Exposing server performance to network managers through passive network measurements

Size: px
Start display at page:

Download "Exposing server performance to network managers through passive network measurements"

Transcription

1 Exposing server performance to network managers through passive network measurements Jeff Terrell Dept. of Computer Science University of North Carolina at Chapel Hill October 19,

2 databases web secure web Aggregation Point Server Farm Internet storage portal mail Problem: Monitor server performance 1. passively (no instrumenting or probes) 2. pervasively (all servers) 3. in real-time 2

3 TCP/IP headers Monitoring Traffic Router/Firewall Server Farm packets packets Clients Span port (passive) Aggregation point (pervasive) Analysis Gigabit Streaming (real-time) Output 3

4 Monitoring Traffic Local Net Border link Internet link tap (passive) TCP/IP headers Analysis Output Aggregation point (pervasive) Output includes: real-time display alarms/notifications forensic analysis 4

5 databases web secure web Aggregation Point Server Farm Internet storage portal mail SSL traffic (i.e. no accessible payload) 5

6 TCP Connection Vectors A connection vector is a representation of the application-level dialog in a TCP connection. For example: Client: A A time Server: T B T T B Response Times Client-side think-times 6

7 Constructing connection vectors client monitor server client monitor server SYN SYN/ACK ACK SEQ= think-times relative to monitor time ACK=372 SEQ=1460 ACK=1460 SEQ=2920 SEQ=3030 time 3030 ACK=3030 SEQ= ACK=712 SEQ=3730 ACK=3730 FIN 700 (Connection closes...) 7

8 Needed Measurements Application-level measurements from TCP/IP headers: server response time count of application-level requests/responses per server (i.e. server load) per connection (i.e. dialog length) size of application-level requests/responses connection duration 8

9 Viability of Netflow What can Netflow provide? server response time - No count of application-level requests/responses - No per server (i.e. server load) - sort of per connection (i.e. dialog length) - No size of application-level requests/responses - No connection duration - sort of 9

10 Previous approach Previous work by Felix Hernandez-Campos on building connection vectors. Internet Capture Offline Analysis Local Net Packet header traces (on disk) Connection vectors (on disk) 10

11 Our approach Our innovation: build connection vectors online, with a single pass. Internet 1 Gbps fiber link 1.4 GHz Xeon 1.5 GB RAM No packet loss Now, no intermediate files Capability for continuous measurement Capture/Analysis Elements of connection vectors available immediately Local Net Connection vectors Capability for online understanding of server performance 11

12 adudump The tool we wrote to do this is called adudump. Here s the output of adudump for an example connection: TYPE TIMESTAMP LOCAL_HOST DIR REMOTE_HOST OTHER_INFO SYN: < RTT: > SEQ: < ADU: < SEQ ADU: > SEQ ADU: < SEQ ADU: > SEQ END: < computing all kinds of things in real-time...contextual information as well as ADUs... 12

13 Data For this paper: 66 days 1.54 TB (uncompressed) 16.8 billion requests and responses 1.6 billion connections Overall: 180 days 3.35 TB (uncompressed) 34.8 billion requests and responses 4.0 billion connections 13

14 Case study: the incident databases web secure web Aggregation Point Server Farm Internet storage portal mail Thursday, April 10th, 4:28pm Representative, though manual analysis 14

15 Case study: the issue avg. response time over 15 minutes (s) weeks ago last week this week 0 Fri Sat Sun Mon Tue Wed Thu Date/time (15-minute intervals) 15

16 Case study: the issue cumulative probability comprise ~35% of the distribution. That is, 35% of response times are < 10 ms. response times < 10 ms Server s response time (s) 16

17 Case study: the issue 1 cumulative probability ~95% of response times......are < 1s Server s response time (s) 17

18 Case study: the issue cumulative probability Server s response time (s) 18

19 Case study: the issue cumulative probability Historical (all prior to incident) Historical (Thursday 3:28-4:28 pm) Server s response time (s) So, generally faster responses on Tuesday afternoons (i.e. lower response times). 19

20 Case study: the issue cumulative probability Server s response time (s) So, generally slower responses during the hour of the incident. 20

21 Case study: investigation What could cause this incident? Larger requests (more processing required) Larger responses (implying more processing) More requests per connection (more work) More requests per time unit (more work) 21

22 Case study: investigation cumulative probability Before - all Before - hours Hour of incident Client s request size (bytes) 22

23 Case study: investigation What could cause this incident? Larger requests (more processing required) Larger responses (implying more processing) More requests per connection (more work) More requests per time unit (more work) 23

24 Case study: investigation cumulative probability Before - all Before - hours Hour of incident e+06 Server s response size (bytes) 24

25 Case study: investigation What could cause this incident? Larger requests (more processing required) Larger responses (implying more processing) More requests per connection (more work) More requests per time unit (more work) 25

26 Case study: investigation 1 cumulative probability Before - all Before - hours Hour of incident Epochs per connection 26

27 Case study: investigation What could cause this incident? Larger requests (more processing required) Larger responses (implying more processing) More requests per connection (more work) More requests per time unit (more work) 27

28 Case study: investigation # requests per hour point is that this is an app-level measurement of load...not that we couldn t have figured out high load via other mechanisms. 0 Mar 13 Mar 20 Mar 27 Apr 03 Apr 10 Date 28

29 Case study: investigation time Bin 1 Bin 2 Bin

30 Case study: investigation 14 median w/ Q1 and Q3 - historical median response time (s) i.e. the median of bin 3 error bars are first and third quartile response time ordinal 30

31 Case study: investigation 14 median w/ Q1 and Q3 - historical median w/ Q1 and Q3 - incident 12 median response time (s) response time ordinal 31

32 Case study: investigation median response time (s) median w/ Q1 and Q3 - historical median w/ Q1 and Q3 - incident 94% of connections have < 3 responses (~55% have exactly 3) response time ordinal 32

33 Conclusions Achieved monitoring of server performance: for all servers, of any type in real-time, at gigabit speeds, on older hardware, completely passively. adudump data provides diagnostic insight into performance issues. 33

34 Questions? 34

Tracking the Evolution of Web Traffic:

Tracking the Evolution of Web Traffic: The University of North Carolina at Chapel Hill Department of Computer Science 11 th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)

More information

Passive, Streaming Inference of TCP Connection Structure for Network Server Management

Passive, Streaming Inference of TCP Connection Structure for Network Server Management Passive, Streaming Inference of TCP Connection Structure for Network Server Management Jeff Terrell,KevinJeffay,F.DonelsonSmith, Jim Gogan 2, and Joni Keller 2 Department of Computer Science 2 ITS Communication

More information

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative 1. What is the IP address and TCP port number used by your client computer (source) to transfer the file to spinlab.wpi.edu? My computer is at 10.211.55.3. The source port is 49247. See screenshot below.

More information

Experimental Networking Research and Performance Evaluation

Experimental Networking Research and Performance Evaluation Generating Realistic TCP Workloads Felix Hernandez-Campos Ph. D. Candidate Dept. of Computer Science Univ. of North Carolina at Chapel Hill Recipient of the 2001 CMG Fellowship Joint work with F. Donelson

More information

A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic

A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic Félix Hernández-Campos ndez-campos Kevin Jeffay Don Smith Department

More information

Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation

Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation Jay Aikat*, Shaddi Hasan +, Kevin Jeffay*, and F. Donelson Smith* *University of North Carolina at Chapel

More information

From Traffic Measurement to Realistic Workload Generation

From Traffic Measurement to Realistic Workload Generation From Traffic Measurement to Realistic Workload Generation Felix Hernandez-Campos Ph. D. Candidate Dept. of Computer Science Univ. of North Carolina at Chapel Hill Joint work with F. Donelson Smith and

More information

On the State of ECN and TCP Options on the Internet

On the State of ECN and TCP Options on the Internet On the State of ECN and TCP Options on the Internet PAM 2013, March 19, Hong Kong Mirja Kühlewind Sebastian Neuner Brian

More information

AIMMS Function Reference - Date Time Related Identifiers

AIMMS Function Reference - Date Time Related Identifiers AIMMS Function Reference - Date Time Related Identifiers This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com Aimms 3.13 Date-Time

More information

Long-Range Dependence in a Changing Internet Traffic Mix

Long-Range Dependence in a Changing Internet Traffic Mix Long-Range Dependence in a Changing Internet Traffic Mix Cheolwoo Park Statistical and Applied Mathematical Sciences Institute, RTP, NC J. S. Marron Department of Statistics and Operations Research, University

More information

CPSC 641: WAN Measurement. Carey Williamson Department of Computer Science University of Calgary

CPSC 641: WAN Measurement. Carey Williamson Department of Computer Science University of Calgary CPSC 641: WAN Measurement Carey Williamson Department of Computer Science University of Calgary WAN Traffic Measurements There have been several studies of wide area network traffic (i.e., Internet traffic)

More information

Transport Layer Review

Transport Layer Review Transport Layer Review Mahalingam Mississippi State University, MS October 1, 2014 Transport Layer Functions Distinguish between different application instances through port numbers Make it easy for applications

More information

GigaStor Expandable. User Guide

GigaStor Expandable. User Guide GigaStor Expandable User Guide Table of Contents Chapter 1: Getting Started... 1 Getting started using your GigaStor... 1 What is the GigaStor?...2 Using the GigaStor Control Panel...3 Non-GigaStor-specific

More information

Monitoring and Analysis

Monitoring and Analysis CHAPTER 3 Cisco Prime Network Analysis Module 5.1 has two types of dashboards: One type is the summary views found under the Monitor menu, and the other type is the over time views found under the Analyze

More information

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Chapter 7 - Network Measurements Introduction Architecture & Mechanisms

More information

APPLICATION ANALYTICS. Cross-stack analysis of the user experience for critical SaaS, unified communications and custom enterprise applications

APPLICATION ANALYTICS. Cross-stack analysis of the user experience for critical SaaS, unified communications and custom enterprise applications USER APPLICATION ANALYTICS Cross-stack analysis of the user experience for critical SaaS, unified communications and custom enterprise applications USER APPLICATION ANALYTICS Nyansa user application analytics

More information

Single-pass restore after a media failure. Caetano Sauer, Goetz Graefe, Theo Härder

Single-pass restore after a media failure. Caetano Sauer, Goetz Graefe, Theo Härder Single-pass restore after a media failure Caetano Sauer, Goetz Graefe, Theo Härder 20% of drives fail after 4 years High failure rate on first year (factory defects) Expectation of 50% for 6 years https://www.backblaze.com/blog/how-long-do-disk-drives-last/

More information

Toward Efficient Querying of Compressed Network Payloads!

Toward Efficient Querying of Compressed Network Payloads! Toward Efficient Querying of Compressed Network Payloads By Teryl Taylor and Fabian Monrose University of North Carolina at Chapel Hill Scott E. Coull and John McHugh RedJack Motivation Get /BadExe Please

More information

What TCP/IP Protocol Headers Can Tell Us About the Web*

What TCP/IP Protocol Headers Can Tell Us About the Web* What TCP/IP Protocol Headers Can Tell Us About the Web* F. Donelson Smith Félix Hernández Campos Kevin Jeffay David Ott University of North Carolina at Chapel Hill Department of Computer Science Chapel

More information

T U M. Building a Time Machine for Efficient Recording and Retrieval of High-Volume Network Traffic

T U M. Building a Time Machine for Efficient Recording and Retrieval of High-Volume Network Traffic T U M I N S T I T U T F Ü R I N F O R M A T I K Building a Time Machine for Efficient Recording and Retrieval of High-Volume Network Traffic Stefan Kornexl, Vern Paxson, Holger Dreger, Anja Feldmann, Robin

More information

Flow Measurement. For IT, Security and IoT/ICS. Pavel Minařík, Chief Technology Officer EMITEC, Swiss Test and Measurement Day 20 th April 2018

Flow Measurement. For IT, Security and IoT/ICS. Pavel Minařík, Chief Technology Officer EMITEC, Swiss Test and Measurement Day 20 th April 2018 Flow Measurement For IT, Security and IoT/ICS Pavel Minařík, Chief Technology Officer EMITEC, Swiss Test and Measurement Day 20 th April 2018 What is Flow Data? Modern method for network monitoring flow

More information

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581)

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) : Computer Networks Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) TCP as seen from above the socket The TCP socket interface consists of: Commands to start

More information

Flows at Masaryk University Brno

Flows at Masaryk University Brno Flows at Masaryk University Brno Jan Vykopal Masaryk University Institute of Computer Science GEANT3/NA3/T4 meeting October 21st, 2009, Belgrade Masaryk University, Brno, Czech Republic The 2nd largest

More information

Problem Set 7 Due: Start of Class, November 2

Problem Set 7 Due: Start of Class, November 2 CS242 Computer Networks Handout # 14 Randy Shull October 26, 2017 Wellesley College Problem Set 7 Due: Start of Class, November 2 Reading: Kurose & Ross, Sections 3.6, 3.7, 3.8 Wireshark Lab [26] In these

More information

PROVISIONAL EXAMINATION TIMETABLE JANUARY 2017

PROVISIONAL EXAMINATION TIMETABLE JANUARY 2017 CAMBRIDGE NATIONALS, FSMQ, LEVEL 1 & 2 CERTIFICATE, LEVEL 2 AWARD, LEVEL 3 CERTIFICATE EXAMINATIONS, PRINCIPAL LEARNING AND PROJECTS PROVISIONAL EXAMINATION TIMETABLE www.ocr.org.uk Cambridge Nationals,

More information

Wire Speed User Guide

Wire Speed User Guide GigaStor Expandable Wire Speed User Guide Table of Contents Chapter 1: Getting started... 6 Getting started using your GigaStor...6 What is the GigaStor?... 8 Using the GigaStor Control Panel... 8 Non-GigaStor-specific

More information

BatteryStats.com Page 1 of 9

BatteryStats.com Page 1 of 9 [localhost:~] weiher% date >> /Users/weiher/Documents/Terminal- Unix/BatteryStats.Dat [localhost:~] weiher% ioreg -l grep -i IOBatteryInfo >> /Users/weiher/Documents/Terminal-Unix/BatteryStats.Dat [localhost:~]

More information

Traffic Classification Using Visual Motifs: An Empirical Evaluation

Traffic Classification Using Visual Motifs: An Empirical Evaluation Traffic Classification Using Visual Motifs: An Empirical Evaluation Wilson Lian 1 Fabian Monrose 1 John McHugh 1,2 1 University of North Carolina at Chapel Hill 2 RedJack, LLC VizSec 2010 Overview Background

More information

The Transport Layer: TCP & Reliable Data Transfer

The Transport Layer: TCP & Reliable Data Transfer The Transport Layer: TCP & Reliable Data Transfer Smith College, CSC 249 February 15, 2018 1 Chapter 3: Transport Layer q TCP Transport layer services: v Multiplexing/demultiplexing v Connection management

More information

Scheduling. Scheduling Tasks At Creation Time CHAPTER

Scheduling. Scheduling Tasks At Creation Time CHAPTER CHAPTER 13 This chapter explains the scheduling choices available when creating tasks and when scheduling tasks that have already been created. Tasks At Creation Time The tasks that have the scheduling

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Dr. Nils

More information

FortiTester Handbook VERSION 2.4.1

FortiTester Handbook VERSION 2.4.1 FortiTester Handbook VERSION 2.4.1 FORTINET DOCUMENT LIBRARY http://docs.fortinet.com FORTINET VIDEO GUIDE http://video.fortinet.com FORTINET BLOG https://blog.fortinet.com CUSTOMER SERVICE & SUPPORT https://support.fortinet.com

More information

Exploring TCP and UDP based on Kurose and Ross (Computer Networking: A Top-Down Approach) May 15, 2018

Exploring TCP and UDP based on Kurose and Ross (Computer Networking: A Top-Down Approach) May 15, 2018 Exploring TCP and UDP based on Kurose and Ross (Computer Networking: A Top-Down Approach) May 15, 2018 Exploring TCP Description Capturing a bulk TCP transfer from your computer to a remote server. In

More information

ECE 435 Network Engineering Lecture 9

ECE 435 Network Engineering Lecture 9 ECE 435 Network Engineering Lecture 9 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 2 October 2018 Announcements HW#4 was posted, due Thursday 1 HW#3 Review md5sum/encryption,

More information

MPTCP: Design and Deployment. Day 11

MPTCP: Design and Deployment. Day 11 MPTCP: Design and Deployment Day 11 Use of Multipath TCP in ios 7 Multipath TCP in ios 7 Primary TCP connection over WiFi Backup TCP connection over cellular data Enables fail-over Improves performance

More information

Kent State University

Kent State University CS 4/54201 Computer Communication Network Kent State University Dept. of Computer Science www.mcs.kent.edu/~javed/class-net06f/ 1 A Course on Networking and Computer Communication LECT-10, S-2 IP- Internet

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

A Network Engineer s Guide to Troubleshooting User Satisfaction Problems with SAP Applications April 2007

A Network Engineer s Guide to Troubleshooting User Satisfaction Problems with SAP Applications April 2007 A Network Engineer s Guide to Troubleshooting User Satisfaction Problems with SAP Applications April 2007 Is It the Application or the Network? If you re a network engineer in an organization that runs

More information

Table of Contents Chapter 1: Getting started...6 Chapter 2: Hardware Settings Chapter 3: About Probe Instances... 27

Table of Contents Chapter 1: Getting started...6 Chapter 2: Hardware Settings Chapter 3: About Probe Instances... 27 GigaStor Portable 17.1.1.1 User Guide 26 Oct 2016 Table of Contents Chapter 1: Getting started...6 Getting started using your GigaStor... 6 What is the GigaStor?... 8 Differences between GigaStor Software

More information

Networking Fundamentals Training

Networking Fundamentals Training Networking Fundamentals Training INNOVATIVE ACADEMY s Best Computer Networking Training in Bangalore is designed so Innovative to help you clear the Comp-TIA s N+ Certification. You will gain excellent

More information

Contents. Chapter 1 Time Sheets 02. Chapter 2 Your Schedule. Chapter 3 Jobs. Chapter 4 Starting a Timer. Chapter 5 Notes & Attachments

Contents. Chapter 1 Time Sheets 02. Chapter 2 Your Schedule. Chapter 3 Jobs. Chapter 4 Starting a Timer. Chapter 5 Notes & Attachments Contents Chapter 1 Time Sheets 02 Chapter 2 Your Schedule Chapter 3 Jobs Chapter 4 Starting a Timer Chapter 5 Notes & Attachments Chapter 6 Mark a Visit Complete Chapter 7 Invoicing Chapter 8 Quick Create

More information

IXIA VISIBILITY ARCHITECTURE Eliminating Blind spots

IXIA VISIBILITY ARCHITECTURE Eliminating Blind spots IXIA VISIBILITY ARCHITECTURE Eliminating Blind spots Юлий Явич, IXIA 1 Enterprise Carriers/ Service Providers 74 45 15 of the Fortune 100 of the top 50 carriers of the top 15 NEMs NEMs Customer Focused

More information

6. The Transport Layer and protocols

6. The Transport Layer and protocols 6. The Transport Layer and protocols 1 Dr.Z.Sun Outline Transport layer services Transmission Control Protocol Connection set-up and tear-down Ports and Well-know-ports Flow control and Congestion control

More information

Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods

Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods 1 Timeout freezing of transmission (TFT) Used in situations where

More information

surveillance & anonymity cs642 computer security adam everspaugh

surveillance & anonymity cs642 computer security adam everspaugh surveillance & anonymity cs642 computer security adam everspaugh ace@cs.wisc.edu today Internet-wide scanning, zmap Massive surveillance, packet inspection Anonymous browsing, TOR TCP handshake Client

More information

Page 1. Goals for Today" Discussion" Example: Reliable File Transfer" CS162 Operating Systems and Systems Programming Lecture 11

Page 1. Goals for Today Discussion Example: Reliable File Transfer CS162 Operating Systems and Systems Programming Lecture 11 Goals for Today" CS162 Operating Systems and Systems Programming Lecture 11 Reliability, Transport Protocols" Finish e2e argument & fate sharing Transport: TCP/UDP Reliability Flow control October 5, 2011

More information

TCP : Fundamentals of Computer Networks Bill Nace

TCP : Fundamentals of Computer Networks Bill Nace TCP 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Lab #1 due now! Reminder: Paper Review

More information

SharkFest'17 US. Validating Your Packet Capture: How to be sure you ve captured correct & complete data for analysis

SharkFest'17 US. Validating Your Packet Capture: How to be sure you ve captured correct & complete data for analysis SharkFest'17 US Validating Your Packet Capture: How to be sure you ve captured correct & complete data for analysis Dupes, Drops, and Misses, Oh My! *New title; same product J. Scott Haugdahl and Mike

More information

Objectives: (1) To learn to capture and analyze packets using wireshark. (2) To learn how protocols and layering are represented in packets.

Objectives: (1) To learn to capture and analyze packets using wireshark. (2) To learn how protocols and layering are represented in packets. Team Project 1 Due: Beijing 00:01, Friday Nov 7 Language: English Turn-in (via email) a.pdf file. Objectives: (1) To learn to capture and analyze packets using wireshark. (2) To learn how protocols and

More information

FINAL EXAMINATION TIMETABLE JANUARY 2016

FINAL EXAMINATION TIMETABLE JANUARY 2016 CAMBRIDGE NATIONALS, FSMQ, LEVEL 1 & 2 CERTIFICATE, LEVEL 2 AWARD, LEVEL 3 CERTIFICATE EXAMINATIONS, PRINCIPAL LEARNING AND PROJECTS FINAL EXAMINATION TIMETABLE www.ocr.org.uk Cambridge Nationals, FSMQ,

More information

Passive, automatic detection of network server performance anomalies in large networks

Passive, automatic detection of network server performance anomalies in large networks Passive, automatic detection of network server performance anomalies in large networks Jeff Terrell A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial

More information

ICS 451: Today's plan. Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections

ICS 451: Today's plan. Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections ICS 451: Today's plan Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections Alternating Bit Protocol: throughput tied to latency with

More information

McAfee Network Security Platform

McAfee Network Security Platform Network Security Platform v5.1 Page 1 McAfee Network Security Platform [formerly McAfee IntruShield ] Release Version 5.1 (Document was revised on 11/26/09) Software versions in this release This document

More information

Transport: How Applications Communicate

Transport: How Applications Communicate Transport: How Applications Communicate Week 2 Philip Levis 1 7 Layers (or 4) 7. 6. 5. 4. 3. 2. 1. Application Presentation Session Transport Network Link Physical segments packets frames bits/bytes Application

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Transport Layer Derek Leonard Hendrix College October 15, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 3: Roadmap 3.1 Transport-layer

More information

Performance Comparison of Windows-based Thin-Client Architectures

Performance Comparison of Windows-based Thin-Client Architectures c 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

TCP Sendbuffer Advertising. Costin Raiciu University Politehnica of Bucharest

TCP Sendbuffer Advertising. Costin Raiciu University Politehnica of Bucharest TCP Sendbuffer Advertising Costin Raiciu University Politehnica of Bucharest Problem statement There is only so much we can find about about a connection by looking at in flight packets (losses, retransmissions,

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

Sampling Challenges. Tanja Zseby Competence Center Network Research Fraunhofer Institute FOKUS Berlin. COST TMA September 22, 2008

Sampling Challenges. Tanja Zseby Competence Center Network Research Fraunhofer Institute FOKUS Berlin. COST TMA September 22, 2008 Sampling Challenges Tanja Zseby Competence Center Network Research Fraunhofer Institute FOKUS Berlin Desired Features for Traffic Observation Network-wide: multiple observation points Flexible: change

More information

Introduction to Networking. Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

Introduction to Networking. Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Introduction to Networking Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Distributed File Systems Operating Systems In Depth XXVII 2 Copyright 2017 Thomas W.

More information

Nimsoft Monitor. reboot Guide. v1.4 series

Nimsoft Monitor. reboot Guide. v1.4 series Nimsoft Monitor reboot Guide v1.4 series Legal Notices Copyright 2012, Nimsoft Corporation Warranty The material contained in this document is provided "as is," and is subject to being changed, without

More information

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H...

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H... 1 of 9 11/26/2017, 11:28 AM Homework 3 solutions 1. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure to show the situation of the window after the following two events:

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 1b: The Transport Layer in the Internet January 17, 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu 01/17/06

More information

Steelcase Workplace Advisor. Understanding + Technical Overview

Steelcase Workplace Advisor. Understanding + Technical Overview Steelcase Workplace Advisor Understanding + Technical Overview Total Utilization Workplace Advisor Device Manager North America / NYC / Innovation Center 100% Innovation Center # of Space 9a-11a Peak Usage

More information

TCP = Transmission Control Protocol Connection-oriented protocol Provides a reliable unicast end-to-end byte stream over an unreliable internetwork.

TCP = Transmission Control Protocol Connection-oriented protocol Provides a reliable unicast end-to-end byte stream over an unreliable internetwork. Overview Formats, Data Transfer, etc. Connection Management (modified by Malathi Veeraraghavan) 1 Overview TCP = Transmission Control Protocol Connection-oriented protocol Provides a reliable unicast end-to-end

More information

Chapter 3- parte B outline

Chapter 3- parte B outline Chapter 3- parte B outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport:

More information

Lab Exercise Protocol Layers

Lab Exercise Protocol Layers Lab Exercise Protocol Layers Objective To learn how protocols and layering are represented in packets. They are key concepts for structuring networks that are covered in 1.3 and 1.4 of your text. Review

More information

ECE 435 Network Engineering Lecture 10

ECE 435 Network Engineering Lecture 10 ECE 435 Network Engineering Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 September 2017 Announcements HW#4 was due HW#5 will be posted. midterm/fall break You

More information

Video at the Edge passive delay measurements. Kathleen Nichols Pollere, Inc November 17, 2016

Video at the Edge passive delay measurements. Kathleen Nichols Pollere, Inc November 17, 2016 Video at the Edge passive delay measurements Kathleen Nichols Pollere, Inc nichols@pollere.net November 17, 2016 Talk Roadmap Netflix and YouTube network characterization delay profiles delay localization

More information

INFORMATION TECHNOLOGY SPREADSHEETS. Part 1

INFORMATION TECHNOLOGY SPREADSHEETS. Part 1 INFORMATION TECHNOLOGY SPREADSHEETS Part 1 Page: 1 Created by John Martin Exercise Built-In Lists 1. Start Excel Spreadsheet 2. In cell B1 enter Mon 3. In cell C1 enter Tue 4. Select cell C1 5. At the

More information

Programming Assignment 3: Transmission Control Protocol

Programming Assignment 3: Transmission Control Protocol CS 640 Introduction to Computer Networks Spring 2005 http://www.cs.wisc.edu/ suman/courses/640/s05 Programming Assignment 3: Transmission Control Protocol Assigned: March 28,2005 Due: April 15, 2005, 11:59pm

More information

Some Observations of Internet Stream Lifetimes

Some Observations of Internet Stream Lifetimes Some Observations of Internet Stream Lifetimes Nevil Brownlee CAIDA, UC San Diego, and The University of Auckland, New Zealand nevil@auckland.ac.nz Abstract. We present measurements of stream lifetimes

More information

On the 95-percentile billing method

On the 95-percentile billing method On the 95-percentile billing method Xenofontas Dimitropoulos 1, Paul Hurley 2, Andreas Kind 2, and Marc Ph. Stoecklin 2 1 ETH Zürich fontas@tik.ee.ethz.ch 2 IBM Research Zürich {pah,ank,mtc}@zurich.ibm.com

More information

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure Correcting mistakes Go-back-N: big picture: sender can have up to N unacked packets in pipeline rcvr only sends cumulative acks doesn t ack packet if there s a gap sender has r for oldest unacked packet

More information

Finding the Needle in the Haystack

Finding the Needle in the Haystack Finding the Needle in the Haystack Jonzy Data Security Analysis, Sr. Finding the Needle in the Haystack With all the information available via NetFlows, finding the "Needle in the Haystack" (the bad actor

More information

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition

More information

Network Analytics for Reports Demo

Network Analytics for Reports Demo Network Analytics for Reports Demo Prepared and Presented by Advocate IT Services Reports Demo Network Assessment Page 1 of 36 Aug 7, 2013 4:18 PM Reports Demo Network Assessment Page 2 of 36 Aug 7, 2013

More information

Computer Networks Principles

Computer Networks Principles Computer Networks Principles Introduction Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr 1 Contents Introduction protocols and layered architecture encapsulation interconnection structures performance

More information

It s Flow Time! The Role and Importance of Flow Monitoring in Network Operations and Security

It s Flow Time! The Role and Importance of Flow Monitoring in Network Operations and Security It s Flow Time! The Role and Importance of Flow Monitoring in Network Operations and Security Pavel Minařík, Chief Technology Officer Neutral Peering Days 2018, The Hague Your customers depend on your

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

FortiTester Handbook VERSION 2.4.0

FortiTester Handbook VERSION 2.4.0 FortiTester Handbook VERSION 2.4.0 FORTINET DOCUMENT LIBRARY http://docs.fortinet.com FORTINET VIDEO GUIDE http://video.fortinet.com FORTINET BLOG https://blog.fortinet.com CUSTOMER SERVICE & SUPPORT https://support.fortinet.com

More information

GENERATING REALISTIC TCP WORKLOADS

GENERATING REALISTIC TCP WORKLOADS GENERATING REALISTIC TCP WORKLOADS F. Hernández-Campos F. Donelson Smith K. Jeffay Department of Computer Science University of North Carolina at Chapel Hill {fhernand,smithfd,jeffay}@cs.unc.edu Abstract

More information

Linux Networking: tcp. TCP context and interfaces

Linux Networking: tcp. TCP context and interfaces Linux Networking: tcp David Morgan TCP context and interfaces Computer A Computer B application process application process data data data data TCP process TCP process a network 1 TCP purposes and features

More information

TCP and Congestion Control (Day 1) Yoshifumi Nishida Sony Computer Science Labs, Inc. Today's Lecture

TCP and Congestion Control (Day 1) Yoshifumi Nishida Sony Computer Science Labs, Inc. Today's Lecture TCP and Congestion Control (Day 1) Yoshifumi Nishida nishida@csl.sony.co.jp Sony Computer Science Labs, Inc 1 Today's Lecture Part1: TCP concept Part2: TCP detailed mechanisms Part3: Tools for TCP 2 1

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

CS118 Discussion 1A, Week 4. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m.

CS118 Discussion 1A, Week 4. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. CS118 Discussion 1A, Week 4 Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. 1 Outline Lecture review: Transport layer Project Questions? Midterm logistics 2 Stop and Wait Protocol Main Issue: limited

More information

SSFNET TCP Simulation Analysis by tcpanaly

SSFNET TCP Simulation Analysis by tcpanaly SSFNET TCP Simulation Analysis by tcpanaly Hongbo Liu hongbol@winlabrutgersedu Apr 16, 2000 Abstract SSFNET is a collection of SSF-based models for simulating Internet protocols and networks It is designed

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

Operational Experiences With High-Volume Network Intrusion Detection

Operational Experiences With High-Volume Network Intrusion Detection Operational Experiences With High-Volume Network Intrusion Detection Holger Dreger 1 Anja Feldmann 1 Vern Paxson 2 Robin Sommer 1 1 TU München Germany 2 ICSI / LBNL Berkeley, CA, USA ACM Computer and Communications

More information

Note. Some History 8/8/2011. TECH 6 Approaches in Network Monitoring ip/f: A Novel Architecture for Programmable Network Visibility

Note. Some History 8/8/2011. TECH 6 Approaches in Network Monitoring ip/f: A Novel Architecture for Programmable Network Visibility TECH 6 Approaches in Network Monitoring ip/f: A Novel Architecture for Programmable Network Visibility Steve McCanne - CTO riverbed Note This presentation is for information purposes only and is not a

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) Transmission Control Protocol (TCP) Antonio Carzaniga Faculty of Informatics University of Lugano May 3, 2005 Outline Intro to TCP Sequence numbers and acknowledgment numbers Timeouts and RTT estimation

More information

KNOM Tutorial Internet Traffic Matrix Measurement and Analysis. Sue Bok Moon Dept. of Computer Science

KNOM Tutorial Internet Traffic Matrix Measurement and Analysis. Sue Bok Moon Dept. of Computer Science KNOM Tutorial 2003 Internet Traffic Matrix Measurement and Analysis Sue Bok Moon Dept. of Computer Science Overview Definition of Traffic Matrix 4Traffic demand, delay, loss Applications of Traffic Matrix

More information

BIG-IP Analytics: Implementations. Version 13.1

BIG-IP Analytics: Implementations. Version 13.1 BIG-IP Analytics: Implementations Version 13.1 Table of Contents Table of Contents Setting Up Application Statistics Collection...5 What is Analytics?...5 About HTTP Analytics profiles... 5 Overview:

More information

Lab 4: Network Packet Capture and Analysis using Wireshark

Lab 4: Network Packet Capture and Analysis using Wireshark Lab 4: Network Packet Capture and Analysis using Wireshark 4.1 Details Aim: To provide a foundation in network packet capture and analysis. You may be faced with network traffic analysis, from traffic

More information

Traffic in Network /8. Background. Initial Experience. Geoff Huston George Michaelson APNIC R&D. April 2010

Traffic in Network /8. Background. Initial Experience. Geoff Huston George Michaelson APNIC R&D. April 2010 Traffic in Network 1.0.0.0/8 Geoff Huston George Michaelson APNIC R&D April 2010 Background The address plan for IPv4 has a reservation for Private Use address space. This reservation, comprising of 3

More information

Configuring IP TCP MSS

Configuring IP TCP MSS Finding Feature Information, page 1 Feature History for IP TCP MSS, page 2 Information About IP TCP MSS, page 2 Licensing Requirements for IP TCP MSS, page 3 Default Settings for IP TCP MSS, page 3 Guidelines

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information