and love RED Adaptive RED: An Algorithm for Increasing the Robustness of RED s Active Queue Management or How I learned to stop worrying and love RED! Presented by:! Frank Posluszny! Vishal Phirke 2/9/02 1 "Introduction

More information

CPSC 826 Internetworking. Congestion Control Approaches Outline. Router-Based Congestion Control Approaches. Router-Based Approaches Papers

CPSC 826 Internetworking. Congestion Control Approaches Outline. Router-Based Congestion Control Approaches. Router-Based Approaches Papers 1 CPSC 826 Internetworking Router-Based Congestion Control Approaches Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu October 25, 2004 http://www.cs.clemson.edu/~mweigle/courses/cpsc826

More information

XCP: explicit Control Protocol

XCP: explicit Control Protocol XCP: explicit Control Protocol Dina Katabi MIT Lab for Computer Science dk@mit.edu www.ana.lcs.mit.edu/dina Sharing the Internet Infrastructure Is fundamental Much research in Congestion Control, QoS,

More information

One More Bit Is Enough

One More Bit Is Enough One More Bit Is Enough Yong Xia, RPI Lakshmi Subramanian, UCB Ion Stoica, UCB Shiv Kalyanaraman, RPI SIGCOMM 05, Philadelphia, PA 08 / 23 / 2005 Motivation #1: TCP doesn t work well in high b/w or delay

More information

Congestion Control In the Network

Congestion Control In the Network Congestion Control In the Network Brighten Godfrey cs598pbg September 9 2010 Slides courtesy Ion Stoica with adaptation by Brighten Today Fair queueing XCP Announcements Problem: no isolation between flows

More information

On Designing Improved Controllers for AQM Routers Supporting TCP Flows

On Designing Improved Controllers for AQM Routers Supporting TCP Flows TO APPEAR IN IEEE INFOCOM 2 On Designing Improved Controllers for AQM Routers Supporting TCP Flows C.V. Hollot, Vishal Misra, Don Towsley and Wei-Bo Gong Abstract In this paper we study a previously developed

More information

Markov Model Based Congestion Control for TCP

Markov Model Based Congestion Control for TCP Markov Model Based Congestion Control for TCP Shan Suthaharan University of North Carolina at Greensboro, Greensboro, NC 27402, USA ssuthaharan@uncg.edu Abstract The Random Early Detection (RED) scheme

More information

Buffer Requirements for Zero Loss Flow Control with Explicit Congestion Notification. Chunlei Liu Raj Jain

Buffer Requirements for Zero Loss Flow Control with Explicit Congestion Notification. Chunlei Liu Raj Jain Buffer Requirements for Zero Loss Flow Control with Explicit Congestion Notification Chunlei Liu Raj Jain Department of Computer and Information Science The Ohio State University, Columbus, OH 432-277

More information

An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management

An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering April 2004 An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management Srisankar

More information

A Note on the Stability Requirements of Adaptive Virtual Queue

A Note on the Stability Requirements of Adaptive Virtual Queue A ote on the Stability Requirements of Adaptive Virtual Queue Dina Katabi MIT-LCS dk@mit.edu Charles Blake MIT-LCS cb@mit.edu Abstract Choosing the correct values for the parameters of an Active Queue

More information

Impact of bandwidth-delay product and non-responsive flows on the performance of queue management schemes

Impact of bandwidth-delay product and non-responsive flows on the performance of queue management schemes Impact of bandwidth-delay product and non-responsive flows on the performance of queue management schemes Zhili Zhao Dept. of Elec. Engg., 214 Zachry College Station, TX 77843-3128 A. L. Narasimha Reddy

More information

The Scaling Hypothesis: Simplifying the Prediction of Network Performance using Scaled-down Simulations

The Scaling Hypothesis: Simplifying the Prediction of Network Performance using Scaled-down Simulations The Scaling Hypothesis: Simplifying the Prediction of Network Performance using Scaled-down Simulations Konstantinos Psounis, Rong Pan, Balaji Prabhakar, Damon Wischik Stanford Univerity, Cambridge University

More information

Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and Parameter Setting

Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and Parameter Setting IEICE TRANS. COMMUN., VOL.E8 B, NO.1 JANUARY 1 PAPER Special Issue on Traffic Control and Performance Evaluation in Internet Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and

More information

Random Early Marking: Improving TCP Performance in DiffServ Assured Forwarding

Random Early Marking: Improving TCP Performance in DiffServ Assured Forwarding Random Early Marking: Improving TCP Performance in DiffServ Assured Forwarding Sandra Tartarelli and Albert Banchs Network Laboratories Heidelberg, NEC Europe Ltd. Abstract In the context of Active Queue

More information

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 2, Issue 4, April 2013

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 2, Issue 4, April 2013 Balanced window size Allocation Mechanism for Congestion control of Transmission Control Protocol based on improved bandwidth Estimation. Dusmant Kumar Sahu 1, S.LaKshmiNarasimman2, G.Michale 3 1 P.G Scholar,

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management

An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management Srisankar Kunniyur kunniyur@ee.upenn.edu R. Srikant rsrikant@uiuc.edu December 16, 22 Abstract Virtual Queue-based marking schemes

More information

Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and Parameter Setting

Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and Parameter Setting Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and Parameter Setting Hiroyuki Ohsaki, Masayuki Murata, and Hideo Miyahara Graduate School of Engineering Science, Osaka University

More information

Control Theory Optimization of MECN in Satellite Networks

Control Theory Optimization of MECN in Satellite Networks Control Theory Optimization of MECN in Satellite Networks Arjan Durresi Louisiana State University, USA Department of Computer Science durresi@csc.lsu.edu Mukundan Sridharan, Sriram Chellappan, Raj Jain,

More information

Low pass filter/over drop avoidance (LPF/ODA): an algorithm to improve the response time of RED gateways

Low pass filter/over drop avoidance (LPF/ODA): an algorithm to improve the response time of RED gateways INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS Int. J. Commun. Syst. 2002; 15:899 906 (DOI: 10.1002/dac.571) Low pass filter/over drop avoidance (LPF/ODA): an algorithm to improve the response time of

More information

Stability Analysis of a Window-based Flow Control Mechanism for TCP Connections with Different Propagation Delays

Stability Analysis of a Window-based Flow Control Mechanism for TCP Connections with Different Propagation Delays Stability Analysis of a Window-based Flow Control Mechanism for TCP Connections with Different Propagation Delays Keiichi Takagaki Hiroyuki Ohsaki Masayuki Murata Graduate School of Engineering Science,

More information

Stabilizing RED using a Fuzzy Controller

Stabilizing RED using a Fuzzy Controller This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 27 proceedings. Stabilizing RED using a Fuzzy Controller Jinsheng

More information

ADVANCED TOPICS FOR CONGESTION CONTROL

ADVANCED TOPICS FOR CONGESTION CONTROL ADVANCED TOPICS FOR CONGESTION CONTROL Congestion Control The Internet only functions because TCP s congestion control does an effective job of matching traffic demand to available capacity. TCP s Window

More information

RED behavior with different packet sizes

RED behavior with different packet sizes RED behavior with different packet sizes Stefaan De Cnodder, Omar Elloumi *, Kenny Pauwels Traffic and Routing Technologies project Alcatel Corporate Research Center, Francis Wellesplein, 1-18 Antwerp,

More information

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SURVEY ON EXPLICIT FEEDBACK BASED CONGESTION CONTROL PROTOCOLS Nasim Ghasemi 1, Shahram Jamali 2 1 Department of

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED

Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED Vishal Misra Department of Computer Science University of Massachusetts Amherst MA 13 misra@cs.umass.edu

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

Differential Congestion Notification: Taming the Elephants

Differential Congestion Notification: Taming the Elephants Differential Congestion Notification: Taming the Elephants Long Le, Jay Kikat, Kevin Jeffay, and Don Smith Department of Computer science University of North Carolina at Chapel Hill http://www.cs.unc.edu/research/dirt

More information

Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren

Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren Lecture 22: Buffering & Scheduling CSE 123: Computer Networks Alex C. Snoeren Lecture 23 Overview Buffer Management FIFO RED Traffic Policing/Scheduling 2 Key Router Challenges Buffer management: which

More information

The War Between Mice and Elephants

The War Between Mice and Elephants The War Between Mice and Elephants (by Liang Guo and Ibrahim Matta) Treating Short Connections fairly against Long Connections when they compete for Bandwidth. Advanced Computer Networks CS577 Fall 2013

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005 43 Congestion Control for High Performance, Stability, and Fairness in General Networks Fernando Paganini, Member, IEEE, Zhikui Wang,

More information

Tuning RED for Web Traffic

Tuning RED for Web Traffic Tuning RED for Web Traffic Mikkel Christiansen, Kevin Jeffay, David Ott, Donelson Smith UNC, Chapel Hill SIGCOMM 2000, Stockholm subsequently IEEE/ACM Transactions on Networking Vol. 9, No. 3 (June 2001)

More information

Variable Step Fluid Simulation for Communication Network

Variable Step Fluid Simulation for Communication Network Variable Step Fluid Simulation for Communication Network Hongjoong Kim 1 and Junsoo Lee 2 1 Korea University, Seoul, Korea, hongjoong@korea.ac.kr 2 Sookmyung Women s University, Seoul, Korea, jslee@sookmyung.ac.kr

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

Appendix B. Standards-Track TCP Evaluation

Appendix B. Standards-Track TCP Evaluation 215 Appendix B Standards-Track TCP Evaluation In this appendix, I present the results of a study of standards-track TCP error recovery and queue management mechanisms. I consider standards-track TCP error

More information

Model Predictive Neural Control of TCP Flow in AQM Network

Model Predictive Neural Control of TCP Flow in AQM Network Model Predictive eural Control of TCP Flow in AQM etwork Kourosh Rahnamai, Kevin Gorman Andrew Gray Electrical Engineering Department Jet Propulsion Laboratory Western ew England College California Institute

More information

Quality of Service in Telecommunication Networks

Quality of Service in Telecommunication Networks Quality of Service in Telecommunication Networks Åke Arvidsson, Ph.D. Ericsson Core Network Development, Sweden Main Message Traffic theory: QoS is (partly) about congestion. Congestion is partly caused

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers. Xiaowei Yang

CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers. Xiaowei Yang CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers Xiaowei Yang xwy@cs.duke.edu Overview More on TCP congestion control Theory Macroscopic behavior TCP

More information

1 Introduction In the past decade the world has seen an explosion in Internet activity and with it has come increased expectations for performance and

1 Introduction In the past decade the world has seen an explosion in Internet activity and with it has come increased expectations for performance and An Adaptive Control Strategy for AQM Routers Supporting TCP Flows Yossi Chait Λ Salomon Oldak y C.V. Hollot z Vishal Misra x University of Massachusetts Amherst MA 01003 January 12, 2001 Abstract This

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Effective Utilization of Router Buffer by Threshold Parameter Setting Approach in RED

Effective Utilization of Router Buffer by Threshold Parameter Setting Approach in RED Effective Utilization of Router Buffer by Threshold Parameter Setting Approach in RED Kiran Chhabra Research Scholar Computer Science & Engineering Dr. C. V. Raman University, Bilaspur (C. G.) Manali Kshirsagar

More information

CS 557 Congestion and Complexity

CS 557 Congestion and Complexity CS 557 Congestion and Complexity Observations on the Dynamics of a Congestion Control Algorithm: The Effects of Two-Way Traffic Zhang, Shenker, and Clark, 1991 Spring 2013 The Story So Far. Transport layer:

More information

Internet Congestion Control for Future High Bandwidth-Delay Product Environments

Internet Congestion Control for Future High Bandwidth-Delay Product Environments Internet Congestion Control for Future High Bandwidth-Delay Product Environments Dina Katabi Mark Handley Charlie Rohrs MIT-LCS ICSI Tellabs dk@mit.edu mjh@icsi.berkeley.edu crhors@mit.edu Abstract Theory

More information

Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks. Congestion Control in Today s Internet

Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks. Congestion Control in Today s Internet Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks Ion Stoica CMU Scott Shenker Xerox PARC Hui Zhang CMU Congestion Control in Today s Internet Rely

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 1 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Designing PI controllers for TCP/IPv6 networks supporting differentiated QoS requirements

Designing PI controllers for TCP/IPv6 networks supporting differentiated QoS requirements Loughborough University Institutional Repository Designing PI controllers for TCP/IPv6 networks supporting differentiated QoS requirements This item was submitted to Loughborough University's Institutional

More information

A framework to determine the optimal loss rate of RED queue for next generation Internet routers

A framework to determine the optimal loss rate of RED queue for next generation Internet routers A framework to determine the optimal loss rate of RED queue for next generation Internet routers Mohammed Atiquzzaman School of Computer Science, University of Oklahoma, Norman, OK 73019-6151. Email: atiq@ou.edu

More information

Enhancing TCP Throughput over Lossy Links Using ECN-capable RED Gateways

Enhancing TCP Throughput over Lossy Links Using ECN-capable RED Gateways Enhancing TCP Throughput over Lossy Links Using ECN-capable RED Gateways Haowei Bai AES Technology Centers of Excellence Honeywell Aerospace 3660 Technology Drive, Minneapolis, MN 5548 E-mail: haowei.bai@honeywell.com

More information

Analyzing the Receiver Window Modification Scheme of TCP Queues

Analyzing the Receiver Window Modification Scheme of TCP Queues Analyzing the Receiver Window Modification Scheme of TCP Queues Visvasuresh Victor Govindaswamy University of Texas at Arlington Texas, USA victor@uta.edu Gergely Záruba University of Texas at Arlington

More information

The Transport Layer Congestion control in TCP

The Transport Layer Congestion control in TCP CPSC 360 Network Programming The Transport Layer Congestion control in TCP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Reduction of queue oscillation in the next generation Internet routers. By: Shan Suthaharan

Reduction of queue oscillation in the next generation Internet routers. By: Shan Suthaharan Reduction of queue oscillation in the next generation Internet routers By: Shan Suthaharan S. Suthaharan (2007), Reduction of queue oscillation in the next generation Internet routers, Computer Communications

More information

A comparative simulation study of TCP/AQM systems for evaluating the potential of neuron-based AQM schemes

A comparative simulation study of TCP/AQM systems for evaluating the potential of neuron-based AQM schemes A comparative simulation study of TCP/AQM systems for evaluating the potential of neuron-based AQM schemes Fan Li a, Jinsheng Sun b, Moshe Zukerman a,, Zhengfei Liu b, Qin Xu b, Sammy Chan a, Guanrong

More information

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Haowei Bai Honeywell Aerospace Mohammed Atiquzzaman School of Computer Science University of Oklahoma 1 Outline Introduction

More information

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks Random Early Detection (RED) gateways Sally Floyd CS 268: Computer Networks floyd@eelblgov March 20, 1995 1 The Environment Feedback-based transport protocols (eg, TCP) Problems with current Drop-Tail

More information

TCP Westwood: Efficient Transport for High-speed wired/wireless Networks

TCP Westwood: Efficient Transport for High-speed wired/wireless Networks TCP Westwood: Efficient Transport for High-speed wired/wireless Networks Mario Gerla, Medy Sanadidi, Ren Wang and Massimo Valla UCLA Computer Science 1 Outline 1. TCP Overview 2. Bandwidth Estimation and

More information

A Research Framework for Analyzing High Speed Transport Protocols Based on Control-theory

A Research Framework for Analyzing High Speed Transport Protocols Based on Control-theory 9, Vol. 1, No. A Research Framework for Analyzing High Speed Transport Protocols Based on Control-theory Balázs Sonkoly (Corresponding author), Boglárka Simon, Tuan A. Trinh, Sándor Molnár High Speed Networks

More information

ADVANCES IN INTERNET CONGESTION CONTROL

ADVANCES IN INTERNET CONGESTION CONTROL THIRD QUARTER 2003, VOLUME 5, NO. 1 IEEE COMMUNICATIONS SURVEYS The Electronic Magazine of Original Peer-Reviewed Survey Articles www.comsoc.org/pubs/surveys ADVANCES IN INTERNET CONGESTION CONTROL SEUNGWAN

More information

Computer Networking. Queue Management and Quality of Service (QOS)

Computer Networking. Queue Management and Quality of Service (QOS) Computer Networking Queue Management and Quality of Service (QOS) Outline Previously:TCP flow control Congestion sources and collapse Congestion control basics - Routers 2 Internet Pipes? How should you

More information

Congestion Control for High Bandwidth-Delay Product Networks

Congestion Control for High Bandwidth-Delay Product Networks Congestion Control for High Bandwidth-Delay Product Networks Presented by: Emad Shihab Overview Introduce the problem of XCP (what the protocol achieves) (how the protocol achieves this) The problem! TCP

More information

Proportional-Integral Active Queue Management with an Anti-Windup Compensator

Proportional-Integral Active Queue Management with an Anti-Windup Compensator Conference on Information Sciences and Systems, Princeton University, March, Proportional-Integral Active Queue Management with an Anti-Windup Compensator Hyuk Lim, Kyung-Joon Park, Eun-Chan Park, and

More information

ON THE IMPACT OF CONCURRENT DOWNLOADS

ON THE IMPACT OF CONCURRENT DOWNLOADS Proceedings of the 2001 Winter Simulation Conference B.A.Peters,J.S.Smith,D.J.Medeiros,andM.W.Rohrer,eds. ON THE IMPACT OF CONCURRENT DOWNLOADS Yong Liu Weibo Gong Department of Electrical & Computer Engineering

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

Auto-Tuning Active Queue Management

Auto-Tuning Active Queue Management Auto-Tuning Active Queue Management Joe H. Novak University of Utah Sneha Kumar Kasera University of Utah Abstract Active queue management (AQM) algorithms preemptively drop packets to prevent unnecessary

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Stefano Vissicchio UCL Computer Science COMP0023 Recap: Last Lecture Transport Concepts Layering context Transport goals Transport mechanisms and design

More information

Congestion Control for High Bandwidth-Delay Product Networks

Congestion Control for High Bandwidth-Delay Product Networks Congestion Control for High Bandwidth-Delay Product Networks Dina Katabi Mark Handley Charlie Rohrs MIT-LCS ICSI Tellabs dk@mit.edu mjh@icsi.berkeley.edu crhors@mit.edu ABSTRACT Theory and experiments

More information

Department of Computer Science San Marcos, TX Report Number TXSTATE-CS-TR Liberating TCP: The Free and the Stunts

Department of Computer Science San Marcos, TX Report Number TXSTATE-CS-TR Liberating TCP: The Free and the Stunts Department of Computer Science San Marcos, TX 78666 Report Number TXSTATE-CS-TR-28- Liberating TCP: The and the Stunts Jason Valdez Mina Guirguis 28--24 Liberating TCP: The and the Stunts JASON VALDEZ

More information

Sizing Internet Router Buffers, Active Queue Management, and the Lur e Problem

Sizing Internet Router Buffers, Active Queue Management, and the Lur e Problem Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 3-5, 26 WeA8.6 Sizing Internet Router Buffers, Active Queue Management, and the Lur

More information

On Modeling Datagram Congestion Control Protocol and Random Early Detection using Fluid-Flow Approximation

On Modeling Datagram Congestion Control Protocol and Random Early Detection using Fluid-Flow Approximation On Modeling Datagram Congestion Control Protocol and Random Early Detection using Fluid-Flow Approximation HIROYUKI HISAMATSU Osaka Electro-Communication University Department of Computer Science 30 70

More information

Congestion Control for High Bandwidth-delay Product Networks

Congestion Control for High Bandwidth-delay Product Networks Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Presented by Chi-Yao Hong Adapted from slides by Dina Katabi CS598pbg Sep. 10, 2009 Trends in the Future

More information

Congestion Avoidance

Congestion Avoidance COMP 631: NETWORKED & DISTRIBUTED SYSTEMS Congestion Avoidance Jasleen Kaur Fall 2016 1 Avoiding Congestion: Strategies TCP s strategy: congestion control Ø Control congestion once it occurs Repeatedly

More information

Improving Internet Performance through Traffic Managers

Improving Internet Performance through Traffic Managers Improving Internet Performance through Traffic Managers Ibrahim Matta Computer Science Department Boston University Computer Science A Glimpse of Current Internet b b b b Alice c TCP b (Transmission Control

More information

An Application of the Control Theoretic Modeling for a Scalable TCP ACK Pacer

An Application of the Control Theoretic Modeling for a Scalable TCP ACK Pacer An Application of the Control Theoretic Modeling for a Scalable TC ACK acer Yishen Sun, C. C. Lee, Randall Berry and A. H. Haddad Department of Electrical and Computer Engineering, Northwestern University

More information

Local and Global Stability of Symmetric Heterogeneously- Delayed Control Systems

Local and Global Stability of Symmetric Heterogeneously- Delayed Control Systems Local and Global Stability of Symmetric Heterogeneously- Delayed Control Systems Yueping Zhang and Dmitri Loguinov Department of Computer Science Texas A&M University College Station, TX 77843 1 Outline

More information

TCP Westwood and Easy Red to Improve Fairness in High-speed Networks. PfHsn 2002 Berlin, 22 April 2002

TCP Westwood and Easy Red to Improve Fairness in High-speed Networks. PfHsn 2002 Berlin, 22 April 2002 TCP Westwood and Easy Red to Improve Fairness in High-speed Networks L. A. Grieco, S. Mascolo Dipartimento di Elettrotecnica ed Elettronica Politecnico di Bari, Italy PfHsn 2002 Berlin, 22 April 2002 Outline

More information

Interactions of Intelligent Route Control with TCP Congestion Control

Interactions of Intelligent Route Control with TCP Congestion Control Interactions of Intelligent Route Control with TCP Congestion Control Ruomei Gao 1, Dana Blair 2, Constantine Dovrolis 1, Monique Morrow 2, and Ellen Zegura 1 1 College of Computing, Georgia Institute

More information

Adaptive QoS Control Beyond Embedded Systems

Adaptive QoS Control Beyond Embedded Systems Adaptive QoS Control Beyond Embedded Systems Chenyang Lu! CSE 520S! Outline! Control-theoretic Framework! Service delay control on Web servers! On-line data migration in storage servers! ControlWare: adaptive

More information

Congestion Control in TCP

Congestion Control in TCP Congestion Control in TCP Antonio Carzaniga Faculty of Informatics University of Lugano May 6, 2005 Outline Intro to congestion control Input rate vs. output throughput Congestion window Congestion avoidance

More information

Congestion Control. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Congestion Control. Daniel Zappala. CS 460 Computer Networking Brigham Young University Congestion Control Daniel Zappala CS 460 Computer Networking Brigham Young University 2/25 Congestion Control how do you send as fast as possible, without overwhelming the network? challenges the fastest

More information

On the Design of Load Factor based Congestion Control Protocols for Next-Generation Networks

On the Design of Load Factor based Congestion Control Protocols for Next-Generation Networks 1 On the Design of Load Factor based Congestion Control Protocols for Next-Generation Networks Ihsan Ayyub Qazi Taieb Znati Student Member, IEEE Senior Member, IEEE Abstract Load factor based congestion

More information

Congestion Control. Andreas Pitsillides University of Cyprus. Congestion control problem

Congestion Control. Andreas Pitsillides University of Cyprus. Congestion control problem Congestion Control Andreas Pitsillides 1 Congestion control problem growing demand of computer usage requires: efficient ways of managing network traffic to avoid or limit congestion in cases where increases

More information

Study on Compatibility of Diffusion- Type Flow Control and TCP

Study on Compatibility of Diffusion- Type Flow Control and TCP Study on Compatibility of Diffusion- Type Flow Control and TCP Kaori Muranaka*, Chisa Takano*, Masaki Aida** *NTT Advanced Technology Corporation, 2-4-15, Naka-cho, Musashino-shi, 18-6 Japan. TEL: +81

More information

Transport layer issues

Transport layer issues Transport layer issues Dmitrij Lagutin, dlagutin@cc.hut.fi T-79.5401 Special Course in Mobility Management: Ad hoc networks, 28.3.2007 Contents Issues in designing a transport layer protocol for ad hoc

More information

Edge versus Host Pacing of TCP Traffic in Small Buffer Networks

Edge versus Host Pacing of TCP Traffic in Small Buffer Networks Edge versus Host Pacing of TCP Traffic in Small Buffer Networks Hassan Habibi Gharakheili 1, Arun Vishwanath 2, Vijay Sivaraman 1 1 University of New South Wales (UNSW), Australia 2 University of Melbourne,

More information

Congestion Control & Transport protocols

Congestion Control & Transport protocols Congestion Control & Transport protocols from New Internet and Networking Technologies for Grids and High-Performance Computing, tutorial given at HiPC 04, Bangalore, India December 22nd, 2004 C. Pham

More information