ENSC Multimedia Communications Engineering Huffman Coding (1)

Size: px
Start display at page:

Download "ENSC Multimedia Communications Engineering Huffman Coding (1)"

Transcription

1 ENSC Multimedia Communications Engineering Huffman Coding () Jie Liang Engineering Science Simon Fraser University JieL@sfu.ca J. Liang: SFU ENSC 424

2 Outline Entropy Coding Prefix code Kraft-McMillan inequality Huffman Encoding Minimum Variance Huffman Coding Extended Huffman Coding J. Liang: SFU ENSC 424 2

3 Entropy Coding Design the mapping from source symbols to codewords Lossless mapping Goal: minimizing the average codeword length Approach the entropy of the source J. Liang: SFU ENSC 424 3

4 Example: Morse Code Represent English characters and numbers by different combinations of dot and dash (codewords) Examples: E I A T O S Z Problem: Letters have to be separated by space, Or paused when transmitting over radio. SOS: pause Not uniquely decodable! J. Liang: SFU ENSC 424 4

5 Entropy Coding: Prefix-free Code No codeword is a prefix of another one. Can be uniquely decoded. Also called prefix code Example:,,, Binary Code Tree Root node Internal node leaf node Prefix-free code contains leaves only. How to express the requirement mathematically? J. Liang: SFU ENSC 424 5

6 Kraft-McMillan Inequality Let C be a code with N codewords with length li, i=, N. If C is uniquely decodable, then N i= 2 If a set of li satisfies the inequality above, then there exists a prefix-free code with codeword lengths li, i=, N. l i J. Liang: SFU ENSC 424 6

7 Kraft-McMillan Inequality To see this, expand the binary code tree to depth L = max(li) N i= 2 l i J. Liang: SFU ENSC N i= Number of nodes in the last level: Each code has a sub-tree: 2 L l The number of offsprings in the last level: K-M inequality: L = 3 i L 2 # of L-th level offsprings of all codes is less than 2^L. 2 L 2 L l i Leads to more than 2^L offspring

8 Outline Entropy Coding Prefix code Kraft-McMillan inequality Huffman Encoding Minimum Variance Huffman Coding Extended Huffman Coding J. Liang: SFU ENSC 424 8

9 Huffman Coding A procedure to construct optimal prefix-free code Result of David Huffman s term paper in 952 when he was a PhD student at MIT Shannon Fano Huffman ( ) Observations: Assign short codes to frequent symbols. In an optimum prefix-free code, the two codewords that occur least frequently will have the same length. truncate a b a b J. Liang: SFU ENSC 424 9

10 Huffman Code Design Another property of Huffman coding: The codewords of the two lowest probability symbols differ only in the last bit. Requirement: The source probability distribution (Not available in most cases) Procedure:. Sort the probability of all source symbols in a descending order. 2. Merge the last two into a new symbol, add their probabilities. 3. Repeat Step, 2 until only one symbol (the root) is left. 4. Code assignment: Traverse the tree from the root to each leaf node, assign to the top branch and to the bottom branch. J. Liang: SFU ENSC 424

11 Example 3.2. Source alphabet A = {a, a2, a3, a4, a5} Probability distribution: {.2,,.2,.,.} Sort merge Sort merge Sort merge Sort merge a2 ().6 a(.2) a3(.2) a4(.) a5(.) Assign code J. Liang: SFU ENSC 424

12 Huffman code is prefix-free All codewords are leaf nodes No code is a prefix of any other code. (Prefix free) J. Liang: SFU ENSC 424 2

13 Average Codeword Length vs Entropy Source alphabet A = {a, b, c, d, e} Probability distribution: {.2,,.2,.,.} Code: {,,,, } Entropy: H(S) = - (.2*log2(.2)*2 + *log2()+.*log2(.)*2) = 2.22 bits / symbol Average Huffman codeword length: L =.2*2+*+.2*3+.*4+.*4 = 2.2 bits / symbol In general: H(S) L < H(S) + J. Liang: SFU ENSC 424 3

14 Huffman Code is not unique Two choices for each split:, or, Multiple ordering choices for tied probabilities a.6 b.6 b.6 a.6 c.2 c.2 J. Liang: SFU ENSC 424 4

15 Minimum Variance Huffman Code Put the combined symbol as high as possible in the sorted list Prevent unbalanced tree: Reduce memory requirement for decoding (revisited later) Repeat previous example Compute average codeword length J. Liang: SFU ENSC 424 5

16 Extended Huffman Code Code multiple symbols jointly Composite symbol: (X, X2,, Xk) Alphabet increased exponentioally: N k Code symbols of different meanings jointly JPEG: Run-level coding H.264 CAVLC: context-adaptive variable length coding # of non-zero coefficients and # of trailing ones Revisited later J. Liang: SFU ENSC 424 6

17 Example Joint probability: P(X2i, X2i+) P(, ) = 3/8, P(, ) = /8 P(, ) = /8, P(, ) = 3/8 P(Xj = ) = P(Xj = ) = /2 Entropy H(Xj) = bit / symbol Joint Prob P(X2i, X2i+) X2i+ X2i 3/8 /8 /8 3/8 Second order entropy: H X 2 i, X 2i+ ) =.83 bits ( / 2 symbols, or.956 bits / symbol Huffman code for Xj:, Average code length Huffman code for (X2i, X2i+): bit / symbol :, :, :, : Average code length:.9375 bit /symbol J. Liang: SFU ENSC 424 7

18 Summary Goal of entropy coding: Reduce the average codeword length (the entropy is the lower bound) Prefix-free code: uniquely decodable code Kraft-McMillan Inequality: Characteristic of prefix-free code Huffman Code: Optimal prefix-free code Minimum variance code Next: Canonical Huffman Encoding and decoding J. Liang: SFU ENSC 424 8

ENSC Multimedia Communications Engineering Topic 4: Huffman Coding 2

ENSC Multimedia Communications Engineering Topic 4: Huffman Coding 2 ENSC 424 - Multimedia Communications Engineering Topic 4: Huffman Coding 2 Jie Liang Engineering Science Simon Fraser University JieL@sfu.ca J. Liang: SFU ENSC 424 1 Outline Canonical Huffman code Huffman

More information

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding Fundamentals of Multimedia Lecture 5 Lossless Data Compression Variable Length Coding Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Fundamentals of Multimedia 1 Data Compression Compression

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 11 Coding Strategies and Introduction to Huffman Coding The Fundamental

More information

CMPSCI 240 Reasoning Under Uncertainty Homework 4

CMPSCI 240 Reasoning Under Uncertainty Homework 4 CMPSCI 240 Reasoning Under Uncertainty Homework 4 Prof. Hanna Wallach Assigned: February 24, 2012 Due: March 2, 2012 For this homework, you will be writing a program to construct a Huffman coding scheme.

More information

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Shannon-Fano-Elias Code and Arithmetic Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/12 Roadmap Examples

More information

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc.

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc. David Rappaport School of Computing Queen s University CANADA Copyright, 1996 Dale Carnegie & Associates, Inc. Data Compression There are two broad categories of data compression: Lossless Compression

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 26 Source Coding (Part 1) Hello everyone, we will start a new module today

More information

Lossless Compression Algorithms

Lossless Compression Algorithms Multimedia Data Compression Part I Chapter 7 Lossless Compression Algorithms 1 Chapter 7 Lossless Compression Algorithms 1. Introduction 2. Basics of Information Theory 3. Lossless Compression Algorithms

More information

Uniquely Decodable. Code 1 Code 2 A 00 0 B 1 1 C D 11 11

Uniquely Decodable. Code 1 Code 2 A 00 0 B 1 1 C D 11 11 Uniquely Detectable Code Uniquely Decodable A code is not uniquely decodable if two symbols have the same codeword, i.e., if C(S i ) = C(S j ) for any i j or the combination of two codewords gives a third

More information

Chapter 5: Data compression. Chapter 5 outline

Chapter 5: Data compression. Chapter 5 outline Chapter 5: Data compression Chapter 5 outline 2 balls weighing problem Examples of codes Kraft inequality Optimal codes + bounds Kraft inequality for uniquely decodable codes Huffman codes Shannon-Fano-Elias

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS483-001) Amarda Shehu Spring 2017 1 The Fractional Knapsack Problem Huffman Coding 2 Sample Problems to Illustrate The Fractional Knapsack Problem Variable-length (Huffman)

More information

Huffman Coding. Version of October 13, Version of October 13, 2014 Huffman Coding 1 / 27

Huffman Coding. Version of October 13, Version of October 13, 2014 Huffman Coding 1 / 27 Huffman Coding Version of October 13, 2014 Version of October 13, 2014 Huffman Coding 1 / 27 Outline Outline Coding and Decoding The optimal source coding problem Huffman coding: A greedy algorithm Correctness

More information

EE 368. Weeks 5 (Notes)

EE 368. Weeks 5 (Notes) EE 368 Weeks 5 (Notes) 1 Chapter 5: Trees Skip pages 273-281, Section 5.6 - If A is the root of a tree and B is the root of a subtree of that tree, then A is B s parent (or father or mother) and B is A

More information

6. Finding Efficient Compressions; Huffman and Hu-Tucker

6. Finding Efficient Compressions; Huffman and Hu-Tucker 6. Finding Efficient Compressions; Huffman and Hu-Tucker We now address the question: how do we find a code that uses the frequency information about k length patterns efficiently to shorten our message?

More information

Lec 04 Variable Length Coding in JPEG

Lec 04 Variable Length Coding in JPEG Outline CS/EE 5590 / ENG 40 Special Topics (7804, 785, 7803) Lec 04 Variable Length Coding in JPEG Lecture 03 ReCap VLC JPEG Image Coding Framework Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/206sp.video-communication/main.html

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 1: Entropy Coding Lecture 1: Introduction and Huffman Coding Juha Kärkkäinen 31.10.2017 1 / 21 Introduction Data compression deals with encoding information in as few bits

More information

COMPSCI 650 Applied Information Theory Feb 2, Lecture 5. Recall the example of Huffman Coding on a binary string from last class:

COMPSCI 650 Applied Information Theory Feb 2, Lecture 5. Recall the example of Huffman Coding on a binary string from last class: COMPSCI 650 Applied Information Theory Feb, 016 Lecture 5 Instructor: Arya Mazumdar Scribe: Larkin Flodin, John Lalor 1 Huffman Coding 1.1 Last Class s Example Recall the example of Huffman Coding on a

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Compression Caution: The PDF version of this presentation will appear to have errors due to heavy use of animations Material in this presentation is largely based on/derived

More information

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson zhuyongxin@sjtu.edu.cn 2 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information

More information

Compressing Data. Konstantin Tretyakov

Compressing Data. Konstantin Tretyakov Compressing Data Konstantin Tretyakov (kt@ut.ee) MTAT.03.238 Advanced April 26, 2012 Claude Elwood Shannon (1916-2001) C. E. Shannon. A mathematical theory of communication. 1948 C. E. Shannon. The mathematical

More information

EE67I Multimedia Communication Systems Lecture 4

EE67I Multimedia Communication Systems Lecture 4 EE67I Multimedia Communication Systems Lecture 4 Lossless Compression Basics of Information Theory Compression is either lossless, in which no information is lost, or lossy in which information is lost.

More information

Intro. To Multimedia Engineering Lossless Compression

Intro. To Multimedia Engineering Lossless Compression Intro. To Multimedia Engineering Lossless Compression Kyoungro Yoon yoonk@konkuk.ac.kr 1/43 Contents Introduction Basics of Information Theory Run-Length Coding Variable-Length Coding (VLC) Dictionary-based

More information

ITCT Lecture 6.1: Huffman Codes

ITCT Lecture 6.1: Huffman Codes ITCT Lecture 6.1: Huffman Codes Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Huffman Encoding 1. Order the symbols according to their probabilities

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on B. Lee s lecture notes. 1 Outline Compression basics Entropy and information theory basics

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

Text Compression through Huffman Coding. Terminology

Text Compression through Huffman Coding. Terminology Text Compression through Huffman Coding Huffman codes represent a very effective technique for compressing data; they usually produce savings between 20% 90% Preliminary example We are given a 100,000-character

More information

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017 CS6 Lecture 4 Greedy Algorithms Scribe: Virginia Williams, Sam Kim (26), Mary Wootters (27) Date: May 22, 27 Greedy Algorithms Suppose we want to solve a problem, and we re able to come up with some recursive

More information

Text Compression. Jayadev Misra The University of Texas at Austin July 1, A Very Incomplete Introduction To Information Theory 2

Text Compression. Jayadev Misra The University of Texas at Austin July 1, A Very Incomplete Introduction To Information Theory 2 Text Compression Jayadev Misra The University of Texas at Austin July 1, 2003 Contents 1 Introduction 1 2 A Very Incomplete Introduction To Information Theory 2 3 Huffman Coding 5 3.1 Uniquely Decodable

More information

More Bits and Bytes Huffman Coding

More Bits and Bytes Huffman Coding More Bits and Bytes Huffman Coding Encoding Text: How is it done? ASCII, UTF, Huffman algorithm ASCII C A T Lawrence Snyder, CSE UTF-8: All the alphabets in the world Uniform Transformation Format: a variable-width

More information

OUTLINE. Paper Review First Paper The Zero-Error Side Information Problem and Chromatic Numbers, H. S. Witsenhausen Definitions:

OUTLINE. Paper Review First Paper The Zero-Error Side Information Problem and Chromatic Numbers, H. S. Witsenhausen Definitions: OUTLINE Definitions: - Source Code - Expected Length of a source code - Length of a codeword - Variable/fixed length coding - Example: Huffman coding - Lossless coding - Distortion - Worst case length

More information

Binary Trees Case-studies

Binary Trees Case-studies Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Today's class: Binary Trees Case-studies We'll look

More information

Chapter 5 VARIABLE-LENGTH CODING Information Theory Results (II)

Chapter 5 VARIABLE-LENGTH CODING Information Theory Results (II) Chapter 5 VARIABLE-LENGTH CODING ---- Information Theory Results (II) 1 Some Fundamental Results Coding an Information Source Consider an information source, represented by a source alphabet S. S = { s,

More information

FACULTY OF ENGINEERING LAB SHEET INFORMATION THEORY AND ERROR CODING ETM 2126 ETN2126 TRIMESTER 2 (2011/2012)

FACULTY OF ENGINEERING LAB SHEET INFORMATION THEORY AND ERROR CODING ETM 2126 ETN2126 TRIMESTER 2 (2011/2012) FACULTY OF ENGINEERING LAB SHEET INFORMATION THEORY AND ERROR CODING ETM 2126 ETN2126 TRIMESTER 2 (2011/2012) Experiment 1: IT1 Huffman Coding Note: Students are advised to read through this lab sheet

More information

A New Compression Method Strictly for English Textual Data

A New Compression Method Strictly for English Textual Data A New Compression Method Strictly for English Textual Data Sabina Priyadarshini Department of Computer Science and Engineering Birla Institute of Technology Abstract - Data compression is a requirement

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms Instructor: SharmaThankachan Lecture 10: Greedy Algorithm Slides modified from Dr. Hon, with permission 1 About this lecture Introduce Greedy Algorithm Look at some problems

More information

6. Finding Efficient Compressions; Huffman and Hu-Tucker Algorithms

6. Finding Efficient Compressions; Huffman and Hu-Tucker Algorithms 6. Finding Efficient Compressions; Huffman and Hu-Tucker Algorithms We now address the question: How do we find a code that uses the frequency information about k length patterns efficiently, to shorten

More information

Algorithms and Data Structures CS-CO-412

Algorithms and Data Structures CS-CO-412 Algorithms and Data Structures CS-CO-412 David Vernon Professor of Informatics University of Skövde Sweden david@vernon.eu www.vernon.eu Algorithms and Data Structures 1 Copyright D. Vernon 2014 Trees

More information

Engineering Mathematics II Lecture 16 Compression

Engineering Mathematics II Lecture 16 Compression 010.141 Engineering Mathematics II Lecture 16 Compression Bob McKay School of Computer Science and Engineering College of Engineering Seoul National University 1 Lossless Compression Outline Huffman &

More information

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression P. RATNA TEJASWI 1 P. DEEPTHI 2 V.PALLAVI 3 D. GOLDIE VAL DIVYA 4 Abstract: Data compression is the art of reducing

More information

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code Entropy Coding } different probabilities for the appearing of single symbols are used - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic

More information

Analysis of Algorithms - Greedy algorithms -

Analysis of Algorithms - Greedy algorithms - Analysis of Algorithms - Greedy algorithms - Andreas Ermedahl MRTC (Mälardalens Real-Time Reseach Center) andreas.ermedahl@mdh.se Autumn 2003 Greedy Algorithms Another paradigm for designing algorithms

More information

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression An overview of Compression Multimedia Systems and Applications Data Compression Compression becomes necessary in multimedia because it requires large amounts of storage space and bandwidth Types of Compression

More information

Huffman Coding. (EE 575: Source Coding Project) Project Report. Submitted By: Raza Umar. ID: g

Huffman Coding. (EE 575: Source Coding Project) Project Report. Submitted By: Raza Umar. ID: g Huffman Coding (EE 575: Source Coding Project) Project Report Submitted By: Raza Umar ID: g200905090 Algorithm Description Algorithm developed for Huffman encoding takes a string of data symbols to be

More information

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1 IMAGE COMPRESSION- I Week VIII Feb 25 02/25/2003 Image Compression-I 1 Reading.. Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive,

More information

CSE 421 Greedy: Huffman Codes

CSE 421 Greedy: Huffman Codes CSE 421 Greedy: Huffman Codes Yin Tat Lee 1 Compression Example 100k file, 6 letter alphabet: File Size: ASCII, 8 bits/char: 800kbits 2 3 > 6; 3 bits/char: 300kbits a 45% b 13% c 12% d 16% e 9% f 5% Why?

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 29 Source Coding (Part-4) We have already had 3 classes on source coding

More information

Greedy algorithms part 2, and Huffman code

Greedy algorithms part 2, and Huffman code Greedy algorithms part 2, and Huffman code Two main properties: 1. Greedy choice property: At each decision point, make the choice that is best at the moment. We typically show that if we make a greedy

More information

Chapter 16: Greedy Algorithm

Chapter 16: Greedy Algorithm Chapter 16: Greedy Algorithm 1 About this lecture Introduce Greedy Algorithm Look at some problems solvable by Greedy Algorithm 2 Coin Changing Suppose that in a certain country, the coin dominations consist

More information

A Research Paper on Lossless Data Compression Techniques

A Research Paper on Lossless Data Compression Techniques IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 1 June 2017 ISSN (online): 2349-6010 A Research Paper on Lossless Data Compression Techniques Prof. Dipti Mathpal

More information

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices.

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices. Trees Trees form the most widely used subclasses of graphs. In CS, we make extensive use of trees. Trees are useful in organizing and relating data in databases, file systems and other applications. Formal

More information

David Huffman ( )

David Huffman ( ) 2 Huffman Coding Huffman coding is a popular method for compressing data with variable-length codes. Given a set of data symbols (an alphabet) and their frequencies of occurrence (or, equivalently, their

More information

Compression. storage medium/ communications network. For the purpose of this lecture, we observe the following constraints:

Compression. storage medium/ communications network. For the purpose of this lecture, we observe the following constraints: CS231 Algorithms Handout # 31 Prof. Lyn Turbak November 20, 2001 Wellesley College Compression The Big Picture We want to be able to store and retrieve data, as well as communicate it with others. In general,

More information

A Comparative Study of Lossless Compression Algorithm on Text Data

A Comparative Study of Lossless Compression Algorithm on Text Data Proc. of Int. Conf. on Advances in Computer Science, AETACS A Comparative Study of Lossless Compression Algorithm on Text Data Amit Jain a * Kamaljit I. Lakhtaria b, Prateek Srivastava c a, b, c Department

More information

Lecture 15. Error-free variable length schemes: Shannon-Fano code

Lecture 15. Error-free variable length schemes: Shannon-Fano code Lecture 15 Agenda for the lecture Bounds for L(X) Error-free variable length schemes: Shannon-Fano code 15.1 Optimal length nonsingular code While we do not know L(X), it is easy to specify a nonsingular

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~lipschultz/cs1501/ Compression What is compression? Represent the same data using less storage space Can get more use out a disk of a given size Can get more use out of memory

More information

Volume 2, Issue 9, September 2014 ISSN

Volume 2, Issue 9, September 2014 ISSN Fingerprint Verification of the Digital Images by Using the Discrete Cosine Transformation, Run length Encoding, Fourier transformation and Correlation. Palvee Sharma 1, Dr. Rajeev Mahajan 2 1M.Tech Student

More information

15 July, Huffman Trees. Heaps

15 July, Huffman Trees. Heaps 1 Huffman Trees The Huffman Code: Huffman algorithm uses a binary tree to compress data. It is called the Huffman code, after David Huffman who discovered d it in 1952. Data compression is important in

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA INTERNAL ASSESSMENT TEST 2 Date : 30/3/15 Max Marks : 50 Name of faculty : Sabeeha Sultana Subject & Code : ADA(13MCA41) Answer any five full question: 1.Illustrate Mergesort for the dataset 8,3,2,9,7,1,5,4.

More information

Greedy Algorithms CHAPTER 16

Greedy Algorithms CHAPTER 16 CHAPTER 16 Greedy Algorithms In dynamic programming, the optimal solution is described in a recursive manner, and then is computed ``bottom up''. Dynamic programming is a powerful technique, but it often

More information

Figure-2.1. Information system with encoder/decoders.

Figure-2.1. Information system with encoder/decoders. 2. Entropy Coding In the section on Information Theory, information system is modeled as the generationtransmission-user triplet, as depicted in fig-1.1, to emphasize the information aspect of the system.

More information

Red-Black, Splay and Huffman Trees

Red-Black, Splay and Huffman Trees Red-Black, Splay and Huffman Trees Kuan-Yu Chen ( 陳冠宇 ) 2018/10/22 @ TR-212, NTUST AVL Trees Review Self-balancing binary search tree Balance Factor Every node has a balance factor of 1, 0, or 1 2 Red-Black

More information

Huffman Codes (data compression)

Huffman Codes (data compression) Huffman Codes (data compression) Data compression is an important technique for saving storage Given a file, We can consider it as a string of characters We want to find a compressed file The compressed

More information

IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I

IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I 1 Need For Compression 2D data sets are much larger than 1D. TV and movie data sets are effectively 3D (2-space, 1-time). Need Compression for

More information

MCS-375: Algorithms: Analysis and Design Handout #G2 San Skulrattanakulchai Gustavus Adolphus College Oct 21, Huffman Codes

MCS-375: Algorithms: Analysis and Design Handout #G2 San Skulrattanakulchai Gustavus Adolphus College Oct 21, Huffman Codes MCS-375: Algorithms: Analysis and Design Handout #G2 San Skulrattanakulchai Gustavus Adolphus College Oct 21, 2016 Huffman Codes CLRS: Ch 16.3 Ziv-Lempel is the most popular compression algorithm today.

More information

Greedy Algorithms and Huffman Coding

Greedy Algorithms and Huffman Coding Greedy Algorithms and Huffman Coding Henry Z. Lo June 10, 2014 1 Greedy Algorithms 1.1 Change making problem Problem 1. You have quarters, dimes, nickels, and pennies. amount, n, provide the least number

More information

14.4 Description of Huffman Coding

14.4 Description of Huffman Coding Mastering Algorithms with C By Kyle Loudon Slots : 1 Table of Contents Chapter 14. Data Compression Content 14.4 Description of Huffman Coding One of the oldest and most elegant forms of data compression

More information

Without the move-to-front step abcddcbamnopponm is encoded as C* = (0, 1, 2, 3, 3, 2, 1, 0, 4, 5, 6, 7, 7, 6, 5, 4) (Table 1.14b).

Without the move-to-front step abcddcbamnopponm is encoded as C* = (0, 1, 2, 3, 3, 2, 1, 0, 4, 5, 6, 7, 7, 6, 5, 4) (Table 1.14b). 4 th Stage Lecture time: 10:30 AM-2:30 PM Instructor: Dr. Ali Kadhum AL-Quraby Lecture No. : 5 Subject: Data Compression Class room no.: Department of computer science Move-to-Front Coding Move To Front

More information

Data Compression Algorithms

Data Compression Algorithms Data Compression Algorithms Adaptive Huffman coding Robert G. Gallager Massachusetts Institute of Technology Donald Ervin Knuth Stanford University 17.10.2017 NSWI072-6 Static adaptive methods (Statistical)

More information

15-122: Principles of Imperative Computation, Spring 2013

15-122: Principles of Imperative Computation, Spring 2013 15-122 Homework 6 Page 1 of 13 15-122: Principles of Imperative Computation, Spring 2013 Homework 6 Programming: Huffmanlab Due: Thursday, April 4, 2013 by 23:59 For the programming portion of this week

More information

LOSSLESS VERSUS LOSSY COMPRESSION: THE TRADE OFFS

LOSSLESS VERSUS LOSSY COMPRESSION: THE TRADE OFFS LOSSLESS VERSUS LOSSY COMPRESSION: THE TRADE OFFS 1 Ayush Raniwala Student, Computer Science Dept. SVKM s NMIMS Mukesh Patel School of Technology Management & Engineering,Mumbai, India ABSTRACT This paper

More information

Greedy Algorithms. Alexandra Stefan

Greedy Algorithms. Alexandra Stefan Greedy Algorithms Alexandra Stefan 1 Greedy Method for Optimization Problems Greedy: take the action that is best now (out of the current options) it may cause you to miss the optimal solution You build

More information

Efficient Sequential Algorithms, Comp309. Motivation. Longest Common Subsequence. Part 3. String Algorithms

Efficient Sequential Algorithms, Comp309. Motivation. Longest Common Subsequence. Part 3. String Algorithms Efficient Sequential Algorithms, Comp39 Part 3. String Algorithms University of Liverpool References: T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms, Second Edition. MIT Press (21).

More information

14 Data Compression by Huffman Encoding

14 Data Compression by Huffman Encoding 4 Data Compression by Huffman Encoding 4. Introduction In order to save on disk storage space, it is useful to be able to compress files (or memory blocks) of data so that they take up less room. However,

More information

Garbage Collection: recycling unused memory

Garbage Collection: recycling unused memory Outline backtracking garbage collection trees binary search trees tree traversal binary search tree algorithms: add, remove, traverse binary node class 1 Backtracking finding a path through a maze is an

More information

Chapter 7 Lossless Compression Algorithms

Chapter 7 Lossless Compression Algorithms Chapter 7 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information Theory 7.3 Run-Length Coding 7.4 Variable-Length Coding (VLC) 7.5 Dictionary-based Coding 7.6 Arithmetic Coding 7.7

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes Greedy Algorithms CLRS Chapters 16.1 16.3 Introduction to greedy algorithms Activity-selection problem Design of data-compression (Huffman) codes (Minimum spanning tree problem) (Shortest-path problem)

More information

Data compression.

Data compression. Data compression anhtt-fit@mail.hut.edu.vn dungct@it-hut.edu.vn Data Compression Data in memory have used fixed length for representation For data transfer (in particular), this method is inefficient.

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ Compression What is compression? Represent the same data using less storage space Can get more use out a disk of a given size Can get more use out of memory E.g.,

More information

Repetition 1st lecture

Repetition 1st lecture Repetition 1st lecture Human Senses in Relation to Technical Parameters Multimedia - what is it? Human senses (overview) Historical remarks Color models RGB Y, Cr, Cb Data rates Text, Graphic Picture,

More information

Data Structures and Algorithms for Engineers

Data Structures and Algorithms for Engineers 04-630 Data Structures and Algorithms for Engineers David Vernon Carnegie Mellon University Africa vernon@cmu.edu www.vernon.eu Data Structures and Algorithms for Engineers 1 Carnegie Mellon University

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

An Efficient Decoding Technique for Huffman Codes Abstract 1. Introduction

An Efficient Decoding Technique for Huffman Codes Abstract 1. Introduction An Efficient Decoding Technique for Huffman Codes Rezaul Alam Chowdhury and M. Kaykobad Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh,

More information

ENTROPY ENCODERS: HUFFMAN CODING AND ARITHMETIC CODING 1

ENTROPY ENCODERS: HUFFMAN CODING AND ARITHMETIC CODING 1 ENTROPY ENCODERS: HUFFMAN CODING AND ARITHMETIC CODING 1 Ketki R. Jadhav, 2 Jayshree R. Pansare 1,2 Department of Computer Engineering, M.E.S. College of Engineering, Pune, India Abstract Today, there

More information

Greedy algorithms 2 4/5/12. Knapsack problems: Greedy or not? Compression algorithms. Data compression. David Kauchak cs302 Spring 2012

Greedy algorithms 2 4/5/12. Knapsack problems: Greedy or not? Compression algorithms. Data compression. David Kauchak cs302 Spring 2012 Knapsack problems: Greedy or not? Greedy algorithms 2 avid Kauchak cs02 Spring 12 l 0-1 Knapsack thief robbing a store finds n items worth v 1, v 2,.., v n dollars and weight w 1, w 2,, w n pounds, where

More information

CSC 310, Fall 2011 Solutions to Theory Assignment #1

CSC 310, Fall 2011 Solutions to Theory Assignment #1 CSC 310, Fall 2011 Solutions to Theory Assignment #1 Question 1 (15 marks): Consider a source with an alphabet of three symbols, a 1,a 2,a 3, with probabilities p 1,p 2,p 3. Suppose we use a code in which

More information

VC 12/13 T16 Video Compression

VC 12/13 T16 Video Compression VC 12/13 T16 Video Compression Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline The need for compression Types of redundancy

More information

CS 200 Algorithms and Data Structures, Fall 2012 Programming Assignment #3

CS 200 Algorithms and Data Structures, Fall 2012 Programming Assignment #3 Compressing Data using Huffman Coding Due Oct.24 noon Objectives In this assignment, you will implement classes for data compression. You will write: () An implementation of the Huffman Coding using a

More information

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201 Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

More information

Complete Variable-Length "Fix-Free" Codes

Complete Variable-Length Fix-Free Codes Designs, Codes and Cryptography, 5, 109-114 (1995) 9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Complete Variable-Length "Fix-Free" Codes DAVID GILLMAN* gillman @ es.toronto.edu

More information

Data Compression. Guest lecture, SGDS Fall 2011

Data Compression. Guest lecture, SGDS Fall 2011 Data Compression Guest lecture, SGDS Fall 2011 1 Basics Lossy/lossless Alphabet compaction Compression is impossible Compression is possible RLE Variable-length codes Undecidable Pigeon-holes Patterns

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

Huffman Code Application. Lecture7: Huffman Code. A simple application of Huffman coding of image compression which would be :

Huffman Code Application. Lecture7: Huffman Code. A simple application of Huffman coding of image compression which would be : Lecture7: Huffman Code Lossless Image Compression Huffman Code Application A simple application of Huffman coding of image compression which would be : Generation of a Huffman code for the set of values

More information

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) Let the keys are 28, 47, 20, 36, 43, 23, 25, 54 and table size is 11 then H(28)=28%11=6; H(47)=47%11=3;

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 6: Image Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 9 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

Lecture 3, Review of Algorithms. What is Algorithm?

Lecture 3, Review of Algorithms. What is Algorithm? BINF 336, Introduction to Computational Biology Lecture 3, Review of Algorithms Young-Rae Cho Associate Professor Department of Computer Science Baylor University What is Algorithm? Definition A process

More information

Encoding. A thesis submitted to the Graduate School of University of Cincinnati in

Encoding. A thesis submitted to the Graduate School of University of Cincinnati in Lossless Data Compression for Security Purposes Using Huffman Encoding A thesis submitted to the Graduate School of University of Cincinnati in a partial fulfillment of requirements for the degree of Master

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2015S-P2 Huffman Codes Project 2 David Galles Department of Computer Science University of San Francisco P2-0: Text Files All files are represented as binary digits

More information

Source Encoding and Compression

Source Encoding and Compression Source Encoding and Compression Jukka Teuhola Computer Science Department of Information Technology University of Turku Spring 2014 Lecture notes 2 Table of Contents 1. Introduction...3 2. Coding-theoretic

More information

ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding

ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding Huffman codes require us to have a fairly reasonable idea of how source symbol probabilities are distributed. There are a number of applications

More information