A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic

Size: px
Start display at page:

Download "A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic"

Transcription

1 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic Félix Hernández-Campos ndez-campos Kevin Jeffay Don Smith Department of Computer Science Andrew Nobel Department of Statistics 1 Generation of Synthetic Traffic Outline The synthetic traffic generation problem what is it and why should you care? A simple case study of active queue management mechanisms A signature-based approach to modeling TCP The a-b-t trace modeling paradigm Synthetic traffic generation from traces to replayed The tmix traffic generator Validation of synthetically generated traffic Validation of intrinsic properties Validation of extrinsic properties 2 Synthetic Traffic Generation A simple example Will AQM Help? Synthetic Traffic Generation A simple example Will AQM Help? Clients/ Clients/ How does one (empirically) evaluate if a new active queue management (AQM) scheme works? Or new protocol, router architecture,... You simulate it! Simulate the network and the AQM scheme or use a real implementation Simulate the use of the network by a population of users/ applications 3 Clients/ Clients/ The synthetic traffic generation problem: Simulating the use of a network by a population of users The Floyd, Paxson argument: source-level generation of traffic is preferred over packet-level generation We desire application-dependent, network independent traffic generators Thus we need models of how applications generate traffic and a model of how users use applications 4

2 Server User Source-Level Traffic Generation Example: traffic generation REQ RESP REQ RESP REQ RESP REQ RESP REQ RESP Time thttp The UNC synthetic web traffic generator [SIGMETRICS 2001, SIGCOMM 2003, MASCOTS 2003] Primary random variables: Request sizes/reply sizes Number of embedded images/page User think time Number of parallel Persistent connection usage Consecutive documents per server Nbr of objects per persistent connection Number of servers per page 5 The Impact of Traffic Models Case study: Evaluating AQM policies Congested Link We previously evaluated a number of prominent AQM schemes on an emulated ISP peering link carrying only web traffic [SIGCOMM03] Construct a physical network emulating a congested peering link between two ISPs Generate synthetic requests and responses but transmit data over real TCP/IP stacks, network links, and switches 6 The Impact of Traffic Models Case study: Evaluating AQM policies Congested Link We previously evaluated a number of prominent AQM schemes on an emulated ISP peering link carrying only web traffic [SIGCOMM03] Compared drop-tail FIFO, PI, REM, ARED Distribution of request-response response-times was the primary measure of performance Results: Control theoretic AQM good, ARED bad 7 The Impact of Traffic Models Case study: Evaluating AQM policies Congested Link We previously evaluated a number of prominent AQM schemes on an emulated ISP peering link carrying only web traffic [SIGCOMM03] What s s the impact of performing the experiments with a synthetic traffic mix? 8

3 The Impact of Traffic Models Case study: Evaluating AQM policies Congested Link Impact of Using Traffic Mixes Abilene only traffic, heavy load Experiment: Rerun experiments with a mix of TCP from an Abilene backbone Then rerun experiments using from the same trace but filtered for only (port 80) and scaled to achieve the same load as the full Abilene trace 9 10 Impact of Traffic Models Abilene only traffic, saturation load Impact of Traffic Models Abilene all TCP, heavy load 11 12

4 Impact of Traffic Models Abilene all TCP, saturation load 13 Generation of Synthetic Traffic Outline The synthetic traffic generation problem what is it and why should you care? A simple case study of active queue management mechanisms A signature-based approach to modeling TCP The a-b-t trace modeling paradigm Synthetic traffic generation from traces to replayed The tmix traffic generator Validation of synthetically generated traffic Validation of intrinsic properties Validation of extrinsic properties 14 Source-Level Traffic Generation Models for other common applications? Constructing Source-Level Models Steps for simple request/response protocols Other UDP Other TCP Streaming, DNS, Games FTP, File-Sharing Web Wide-area traffic is generated by many different applications Simulation/testbed testbed experiments should generate traffic mixes Does the source- level model construction paradigm scale to other applications? Obtain a trace of TCP/IP headers from a network link (Current ethics dictate that tracing beyond TCP header is inappropriate without users permission) Use changes in TCP sequence numbers (and knowledge of ) to infer application data unit (ADU) boundaries Compute empirical distributions of the ADUs (and higher-level objects) of interest 15 16

5 Ex: Model Construction inference from TCP packet headers Ex: Model Construction inference from TCP packet headers TIME Caller SYN SYN- - - seqno 305 ackno 1 seqno 1 ackno 305 seqno 1461 ackno 305 seqno 2876 ackno 305 seqno 305 ackno 2876 Callee bytes TIME Caller SYN SYN- - - seqno 305 ackno 1 seqno 1 ackno 305 seqno 1461 ackno 305 seqno 2876 ackno 305 seqno 305 ackno 2876 Callee 2876 bytes 18 Ex: Model Construction inference from TCP packet headers Source-Level Traffic Generation Do current model generation methods scale? Web Browser Request 305 bytes TIME SYN SYN- - - seqno 1 ackno 305 seqno 305 ackno 2876 Web Server Response 2,876 bytes 19 Implicit assumptions behind application modeling techniques: We can identify the application corresponding to a given flow recorded during a measurement period We can identify traffic generated by (instances) of the same application We know the operation of the application-level protocol What s s needed is an application-independent method of constructing source-level traffic models We need to be able to construct application-level models of traffic without knowing what applications are being used or how the applications work We need to construct source-level models of application mixes seen in real networks 20

6 Caller SYN SYN- TCP Connection Signatures Recording communication patterns seq 1461 ack 305 seq 2876 ack seq 305 ack 1 seq 1 ack 305 seq 305 ack 2876 Callee Web Browser SYN SYN- seq 305 ack 1 seq 1461 ack 305 seq 2876 ack Request 305 bytes seq 1 ack 305 Response 2,876 bytes seq 305 ack 2876 Web Server 21 Web Client Web Server TCP Connection Signatures Recording communication patterns Communication pattern was (a( 1, b 1 ) E.g.,, (305 bytes, 2,876 bytes) Request 305 bytes Response 2,876 bytes TIME 22 TCP Connection Signatures The a-b-t trace model We model a TCP connection as a-b-t vector: ((a 1, b 1, t 1 ), (a 2, b 2, t 2 ),,, (a( e, b e, )) where e is the number of epochs Epoch 1 Epoch 2 Epoch 3 The a-b-t Trace Model Typical Communication Patterns SMTP (send ) Telnet (remote terminal) Caller a 1 bytes a 2 bytes a 3 bytes Callee b 1 bytes b 2 bytes b 3 bytes FTP- (file download) t 1 seconds t 2 seconds 23 24

7 The a-b-t Trace Model Abstract Source-level Modeling Source-Level Trace Replay Traffic generation in a laboratory testbed UNC Internet Anonymized Packet Header Trace Processing Source-level Trace: Set of Connection Vectors Per-Flow Filtering time Aggregate Packet Arrivals Level Workload Partitioning Source-level Performance Metrics from UNC from Internet UNC from Inet 2,500 bytes 4,800 bytes 800 b 1,800 b Single-Flow Packet Arrivals Abstract Source Level Our Approach TESTBED Traffic Generators Traffic Generators Web Request HTML Source Req. Image Application Level Synthetic Packet Header Trace Source-Level Trace Replay Traffic generation in a laboratory testbed Load can be scaled up/down by compressing TCP connection start times Generation of Synthetic Traffic Outline The synthetic traffic generation problem what is it and why should you care? A signature-based approach to modeling TCP The a-b-t trace modeling paradigm Synthetic traffic generation from traces to replayed The tmix traffic generator Validation of synthetically generated traffic Validation of intrinsic properties Validation of extrinsic properties 27 28

8 Validation of Generated Traffic Approach Acquire a packet header trace of TCP from an Internet link Derive a new trace T of a-b-t connection vectors from the Internet trace Use T to generate synthetic traffic in a laboratory testbed using the tmix traffic generator Record a packet header trace of the generated traffic on the testbed link Compare various properties of the traffic in the testbed trace with the corresponding traffic from the Internet link 29 Validation of Generated Traffic Validation of synthetic Abilene traffic Testbed: : An Internet emulation facility 150+ end-systems, 10/100/1,000 Mbps connectivity, dozens of switches routers Input trace: A 2-hour Abilene trace from the NLANR repository 334 billion bytes, 404 million packets, 5 million TCP 30 Comparison of Intrinsic Properties Distribution of a and b sizes (body) Comparison of Intrinsic Properties Distribution of a and b sizes (tail) 31 32

9 Comparison of Intrinsic Properties Distribution of number of epochs/connection Comparison of Intrinsic Properties Distribution of inter-epoch times Validation of Generated Traffic Intrinsic v. extrinsic properties Comparison of Extrinsic Properties Throughput Abilene westbound Intrinsis UNIVARIATE properties a tot a max a min a mean a xq a stdev a cor.x a hx a vs a vm b tot b max b min b mean b xq b stdev b cor cor.x b hx b vs b vm t tot t max t min t mean t xq t stdev t cor cor.x t hx t vs t vm Total bytes/time Max bytes/time Min bytes/time Mean bytes/time 1 st 2 nd nd 3 rd rd Quartiles Homogeneity Total Variation Max First Diff. MULTIVARIATE cor.a.b cor.a.t cor.b.t cor.a.b.x crc.a.b Standard Deviation Cross-correlations.x Autocorrelations dir1.a.b dir2.a.b e Correlations cor.a.t.x Lagged Correlations crc.a.t Directionality UNIVARIATE cor.b.t.x crc.b.t No. of Epochs 35 36

10 Comparison of Extrinsic Properties Distribution of pkt sizes Abilene westbound Comparison of Extrinsic Properties Throughput Abilene eastbound Comparison of Extrinsic Properties Distribution of pkt sizes Abilene eastbound Comparison of Extrinsic Properties Packet arrivals/10 ms Abilene eastbound Data from original Abilene trace Data from testbed replay of Abilene trace 39 40

11 Comparison of Extrinsic Properties Wavelet spectrum Abilene westbound Comparison of Extrinsic Properties Wavelet spectrum Abilene eastbound N=3 [ (j 1,j 2 )= (8,16), α est = 1.15, Q= ], D init y j H = C.I. 95% [1.0487, ] Octave j N=3 [ (j 1,j 2 )= (9,16), α est = 1.21, Q= ], D init H = C.I. 95% [1.0715, ] 18 y 16 j Octave j N=3 [ (j 1,j 2 )= (8,16), α est = 1.09, Q= ], D init y j H = C.I. 95% [1.0199, ] Octave j N=3 [ (j 1,j 2 )= (9,16), α est = 1.22, Q= ], D init 22 H = C.I. 95% [1.0741, ] y j Octave j Data from original Abilene trace Data from testbed replay of Abilene trace Data from original Abilene trace Data from testbed replay of Abilene trace Synthetic Traffic Generation Summary Simulation is the backbone of networking research Too little attention is paid to realistic traffic generation How can we derive fundamental truths from today s simulation results? We advocate modeling traffic as patterns of data exchange patterns within TCP Application-independent, network-independent Development of new, flexible traffic generators Cluster-based synthetic traffic generation Validation Attempting to understand and articulate which properties of traffic matter most and how they can be controlled Future Work Lots! Plenty more variables to understand: Alternate scaling paradigms (e.g( e.g.,., sampling) Effect of tracing duration (minutes or hours?) Effects of end-system parameters on extrinsic properties Still have yet to experiment with UDP modeling UDP 43 44

Experimental Networking Research and Performance Evaluation

Experimental Networking Research and Performance Evaluation Generating Realistic TCP Workloads Felix Hernandez-Campos Ph. D. Candidate Dept. of Computer Science Univ. of North Carolina at Chapel Hill Recipient of the 2001 CMG Fellowship Joint work with F. Donelson

More information

From Traffic Measurement to Realistic Workload Generation

From Traffic Measurement to Realistic Workload Generation From Traffic Measurement to Realistic Workload Generation Felix Hernandez-Campos Ph. D. Candidate Dept. of Computer Science Univ. of North Carolina at Chapel Hill Joint work with F. Donelson Smith and

More information

Tracking the Evolution of Web Traffic:

Tracking the Evolution of Web Traffic: The University of North Carolina at Chapel Hill Department of Computer Science 11 th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)

More information

Differential Congestion Notification: Taming the Elephants

Differential Congestion Notification: Taming the Elephants Differential Congestion Notification: Taming the Elephants Long Le, Jay Kikat, Kevin Jeffay, and Don Smith Department of Computer science University of North Carolina at Chapel Hill http://www.cs.unc.edu/research/dirt

More information

Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation

Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation Jay Aikat*, Shaddi Hasan +, Kevin Jeffay*, and F. Donelson Smith* *University of North Carolina at Chapel

More information

Tuning RED for Web Traffic

Tuning RED for Web Traffic Tuning RED for Web Traffic Mikkel Christiansen, Kevin Jeffay, David Ott, Donelson Smith UNC, Chapel Hill SIGCOMM 2000, Stockholm subsequently IEEE/ACM Transactions on Networking Vol. 9, No. 3 (June 2001)

More information

GENERATING REALISTIC TCP WORKLOADS

GENERATING REALISTIC TCP WORKLOADS GENERATING REALISTIC TCP WORKLOADS F. Hernández-Campos F. Donelson Smith K. Jeffay Department of Computer Science University of North Carolina at Chapel Hill {fhernand,smithfd,jeffay}@cs.unc.edu Abstract

More information

Understanding Patterns of TCP Connection Usage with Statistical Clustering

Understanding Patterns of TCP Connection Usage with Statistical Clustering Understanding Patterns of TCP Connection Usage with Statistical Clustering Félix Hernández-Campos Andrew B. Nobel 2 F. Donelson Smith Kevin Jeffay Department of Computer Science 2 Department of Statistics

More information

Empirical Models of TCP and UDP End User Network Traffic from Data Analysis

Empirical Models of TCP and UDP End User Network Traffic from Data Analysis Empirical Models of TCP and UDP End User Network Traffic from NETI@home Data Analysis Charles R. Simpson, Jr., Dheeraj Reddy, George F. Riley School of Electrical and Computer Engineering Georgia Institute

More information

Exposing server performance to network managers through passive network measurements

Exposing server performance to network managers through passive network measurements Exposing server performance to network managers through passive network measurements Jeff Terrell Dept. of Computer Science University of North Carolina at Chapel Hill October 19, 2008 1 databases web

More information

GENERATING Tmix-BASED TCP APPLICATION. WORKLOADS IN NS-2 AND GTNetS. A Thesis. Presented to. the Graduate School of. Clemson University

GENERATING Tmix-BASED TCP APPLICATION. WORKLOADS IN NS-2 AND GTNetS. A Thesis. Presented to. the Graduate School of. Clemson University GENERATING Tmix-BASED TCP APPLICATION WORKLOADS IN NS-2 AND GTNetS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science

More information

Fall 2012: FCM 708 Bridge Foundation I

Fall 2012: FCM 708 Bridge Foundation I Fall 2012: FCM 708 Bridge Foundation I Prof. Shamik Sengupta Instructor s Website: http://jjcweb.jjay.cuny.edu/ssengupta/ Blackboard Website: https://bbhosted.cuny.edu/ Intro to Computer Networking Transport

More information

Congestion Avoidance

Congestion Avoidance COMP 631: NETWORKED & DISTRIBUTED SYSTEMS Congestion Avoidance Jasleen Kaur Fall 2016 1 Avoiding Congestion: Strategies TCP s strategy: congestion control Ø Control congestion once it occurs Repeatedly

More information

A Better-Than-Best Effort Forwarding Service For UDP

A Better-Than-Best Effort Forwarding Service For UDP University of North Carolina at Chapel Hill A Better-Than-Best Effort Forwarding Service For UDP Lightweight Active Queue Management for Multimedia Networking Kevin Jeffay Mark Parris Don Smith http://www.cs.unc.edu/reseach/dirt

More information

Christos Papadopoulos

Christos Papadopoulos CS557: Measurements Christos Papadopoulos Adapted by Lorenzo De Carli Outline End-to-End Packet Dynamics - Paxon99b Wireless measurements - Aguayo04a Note: both these studies are old, so the results have

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

Understanding Patterns of TCP Connection Usage with Statistical Clustering

Understanding Patterns of TCP Connection Usage with Statistical Clustering Th UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Undrstanding Pattrns of TCP Connction Usag with Statistical Clustring Félix Hrnándz-Campos Kvin Jffay Don Smith Dpartmnt of Computr Scinc Andrw Nobl Dpartmnt

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle Dissertation Defense May 14, 2003 Advisor: Kevin Jeffay Research Question Can the use of exact timing information improve

More information

Passive, Streaming Inference of TCP Connection Structure for Network Server Management

Passive, Streaming Inference of TCP Connection Structure for Network Server Management Passive, Streaming Inference of TCP Connection Structure for Network Server Management Jeff Terrell,KevinJeffay,F.DonelsonSmith, Jim Gogan 2, and Joni Keller 2 Department of Computer Science 2 ITS Communication

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications Eighth Edition by William Stallings Chap2: 1 Need For Protocol Architecture data exchange can involve

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Impact of bandwidth-delay product and non-responsive flows on the performance of queue management schemes

Impact of bandwidth-delay product and non-responsive flows on the performance of queue management schemes Impact of bandwidth-delay product and non-responsive flows on the performance of queue management schemes Zhili Zhao Dept. of Elec. Engg., 214 Zachry College Station, TX 77843-3128 A. L. Narasimha Reddy

More information

CSE 4/589 Midterm Review. Hengtong Zhang SUNY Buffalo 10/30/2018

CSE 4/589 Midterm Review. Hengtong Zhang SUNY Buffalo 10/30/2018 CSE 4/589 Midterm Review Hengtong Zhang SUNY Buffalo 10/30/2018 Chapter 1 overview: what s the Internet? what s a protocol? network edge; hosts, access net, physical media network core: packet/circuit

More information

What TCP/IP Protocol Headers Can Tell Us About the Web*

What TCP/IP Protocol Headers Can Tell Us About the Web* What TCP/IP Protocol Headers Can Tell Us About the Web* F. Donelson Smith Félix Hernández Campos Kevin Jeffay David Ott University of North Carolina at Chapel Hill Department of Computer Science Chapel

More information

EXAM TCP/IP NETWORKING Duration: 3 hours

EXAM TCP/IP NETWORKING Duration: 3 hours SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours Jean-Yves Le Boudec January 2013 INSTRUCTIONS 1. Write your solution into this document and return it to us (you do not need to

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

Linux Networking: tcp. TCP context and interfaces

Linux Networking: tcp. TCP context and interfaces Linux Networking: tcp David Morgan TCP context and interfaces Computer A Computer B application process application process data data data data TCP process TCP process a network 1 TCP purposes and features

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

Content distribution networks

Content distribution networks Content distribution networks v challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users? v option 2: store/serve multiple copies of videos at

More information

Appendix B. Standards-Track TCP Evaluation

Appendix B. Standards-Track TCP Evaluation 215 Appendix B Standards-Track TCP Evaluation In this appendix, I present the results of a study of standards-track TCP error recovery and queue management mechanisms. I consider standards-track TCP error

More information

Department of Computer and IT Engineering University of Kurdistan. Transport Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Transport Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Transport Layer By: Dr. Alireza Abdollahpouri TCP/IP protocol suite 2 Transport Layer The transport layer is responsible for process-to-process

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 10 Transport Layer Continued Spring 2018 Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Last Time.

More information

Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet

Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet Aamir Shaikh and Kenneth J. Christensen Department of Computer Science and Engineering University of South Florida Tampa,

More information

Overview Content Delivery Computer Networking Lecture 15: The Web Peter Steenkiste. Fall 2016

Overview Content Delivery Computer Networking Lecture 15: The Web Peter Steenkiste. Fall 2016 Overview Content Delivery 15-441 15-441 Computer Networking 15-641 Lecture 15: The Web Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Web Protocol interactions HTTP versions Caching Cookies

More information

Part 1: Introduction. Goal: Review of how the Internet works Overview

Part 1: Introduction. Goal: Review of how the Internet works Overview Part 1: Introduction Goal: Review of how the Internet works Overview Get context Get overview, feel of the Internet Application layer protocols and addressing Network layer / Routing Link layer / Example

More information

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat BITAG TWG Boulder, CO February 27, 2013 Kathleen Nichols Van Jacobson Background The persistently full buffer problem, now called bufferbloat,

More information

Intro to LAN/WAN. Transport Layer

Intro to LAN/WAN. Transport Layer Intro to LAN/WAN Transport Layer Transport Layer Topics Introduction (6.1) Elements of Transport Protocols (6.2) Internet Transport Protocols: TDP (6.5) Internet Transport Protocols: UDP (6.4) socket interface

More information

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers 2007, Jae-sul Lee. All rights reserved. 1 Agenda 11.1 TCP/IP Transport Layer 11.2 The Application Layer What does the TCP/IP transport layer

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Performance of Multimedia Delivery on the Internet Today

COMP 249 Advanced Distributed Systems Multimedia Networking. Performance of Multimedia Delivery on the Internet Today COMP 249 Advanced Distributed Systems Multimedia Networking Performance of Multimedia Delivery on the Internet Today Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill

More information

Long-Range Dependence in a Changing Internet Traffic Mix

Long-Range Dependence in a Changing Internet Traffic Mix Long-Range Dependence in a Changing Internet Traffic Mix Cheolwoo Park Statistical and Applied Mathematical Sciences Institute, RTP, NC J. S. Marron Department of Statistics and Operations Research, University

More information

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications Data and Computer Communications Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based s 1 Need For Protocol Architecture data exchange can involve complex procedures better if task broken into subtasks

More information

CPSC 826 Internetworking. Congestion Control Approaches Outline. Router-Based Congestion Control Approaches. Router-Based Approaches Papers

CPSC 826 Internetworking. Congestion Control Approaches Outline. Router-Based Congestion Control Approaches. Router-Based Approaches Papers 1 CPSC 826 Internetworking Router-Based Congestion Control Approaches Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu October 25, 2004 http://www.cs.clemson.edu/~mweigle/courses/cpsc826

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

Traffic Classification Using Visual Motifs: An Empirical Evaluation

Traffic Classification Using Visual Motifs: An Empirical Evaluation Traffic Classification Using Visual Motifs: An Empirical Evaluation Wilson Lian 1 Fabian Monrose 1 John McHugh 1,2 1 University of North Carolina at Chapel Hill 2 RedJack, LLC VizSec 2010 Overview Background

More information

BEng. (Hons) Telecommunications. Examinations for / Semester 2

BEng. (Hons) Telecommunications. Examinations for / Semester 2 BEng. (Hons) Telecommunications Cohort: BTEL/16B/FT Examinations for 2016 2017 / Semester 2 Resit Examinations for BTEL/15B/FT MODULE: NETWORKS MODULE CODE: CAN 1102C Duration: 2 ½ hours Instructions to

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - B COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - A COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

Q U E S T I O N 3 In the current version of IP (IPv4), the use of TCP and UDP headers differ in which of the following ways?

Q U E S T I O N 3 In the current version of IP (IPv4), the use of TCP and UDP headers differ in which of the following ways? Preview Test: HW 2 Test Information Description Chapter 2 Instructions Due:Oct. 17 5 PM Multiple Attempts Not allowed. This test can only be taken once. Force Completion This test can be saved and resumed

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information

A report on a few steps in the evolution of congestion control. Sally Floyd June 10, 2002 IPAM Program in Large Scale Communication Networks

A report on a few steps in the evolution of congestion control. Sally Floyd June 10, 2002 IPAM Program in Large Scale Communication Networks A report on a few steps in the evolution of congestion control Sally Floyd June 10, 2002 IPAM Program in Large Scale Communication Networks 1 Topics: High-speed TCP. Faster Start-up? AQM: Adaptive RED

More information

ch02 True/False Indicate whether the statement is true or false.

ch02 True/False Indicate whether the statement is true or false. ch02 True/False Indicate whether the statement is true or false. 1. No matter what medium connects computers on a network copper wires, fiber-optic cables, or a wireless setup the same protocol must be

More information

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup Chapter 4 Routers with Tiny Buffers: Experiments This chapter describes two sets of experiments with tiny buffers in networks: one in a testbed and the other in a real network over the Internet2 1 backbone.

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

EE 610 Part 2: Encapsulation and network utilities

EE 610 Part 2: Encapsulation and network utilities EE 610 Part 2: Encapsulation and network utilities Objective: After this experiment, the students should be able to: i. Understand the format of standard frames and packet headers. Overview: The Open Systems

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

Introduction to TCP/IP networking

Introduction to TCP/IP networking Introduction to TCP/IP networking TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute TCP : Transmission Control Protocol HTTP, FTP, ssh What is an internet? A set

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

CSC 4900 Computer Networks: End-to-End Design

CSC 4900 Computer Networks: End-to-End Design CSC 4900 Computer Networks: End-to-End Design Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review In the last two lectures, we discussed the fundamentals of networking

More information

Appendix A. Methodology

Appendix A. Methodology 193 Appendix A Methodology In this appendix, I present additional details of the evaluation of Sync-TCP described in Chapter 4. In Section A.1, I discuss decisions made in the design of the network configuration.

More information

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm QoS on Low Bandwidth High Delay Links Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm Agenda QoS Some Basics What are the characteristics of High Delay Low Bandwidth link What factors

More information

On the Deployment of AQM Algorithms in the Internet

On the Deployment of AQM Algorithms in the Internet On the Deployment of AQM Algorithms in the Internet PAWEL MROZOWSKI and ANDRZEJ CHYDZINSKI Silesian University of Technology Institute of Computer Sciences Akademicka 16, Gliwice POLAND pmrozo@go2.pl andrzej.chydzinski@polsl.pl

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

LECTURE WK4 NETWORKING

LECTURE WK4 NETWORKING LECTURE WK4 NETWORKING Workbook and Quiz Workbook o Due in WK5 o Must hand in a hard copy to the tutor as well as an online submission Quiz o In the practical class o 30mins to complete the quiz o Short,

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 14 Congestion Control Some images courtesy David Wetherall Animations by Nick McKeown and Guido Appenzeller The bad news and the good news The bad news: new

More information

Analyzing the Receiver Window Modification Scheme of TCP Queues

Analyzing the Receiver Window Modification Scheme of TCP Queues Analyzing the Receiver Window Modification Scheme of TCP Queues Visvasuresh Victor Govindaswamy University of Texas at Arlington Texas, USA victor@uta.edu Gergely Záruba University of Texas at Arlington

More information

Congestion Control Without a Startup Phase

Congestion Control Without a Startup Phase Congestion Control Without a Startup Phase Dan Liu 1, Mark Allman 2, Shudong Jin 1, Limin Wang 3 1. Case Western Reserve University, 2. International Computer Science Institute, 3. Bell Labs PFLDnet 2007

More information

ARTICLE IN PRESS. Delay-based early congestion detection and adaptation in TCP: impact on web performance

ARTICLE IN PRESS. Delay-based early congestion detection and adaptation in TCP: impact on web performance Computer Communications xx (2005) 1 14 www.elsevier.com/locate/comcom Delay-based early congestion detection and adaptation in TCP: impact on web performance Michele C. Weigle a, *, Kevin Jeffay b, F.

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

What is the difference between unicast and multicast? (P# 114)

What is the difference between unicast and multicast? (P# 114) 1 FINAL TERM FALL2011 (eagle_eye) CS610 current final term subjective all solved data by eagle_eye MY paper of CS610 COPUTER NETWORKS There were 30 MCQs Question no. 31 (Marks2) Find the class in 00000001.001011.1001.111

More information

Multimedia Networking Research at UNC. University of North Carolina at Chapel Hill. Multimedia Networking Research at UNC

Multimedia Networking Research at UNC. University of North Carolina at Chapel Hill. Multimedia Networking Research at UNC University of North Carolina at Chapel Hill Multimedia Networking Research at UNC Adaptive, Best-Effort Congestion Control Mechanisms for Real-Time Communications on the Internet Kevin Jeffay F. Donelson

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information

Data Center TCP (DCTCP)

Data Center TCP (DCTCP) Data Center TCP (DCTCP) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Microsoft Research Stanford University 1

More information

Improving Internet Performance through Traffic Managers

Improving Internet Performance through Traffic Managers Improving Internet Performance through Traffic Managers Ibrahim Matta Computer Science Department Boston University Computer Science A Glimpse of Current Internet b b b b Alice c TCP b (Transmission Control

More information

arxiv: v1 [stat.ap] 6 Oct 2010

arxiv: v1 [stat.ap] 6 Oct 2010 The Annals of Applied Statistics 2010, Vol. 4, No. 1, 26 52 DOI: 10.1214/09-AOAS268 c Institute of Mathematical Statistics, 2010 ANALYSIS OF DEPENDENCE AMONG SIZE, RATE AND DURATION IN INTERNET FLOWS arxiv:1010.1108v1

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Introduction Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Computer Networking A background of important areas

More information

Congestion and its control: Broadband access networks. David Clark MIT CFP October 2008

Congestion and its control: Broadband access networks. David Clark MIT CFP October 2008 Congestion and its control: Broadband access networks David Clark MIT CFP October 2008 Outline Quick review/definition of congestion. Quick review of historical context. Quick review of access architecture.

More information

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking 1 Review of TCP/IP working Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path Frame Path Chapter 3 Client Host Trunk Link Server Host Panko, Corporate

More information

Introduction to Information Science and Technology 2017 Networking II. Sören Schwertfeger 师泽仁

Introduction to Information Science and Technology 2017 Networking II. Sören Schwertfeger 师泽仁 II Sören Schwertfeger 师泽仁 Outline Review Network Layer Routing Transport Layer Applications HTTP Demos Internet: Huge network of networks Billions of hosts (computers) Internet Structure Network Edge:

More information

Chapter 11: Wide-Area Networks and the Internet

Chapter 11: Wide-Area Networks and the Internet Chapter 11: Wide-Area Networks and the Internet MULTIPLE CHOICE 1. MAN stands for: a. Manchester Access Network c. Metropolitan-Area Network b. Multiple-Area Network d. Multiple Access Network 2. Packet

More information

Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks. Congestion Control in Today s Internet

Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks. Congestion Control in Today s Internet Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks Ion Stoica CMU Scott Shenker Xerox PARC Hui Zhang CMU Congestion Control in Today s Internet Rely

More information

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions Jean-Yves Le Boudec January 2016 INSTRUCTIONS 1. Write your solution into this document and return it to us (you

More information

Differential Congestion Notification: Taming the Elephants

Differential Congestion Notification: Taming the Elephants Differential Congestion Notification: Taming the Elephants Long Le Jay Aikat Kevin Jeffay F. Donelson Smith Department of Computer Science University of North Carolina at Chapel Hill http://www.cs.unc.edu/research/dirt

More information

CS 557 Congestion and Complexity

CS 557 Congestion and Complexity CS 557 Congestion and Complexity Observations on the Dynamics of a Congestion Control Algorithm: The Effects of Two-Way Traffic Zhang, Shenker, and Clark, 1991 Spring 2013 The Story So Far. Transport layer:

More information

The Evolution of Quality-of-Service on the Internet. The Evolution of Quality-of-Service. on the Internet

The Evolution of Quality-of-Service on the Internet. The Evolution of Quality-of-Service. on the Internet University of North Carolina at Chapel Hill Research Context Network support for immersive DVEs The Evolution of Quality-of-Service Kevin Jeffay Department of Computer Science Feruary 2001 1 The Office

More information

MUD: Send me your top 1 3 questions on this lecture

MUD: Send me your top 1 3 questions on this lecture Administrivia Review 1 due tomorrow Email your reviews to me Office hours on Thursdays 10 12 MUD: Send me your top 1 3 questions on this lecture Guest lectures next week by Prof. Richard Martin Class slides

More information

Carnegie Mellon Computer Science Department Spring 2015 Midterm Exam

Carnegie Mellon Computer Science Department Spring 2015 Midterm Exam Carnegie Mellon Computer Science Department. 15-744 Spring 2015 Midterm Exam Name: Andrew ID: INSTRUCTIONS: There are 7 pages (numbered at the bottom). Make sure you have all of them. Please write your

More information

Rapid Model Parameterization from Traffic Measurements

Rapid Model Parameterization from Traffic Measurements Rapid Model Parameterization from Traffic Measurements KUN-CHAN LAN and JOHN HEIDEMANN USC Information Sciences Institute The utility of simulations and analysis heavily relies on good models of network

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 16 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t Announcements Network Performance: Queuing Additional reading for today s lecture: Peterson & Davie 3.4 EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson As: Dilip

More information

CPEG514 Advanced Computer Networks. Atef Abu Salim University of Nizwa Spring 2013/2014

CPEG514 Advanced Computer Networks. Atef Abu Salim University of Nizwa Spring 2013/2014 CPEG514 Advanced Computer Networks Atef Abu Salim University of Nizwa Spring 2013/2014 Today s Class Topics Course Syllabus Computer Networks LANs and WANs The Internet Protocols, Layers and Interfaces

More information

The Importance of Being Opportunistic

The Importance of Being Opportunistic High Performance Switching and Routing Telecom Center Workshop: Sept 4, 1997. The Importance of Being Opportunistic Sachin Katti Dina Katabi, Wenjun Hu, Hariharan Rahul, and Muriel Medard Bandwidth is

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Winter 2019 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information