CS 378 (Spring 2003)

Size: px
Start display at page:

Download "CS 378 (Spring 2003)"

Transcription

1 Department of Computer Sciences THE UNIVERSITY OF TEXAS AT AUSTIN CS 378 (Spring 2003) Linux Kernel Programming Yongguang Zhang Copyright 2003, Yongguang Zhang

2 This Lecture Last Lecture: Process Management This Lecture: More Process Management Questions? Spring Yongguang Zhang 2

3 Managing Process/Thread User processes User Kernel Task Task Task Task Task Kernel threads Scheduling Spring Yongguang Zhang 3

4 Task Descriptor Stack state pid, pgid, uid,... next_ prev_ 8KB runlist fs files mm _struct sig thread Spring Yongguang Zhang 4

5 Task Lists init_ next_ prev_ next_ prev_ next_ prev_ next_ Prev_ next_ prev_ runlist runlist pidhash_next pidhash_pprev pidhash_next pidhash_pprev pidhash runqueue_head pid lock _list flags _list flags _list Spring Yongguang Zhang 5

6 Run Queue Variables runqueue_head nr_running Functions (kernel/sched.c) add_to_runqueue(struct _struct * p), del_from_runqueue(struct _struct * p) wake_up_process(struct _struct * p) Spring Yongguang Zhang 6

7 Wait Queues Different types of wait Exclusive and non-exclusive waits Interruptible and non-interruptible Define a new wait queue DECLARE_WAIT_QUEUE_HEAD(...) Functions: add_wait_queue(), remove_wait_queue() sleep_on macros wake_up macros Spring Yongguang Zhang 7

8 Creating Process fork() System Call Duplicate the entire process: its virtual memory and all per-process kernel resources Heavyweight Often wasteful if followed immediately by execve(), which releases all these resources and creates its own clone() System Call Selectively duplicate the process resources: VM, FS, FILES, and/or SIGHAND Lightweight Spring Yongguang Zhang 8

9 do_fork() Called by sys_clone(), sys_fork(), sys_vfork() Defined in kernel/fork.c: p = alloc struct(); Lots of checking and filling in *p; copy_files(clone_flags, p) copy_fs(clone_flags, p) copy_sighand(clone_flags, p) copy_mm(clone_flags, p) copy_thread(0, clone_flags, _start, _size, p, regs); More checking and filling in *p; wake_up_process(p); Spring Yongguang Zhang 9

10 Context Switch Suspend the Execution of Current Process (running on CPU) and Resume the Execution of Another Process Save the current context (hardware and software states) in the process descriptor or in Load the next context Context Hardware: CPU states Software: Virtual Memory Management (Page Tables) Spring Yongguang Zhang 10

11 Hardware Context Remember struct thread_struct? Hardware Registers unsigned long esp0, eip, esp, fs, gs; Hardware debugging registers unsigned long debugreg[8]; Fault info unsigned long cr2, trap_no, error_code; Floating point info union i387_union i387; Virtual 86 mode info IO permissions Spring Yongguang Zhang 11

12 switch_to() A macro to switch context from prev to next Defined in include/asm-i386/system.h Written in assembly, but essentially: %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp Label 1 address prev->thread.eip next->thread.eip Jump to switch_to() (exchange rest of the context) End with ret ( %eip) Label 1: %esi, %edi, %ebp Spring Yongguang Zhang 12

13 How Exactly Does it Work? Register ESP: pointer Register EIP: code pointer kernel code kernel process 1 process 2 code process 1 process 2 esp eip CPU esp eip CPU Spring Yongguang Zhang 13

14 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp esp eip CPU Spring Yongguang Zhang 14

15 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip CPU Spring Yongguang Zhang 15

16 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip CPU Spring Yongguang Zhang 16

17 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip CPU Spring Yongguang Zhang 17

18 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip CPU Spring Yongguang Zhang 18

19 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip L1 CPU Spring Yongguang Zhang 19

20 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip L1 CPU Spring Yongguang Zhang 20

21 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip L1 CPU Spring Yongguang Zhang 21

22 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip CPU Spring Yongguang Zhang 22

23 kernel code process 1 process 2 switch_to: ret %esi, %edi, %ebp %esp prev->thread.esp next->thread.esp %esp L1 prev->thread.eip next->thread.eip Jump to switch_to L1: %esi, %edi, %ebp %ebp %edi %esi esp eip CPU Spring Yongguang Zhang 23

24 Another Type of Context Switch Between Kernel Mode and User Mode of a Process Example: system call Also Need to Save the Stacks, CPU states. Exercise: Figure out how context switch is done entering a system call and returning from a system call Spring Yongguang Zhang 24

25 Process Scheduling Scheduling Policy: to determine which process (in the run queue) to run next Time-sharing Preemptive (in user-mode only) Normal (plain time-sharing) or real-time (FIFO or RR) Scheduling Mechanisms The Scheduler routine (schedule()) Process Switch (switch_to()) System Calls Spring Yongguang Zhang 25

26 Scheduler Data Structure In Each Process Descriptor (_struct fields) long need_resched Whether to call schedule() when return from interrupt unsigned long policy Type of scheduling class long counter Number of ticks left before the process uses up its time slice long nice The nice value of the process (some form of priority) unsigned long rt_priority The fixed priority for Real-Time process Spring Yongguang Zhang 26

27 schedule() In kernel/sched.c : void schedule(void) { lots of checking find one with highest goodness() in the run queue switch_mm() switch_to(prev,next,prev) } Spring Yongguang Zhang 27

28 Process Selection Transverse All Processes on the Run Queue for the Most Deserving Process to Run Actual code within schedule(): list_for_each(tmp, &runqueue_head) { p = list_entry(tmp, struct _struct, run_list); if (can_schedule(p, this_cpu)) { int weight = goodness(p, this_cpu, prev->active_mm); if (weight > c) c = weight, next = p; } } Spring Yongguang Zhang 28

29 goodness() In kernel/sched.c Higher value is the more desirable (to run next) Normal process (non-real-time process): weight = p->counter; if (p->processor == this_cpu) weight += PROC_CHANGE_PENALTY; if (p->mm == this_mm!p->mm) weight += 1; weight += 20 - p->nice; Real-time process: weight = p->rt_priority; Spring Yongguang Zhang 29

30 Process Management: LKP & ULK 3 Group Project 1 Memory Management Due next Monday Summary Spring Yongguang Zhang 30

What is a process. Ausgewählte Betriebssysteme. Process state. task_struct. Processes and Threads

What is a process. Ausgewählte Betriebssysteme. Process state. task_struct. Processes and Threads Ausgewählte Betriebssysteme What is a process Fundamental concept for multiprogramming Instance of program in execution Sequential control flow Processes and Threads Entity to which system resources are

More information

Scheduling policy. Reference: ULK3e 7.1. Scheduling in Linux 1 / 20

Scheduling policy. Reference: ULK3e 7.1. Scheduling in Linux 1 / 20 Scheduling policy Reference: ULK3e 7.1. Goals fast process response time good throughput for background jobs avoidance of process starvation reconciliation of needs of low- and high-priority processes

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics General scheduling concepts Scheduling algorithms Case studies Linux

More information

Operating System Project / Lecture 1 Tasks and scheduling. Bon Keun Seo

Operating System Project / Lecture 1 Tasks and scheduling. Bon Keun Seo Operating System Project / Lecture 1 Tasks and scheduling Bon Keun Seo Program: executable code Program and process Process: a running instance of a program /bin/bash Program (bash) Process 1 (bash) Process

More information

Processes (Intro) Yannis Smaragdakis, U. Athens

Processes (Intro) Yannis Smaragdakis, U. Athens Processes (Intro) Yannis Smaragdakis, U. Athens Process: CPU Virtualization Process = Program, instantiated has memory, code, current state What kind of memory do we have? registers + address space Let's

More information

Scalable Linux Scheduling (Paper # 9)

Scalable Linux Scheduling (Paper # 9) Scalable Linux Scheduling (Paper # 9) Scalability: the ability to support large number of threads. 30% of the total CPU time is spent in the scheduler when the number of running threads is high. Linux

More information

Section 4: Threads CS162. September 15, Warmup Hello World Vocabulary 2

Section 4: Threads CS162. September 15, Warmup Hello World Vocabulary 2 CS162 September 15, 2016 Contents 1 Warmup 2 1.1 Hello World............................................ 2 2 Vocabulary 2 3 Problems 3 3.1 Join................................................ 3 3.2 Stack

More information

Low Level Programming Lecture 2. International Faculty of Engineerig, Technical University of Łódź

Low Level Programming Lecture 2. International Faculty of Engineerig, Technical University of Łódź Low Level Programming Lecture 2 Intel processors' architecture reminder Fig. 1. IA32 Registers IA general purpose registers EAX- accumulator, usually used to store results of integer arithmetical or binary

More information

CSC369 Lecture 2. Larry Zhang, September 21, 2015

CSC369 Lecture 2. Larry Zhang, September 21, 2015 CSC369 Lecture 2 Larry Zhang, September 21, 2015 1 Volunteer note-taker needed by accessibility service see announcement on Piazza for details 2 Change to office hour to resolve conflict with CSC373 lecture

More information

3. Process Management in xv6

3. Process Management in xv6 Lecture Notes for CS347: Operating Systems Mythili Vutukuru, Department of Computer Science and Engineering, IIT Bombay 3. Process Management in xv6 We begin understanding xv6 process management by looking

More information

Thread and Synchronization

Thread and Synchronization Thread and Synchronization Task Model (Module 18) Yann-Hang Lee Arizona State University yhlee@asu.edu (480) 727-7507 Summer 2014 Real-time Systems Lab, Computer Science and Engineering, ASU Why Talk About

More information

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14 SYSTEM CALL IMPLEMENTATION CS124 Operating Systems Fall 2017-2018, Lecture 14 2 User Processes and System Calls Previously stated that user applications interact with the kernel via system calls Typically

More information

ICS143A: Principles of Operating Systems. Midterm recap, sample questions. Anton Burtsev February, 2017

ICS143A: Principles of Operating Systems. Midterm recap, sample questions. Anton Burtsev February, 2017 ICS143A: Principles of Operating Systems Midterm recap, sample questions Anton Burtsev February, 2017 Describe the x86 address translation pipeline (draw figure), explain stages. Address translation What

More information

CSC369 Lecture 2. Larry Zhang

CSC369 Lecture 2. Larry Zhang CSC369 Lecture 2 Larry Zhang 1 Announcements Lecture slides Midterm timing issue Assignment 1 will be out soon! Start early, and ask questions. We will have bonus for groups that finish early. 2 Assignment

More information

Precept 2: Non-preemptive Scheduler. COS 318: Fall 2018

Precept 2: Non-preemptive Scheduler. COS 318: Fall 2018 Precept 2: Non-preemptive Scheduler COS 318: Fall 2018 Project 2 Schedule Precept: Monday 10/01, 7:30pm (You are here) Design Review: Monday 10/08, 3-7pm Due: Sunday 10/14, 11:55pm Project 2 Overview Goal:

More information

Processes. Dr. Yingwu Zhu

Processes. Dr. Yingwu Zhu Processes Dr. Yingwu Zhu Process Growing Memory Stack expands automatically Data area (heap) can grow via a system call that requests more memory - malloc() in c/c++ Entering the kernel (mode) Hardware

More information

4. The Abstraction: The Process

4. The Abstraction: The Process 4. The Abstraction: The Process Operating System: Three Easy Pieces AOS@UC 1 How to provide the illusion of many CPUs? p CPU virtualizing w The OS can promote the illusion that many virtual CPUs exist.

More information

What You Need to Know for Project Three. Dave Eckhardt Steve Muckle

What You Need to Know for Project Three. Dave Eckhardt Steve Muckle What You Need to Know for Project Three Dave Eckhardt Steve Muckle Overview Introduction to the Kernel Project Mundane Details in x86 registers, paging, the life of a memory access, context switching,

More information

Section 4: Threads and Context Switching

Section 4: Threads and Context Switching CS162 September 19-20, 2017 Contents 1 Warmup 2 1.1 Hello World............................................ 2 2 Vocabulary 2 3 Problems 3 3.1 Join................................................ 3 3.2

More information

CS 326: Operating Systems. Process Execution. Lecture 5

CS 326: Operating Systems. Process Execution. Lecture 5 CS 326: Operating Systems Process Execution Lecture 5 Today s Schedule Process Creation Threads Limited Direct Execution Basic Scheduling 2/5/18 CS 326: Operating Systems 2 Today s Schedule Process Creation

More information

ò Paper reading assigned for next Tuesday ò Understand low-level building blocks of a scheduler User Kernel ò Understand competing policy goals

ò Paper reading assigned for next Tuesday ò Understand low-level building blocks of a scheduler User Kernel ò Understand competing policy goals Housekeeping Paper reading assigned for next Tuesday Scheduling Don Porter CSE 506 Memory Management Logical Diagram Binary Memory Formats Allocators Threads Today s Lecture Switching System to CPU Calls

More information

Scheduling: Case Studies. CS 161: Lecture 5 2/14/17

Scheduling: Case Studies. CS 161: Lecture 5 2/14/17 Scheduling: Case Studies CS 161: Lecture 5 2/14/17 Scheduling Basics Goal of scheduling: Pick the best task to run on a CPU Often a good idea to prioritize IO-bound tasks If IO comes from user (e.g., keyboard,

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 5: Thread Ryan Huang Administrivia HW1 solution released on Piazza resources Lab 0 grading - In progress - Cheating policy Lab 1 review session

More information

CS 378 (Spring 2003)

CS 378 (Spring 2003) Department of Computer Sciences THE UNIVERSITY OF TEXAS AT AUSTIN CS 378 (Spring 2003) Linux Kernel Programming Yongguang Zhang (ygz@cs.utexas.edu) Copyright 2003, Yongguang Zhang This Lecture Interprocess

More information

Tutorial 10 Protection Cont.

Tutorial 10 Protection Cont. Tutorial 0 Protection Cont. 2 Privilege Levels Lower number => higher privilege Code can access data of equal/lower privilege levels only Code can call more privileged data via call gates Each level has

More information

Homework / Exam. Return and Review Exam #1 Reading. Machine Projects. Labs. S&S Extracts , PIC Data Sheet. Start on mp3 (Due Class 19)

Homework / Exam. Return and Review Exam #1 Reading. Machine Projects. Labs. S&S Extracts , PIC Data Sheet. Start on mp3 (Due Class 19) Homework / Exam Return and Review Exam #1 Reading S&S Extracts 385-393, PIC Data Sheet Machine Projects Start on mp3 (Due Class 19) Labs Continue in labs with your assigned section 1 Interrupts An interrupt

More information

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5.

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5. Lecture Topics Today: Threads (Stallings, chapter 4.1-4.3, 4.6) Next: Concurrency (Stallings, chapter 5.1-5.4, 5.7) 1 Announcements Make tutorial Self-Study Exercise #4 Project #2 (due 9/20) Project #3

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

Project 2: Signals. Consult the submit server for deadline date and time

Project 2: Signals. Consult the submit server for deadline date and time Project 2: Signals Consult the submit server for deadline date and time You will implement the Signal() and Kill() system calls, preserving basic functions of pipe (to permit SIGPIPE) and fork (to permit

More information

Protection and System Calls. Otto J. Anshus

Protection and System Calls. Otto J. Anshus Protection and System Calls Otto J. Anshus Protection Issues CPU protection Prevent a user from using the CPU for too long Throughput of jobs, and response time to events (incl. user interactive response

More information

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam Assembly Language Lecture 2 - x86 Processor Architecture Ahmed Sallam Introduction to the course Outcomes of Lecture 1 Always check the course website Don t forget the deadline rule!! Motivations for studying

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 5: Thread Ryan Huang Slides adapted from Geoff Voelker s and David Mazières lectures Administrivia Lab 0 grading in progress Lab 1 review session

More information

Lecture Dependable Systems Practical Report Software Implemented Fault Injection. July 31, 2010

Lecture Dependable Systems Practical Report Software Implemented Fault Injection. July 31, 2010 Lecture Dependable Systems Practical Report Software Implemented Fault Injection Paul Römer Frank Zschockelt July 31, 2010 1 Contents 1 Introduction 3 2 Software Stack 3 2.1 The Host and the Virtual Machine.....................

More information

IMPLEMENTATION OF SIGNAL HANDLING. CS124 Operating Systems Fall , Lecture 15

IMPLEMENTATION OF SIGNAL HANDLING. CS124 Operating Systems Fall , Lecture 15 IMPLEMENTATION OF SIGNAL HANDLING CS124 Operating Systems Fall 2017-2018, Lecture 15 2 Signal Handling UNIX operating systems allow es to register for and handle signals Provides exceptional control flow

More information

CSCE Operating Systems Interrupts, Exceptions, and Signals. Qiang Zeng, Ph.D. Fall 2018

CSCE Operating Systems Interrupts, Exceptions, and Signals. Qiang Zeng, Ph.D. Fall 2018 CSCE 311 - Operating Systems Interrupts, Exceptions, and Signals Qiang Zeng, Ph.D. Fall 2018 Previous Class Process state transition Ready, blocked, running Call Stack Execution Context Process switch

More information

High level scheduling: Medium level scheduling: Low level scheduling. Scheduling 0 : Levels

High level scheduling: Medium level scheduling: Low level scheduling. Scheduling 0 : Levels Scheduling 0 : Levels High level scheduling: Deciding whether another process can run is process table full? user process limit reached? load to swap space or memory? Medium level scheduling: Balancing

More information

Processes. Overview. Processes. Process Creation. Process Creation fork() Processes. CPU scheduling. Pål Halvorsen 21/9-2005

Processes. Overview. Processes. Process Creation. Process Creation fork() Processes. CPU scheduling. Pål Halvorsen 21/9-2005 INF060: Introduction to Operating Systems and Data Communication Operating Systems: Processes & CPU Pål Halvorsen /9-005 Overview Processes primitives for creation and termination states context switches

More information

CMSC 412 Project #3 Threads & Synchronization Due March 17 th, 2017, at 5:00pm

CMSC 412 Project #3 Threads & Synchronization Due March 17 th, 2017, at 5:00pm CMSC 412 Project #3 Threads & Synchronization Due March 17 th, 2017, at 5:00pm Overview User level threads. You will implement user level threads where each thread has it s own stack, but shares the program,

More information

Complex Instruction Set Computer (CISC)

Complex Instruction Set Computer (CISC) Introduction ti to IA-32 IA-32 Processors Evolutionary design Starting in 1978 with 886 Added more features as time goes on Still support old features, although obsolete Totally dominate computer market

More information

+ Overview. Projects: Developing an OS Kernel for x86. ! Handling Intel Processor Exceptions: the Interrupt Descriptor Table (IDT)

+ Overview. Projects: Developing an OS Kernel for x86. ! Handling Intel Processor Exceptions: the Interrupt Descriptor Table (IDT) + Projects: Developing an OS Kernel for x86 Low-Level x86 Programming: Exceptions, Interrupts, and Timers + Overview! Handling Intel Processor Exceptions: the Interrupt Descriptor Table (IDT)! Handling

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information

OS 1 st Exam Name Solution St # (Q1) (19 points) True/False. Circle the appropriate choice (there are no trick questions).

OS 1 st Exam Name Solution St # (Q1) (19 points) True/False. Circle the appropriate choice (there are no trick questions). OS 1 st Exam Name Solution St # (Q1) (19 points) True/False. Circle the appropriate choice (there are no trick questions). (a) (b) (c) (d) (e) (f) (g) (h) (i) T_ The two primary purposes of an operating

More information

Mechanisms for entering the system

Mechanisms for entering the system Mechanisms for entering the system Yolanda Becerra Fontal Juan José Costa Prats Facultat d'informàtica de Barcelona (FIB) Universitat Politècnica de Catalunya (UPC) BarcelonaTech 2017-2018 QP Content Introduction

More information

Objectives. Introduction to process management of an operating system Explain step-by-step how processes are created in TOS

Objectives. Introduction to process management of an operating system Explain step-by-step how processes are created in TOS TOS Arno Puder 1 Objectives Introduction to process management of an operating system Explain step-by-step how processes are created in TOS 2 Introduction to Processes What is a process? A process consists

More information

Processes. CS 475, Spring 2018 Concurrent & Distributed Systems

Processes. CS 475, Spring 2018 Concurrent & Distributed Systems Processes CS 475, Spring 2018 Concurrent & Distributed Systems Review: Abstractions 2 Review: Concurrency & Parallelism 4 different things: T1 T2 T3 T4 Concurrency: (1 processor) Time T1 T2 T3 T4 T1 T1

More information

UMBC. contain new IP while 4th and 5th bytes contain CS. CALL BX and CALL [BX] versions also exist. contain displacement added to IP.

UMBC. contain new IP while 4th and 5th bytes contain CS. CALL BX and CALL [BX] versions also exist. contain displacement added to IP. Procedures: CALL: Pushes the address of the instruction following the CALL instruction onto the stack. RET: Pops the address. SUM PROC NEAR USES BX CX DX ADD AX, BX ADD AX, CX MOV AX, DX RET SUM ENDP NEAR

More information

IA32 Intel 32-bit Architecture

IA32 Intel 32-bit Architecture 1 2 IA32 Intel 32-bit Architecture Intel 32-bit Architecture (IA32) 32-bit machine CISC: 32-bit internal and external data bus 32-bit external address bus 8086 general registers extended to 32 bit width

More information

PROCESS CONTROL BLOCK TWO-STATE MODEL (CONT D)

PROCESS CONTROL BLOCK TWO-STATE MODEL (CONT D) MANAGEMENT OF APPLICATION EXECUTION PROCESS CONTROL BLOCK Resources (processor, I/O devices, etc.) are made available to multiple applications The processor in particular is switched among multiple applications

More information

ECE 391 Exam 1 Review Session - Spring Brought to you by HKN

ECE 391 Exam 1 Review Session - Spring Brought to you by HKN ECE 391 Exam 1 Review Session - Spring 2018 Brought to you by HKN DISCLAIMER There is A LOT (like a LOT) of information that can be tested for on the exam, and by the nature of the course you never really

More information

Intro to Threads. Two approaches to concurrency. Threaded multifinger: - Asynchronous I/O (lab) - Threads (today s lecture)

Intro to Threads. Two approaches to concurrency. Threaded multifinger: - Asynchronous I/O (lab) - Threads (today s lecture) Intro to Threads Two approaches to concurrency - Asynchronous I/O (lab) - Threads (today s lecture) Threaded multifinger: - Run many copies of finger simultaneously for (int i = 1; i < argc; i++) thread_create

More information

Project 2 Non- preemptive Kernel. COS 318 Fall 2016

Project 2 Non- preemptive Kernel. COS 318 Fall 2016 Project 2 Non- preemptive Kernel COS 318 Fall 2016 Project 2: Schedule Design Review: - Monday, 10/10; - Answer the questions: ü ü ü ü ü Process Control Block: What will be in your PCB and what will it

More information

PROCESS MANAGEMENT Operating Systems Design Euiseong Seo

PROCESS MANAGEMENT Operating Systems Design Euiseong Seo PROCESS MANAGEMENT 2016 Operating Systems Design Euiseong Seo (euiseong@skku.edu) Definition A process is a program in execution Context Resources Specifically, Register file state Address space File and

More information

Assembly Language. Lecture 2 x86 Processor Architecture

Assembly Language. Lecture 2 x86 Processor Architecture Assembly Language Lecture 2 x86 Processor Architecture Ahmed Sallam Slides based on original lecture slides by Dr. Mahmoud Elgayyar Introduction to the course Outcomes of Lecture 1 Always check the course

More information

x86 Assembly Tutorial COS 318: Fall 2017

x86 Assembly Tutorial COS 318: Fall 2017 x86 Assembly Tutorial COS 318: Fall 2017 Project 1 Schedule Design Review: Monday 9/25 Sign up for 10-min slot from 3:00pm to 7:00pm Complete set up and answer posted questions (Official) Precept: Monday

More information

Digital Forensics Lecture 3 - Reverse Engineering

Digital Forensics Lecture 3 - Reverse Engineering Digital Forensics Lecture 3 - Reverse Engineering Low-Level Software Akbar S. Namin Texas Tech University Spring 2017 Reverse Engineering High-Level Software Low-level aspects of software are often the

More information

Chap 4, 5: Process. Dongkun Shin, SKKU

Chap 4, 5: Process. Dongkun Shin, SKKU Chap 4, 5: Process 1 Process Concept Job A bundle of program and data to be executed An entity before submission for execution Process (= running program) An entity that is registered to kernel for execution

More information

Processes. Process Management Chapter 3. When does a process gets created? When does a process gets terminated?

Processes. Process Management Chapter 3. When does a process gets created? When does a process gets terminated? Processes Process Management Chapter 3 1 A process is a program in a state of execution (created but not terminated) Program is a passive entity one on your disk (survivor.class, kelly.out, ) Process is

More information

CS 537 Lecture 2 - Processes

CS 537 Lecture 2 - Processes CS 537 Lecture 2 - Processes Michael Swift 1 Basic Structure Kernel is a big program that starts when you boot your program Has full access to physical hardware. User programs, utilities, services see

More information

Introduction Programmer Interface User Interface Process Management Memory Management File System I/O System Interprocess Communication

Introduction Programmer Interface User Interface Process Management Memory Management File System I/O System Interprocess Communication UNIX Introduction Programmer Interface User Interface Process Management Memory Management File System I/O System Interprocess Communication 30 Process Management How to represent a process for Process

More information

Process Description and Control

Process Description and Control Process Description and Control 1 summary basic concepts process control block process trace process dispatching process states process description process control 2 Process A program in execution (running)

More information

Basic Execution Environment

Basic Execution Environment Basic Execution Environment 3 CHAPTER 3 BASIC EXECUTION ENVIRONMENT This chapter describes the basic execution environment of an Intel Architecture processor as seen by assembly-language programmers.

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Harsha V. Madhyastha Monitors vs. Semaphores Monitors: Custom user-defined conditions Developer must control access to variables Semaphores: Access

More information

CS 5460/6460 Operating Systems

CS 5460/6460 Operating Systems CS 5460/6460 Operating Systems Fall 2009 Instructor: Matthew Flatt Lecturer: Kevin Tew TAs: Bigyan Mukherjee, Amrish Kapoor 1 Join the Mailing List! Reminders Make sure you can log into the CADE machines

More information

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7 THE PROCESS ABSTRACTION CS124 Operating Systems Winter 2015-2016, Lecture 7 2 The Process Abstraction Most modern OSes include the notion of a process Term is short for a sequential process Frequently

More information

Processes and Threads

Processes and Threads OPERATING SYSTEMS CS3502 Spring 2018 Processes and Threads (Chapter 2) Processes Two important types of dynamic entities in a computer system are processes and threads. Dynamic entities only exist at execution

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Slides prepared by Kip R. Irvine Revision date: 09/25/2002

More information

Computer Organization (II) IA-32 Processor Architecture. Pu-Jen Cheng

Computer Organization (II) IA-32 Processor Architecture. Pu-Jen Cheng Computer Organization & Assembly Languages Computer Organization (II) IA-32 Processor Architecture Pu-Jen Cheng Materials Some materials used in this course are adapted from The slides prepared by Kip

More information

Introduction to IA-32. Jo, Heeseung

Introduction to IA-32. Jo, Heeseung Introduction to IA-32 Jo, Heeseung IA-32 Processors Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

Threads. Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1

Threads. Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1 Threads Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1 Single and Multithreaded Processes Thread specific Data (TSD) Code 3/9/2003 B.Ramamurthy 2 User Threads

More information

Topics: 1. Advanced task management schemes 2. Binding to the Linux architecture

Topics: 1. Advanced task management schemes 2. Binding to the Linux architecture Advanced Operating Systems and Virtualization MS degree in Computer Engineering Sapienza University of Rome Lecturer: Francesco Quaglia Topics: 1. Advanced task management schemes 2. Binding to the Linux

More information

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017 ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 The Operating System (OS) Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke)

More information

The Process Abstraction. CMPU 334 Operating Systems Jason Waterman

The Process Abstraction. CMPU 334 Operating Systems Jason Waterman The Process Abstraction CMPU 334 Operating Systems Jason Waterman How to Provide the Illusion of Many CPUs? Goal: run N processes at once even though there are M CPUs N >> M CPU virtualizing The OS can

More information

INTRODUCTION TO IA-32. Jo, Heeseung

INTRODUCTION TO IA-32. Jo, Heeseung INTRODUCTION TO IA-32 Jo, Heeseung IA-32 PROCESSORS Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

KERNEL THREAD IMPLEMENTATION DETAILS. CS124 Operating Systems Winter , Lecture 9

KERNEL THREAD IMPLEMENTATION DETAILS. CS124 Operating Systems Winter , Lecture 9 KERNEL THREAD IMPLEMENTATION DETAILS CS124 Operating Systems Winter 2015-2016, Lecture 9 2 Last Time: Kernel Threads OS kernel must provide a multitasking implementation Kernel threads are the minimal

More information

Class average is Undergraduates are performing better. Working with low-level microcontroller timers

Class average is Undergraduates are performing better. Working with low-level microcontroller timers Student feedback Low grades of the midterm exam Class average is 86.16 Undergraduates are performing better Cheat sheet on the final exam? You will be allowed to bring one page of cheat sheet to the final

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009 CS211: Programming and Operating Systems Lecture 17: Threads and Scheduling Thursday, 05 Nov 2009 CS211 Lecture 17: Threads and Scheduling 1/22 Today 1 Introduction to threads Advantages of threads 2 User

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Processes and threads

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Processes and threads ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Processes and threads 1 Overview Process concept Process scheduling Thread

More information

Operating Systems 16 - CS 323 Assignment #2

Operating Systems 16 - CS 323 Assignment #2 Operating Systems 16 - CS 323 Assignment #2 Scheduler March 18, 2016 1 Objectives 1. Learn about scheduling in the Linux kernel 2. Understand the tradeoffs involved in scheduling 3. Work on the codebase

More information

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay Lecture 4: Mechanism of process execution Mythili Vutukuru IIT Bombay Low-level mechanisms How does the OS run a process? How does it handle a system call? How does it context switch from one process to

More information

Changes made in this version not seen in first lecture:

Changes made in this version not seen in first lecture: Changelog 0 Changes made in this version not seen in first lecture: 30 August: juggling stacks: add arguments to stacks 30 August: where things go in context switch: new slide this duplicates some notional

More information

Processes. CS3026 Operating Systems Lecture 05

Processes. CS3026 Operating Systems Lecture 05 Processes CS3026 Operating Systems Lecture 05 Dispatcher Admit Ready Queue Dispatch Processor Release Timeout or Yield Event Occurs Blocked Queue Event Wait Implementation: Using one Ready and one Blocked

More information

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher Reverse Engineering II: Basics Gergely Erdélyi Senior Antivirus Researcher Agenda Very basics Intel x86 crash course Basics of C Binary Numbers Binary Numbers 1 Binary Numbers 1 0 1 1 Binary Numbers 1

More information

Processes. q Process concept q Process model and implementation q Multiprocessing once again q Next Time: Scheduling

Processes. q Process concept q Process model and implementation q Multiprocessing once again q Next Time: Scheduling Processes q Process concept q Process model and implementation q Multiprocessing once again q Next Time: Scheduling The process model Computers can do more than one thing at a time Hard to keep track of

More information

Overview. This Lecture. Interrupts and exceptions Source: ULK ch 4, ELDD ch1, ch2 & ch4. COSC440 Lecture 3: Interrupts 1

Overview. This Lecture. Interrupts and exceptions Source: ULK ch 4, ELDD ch1, ch2 & ch4. COSC440 Lecture 3: Interrupts 1 This Lecture Overview Interrupts and exceptions Source: ULK ch 4, ELDD ch1, ch2 & ch4 COSC440 Lecture 3: Interrupts 1 Three reasons for interrupts System calls Program/hardware faults External device interrupts

More information

Process management. What s in a process? What is a process? The OS s process namespace. A process s address space (idealized)

Process management. What s in a process? What is a process? The OS s process namespace. A process s address space (idealized) Process management CSE 451: Operating Systems Spring 2012 Module 4 Processes Ed Lazowska lazowska@cs.washington.edu Allen Center 570 This module begins a series of topics on processes, threads, and synchronization

More information

Linux Linux #! "! Linux

Linux Linux #! ! Linux #!! ! 2.5.X % Understanding the Kernel &! 2.5.X kernel/sched.cinclude/linux/sched.h'! Ingo Molnar' ) time! sharing!! &! & Preemptive multitasking SCHED_OTHER * ( & *& real-time!!, & '!! ) TASK_RUNNING!

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013 Operating Systems Comprehensive Exam Spring 2013 Student ID # 3/20/2013 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

INF1060: Introduction to Operating Systems and Data Communication. Pål Halvorsen. Wednesday, September 29, 2010

INF1060: Introduction to Operating Systems and Data Communication. Pål Halvorsen. Wednesday, September 29, 2010 INF1060: Introduction to Operating Systems and Data Communication Pål Halvorsen Wednesday, September 29, 2010 Overview Processes primitives for creation and termination states context switches processes

More information

CS 378 (Spring 2003)

CS 378 (Spring 2003) Department of Computer Sciences THE UNIVERSITY OF TEXAS AT AUSTIN CS 378 (Spring 2003) Linux Kernel Programming Yongguang Zhang (ygz@cs.utexas.edu) Copyright 2003, Yongguang Zhang Linux Security (kernel)

More information

Operating Systems and Protection CS 217

Operating Systems and Protection CS 217 Operating Systems and Protection CS 7 Goals of Today s Lecture How multiple programs can run at once o es o Context switching o control block o Virtual Boundary between parts of the system o User programs

More information

OPERATING SYSTEMS: Lesson 4: Process Scheduling

OPERATING SYSTEMS: Lesson 4: Process Scheduling OPERATING SYSTEMS: Lesson 4: Process Scheduling Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Content Process creation. Process termination.

More information

Processes Topics Processes Context switching Scheduling

Processes Topics Processes Context switching Scheduling CENG334 Introduction to Operating Systems Processes Topics Processes Context switching Scheduling Erol Sahin Dept of Computer Eng. Middle East Technical University Ankara, TURKEY URL: http://kovan.ceng.metu.edu.tr/~erol/courses/ceng334

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 21

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 21 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 21 LAST TIME: UNIX PROCESS MODEL Began to explore the implementation of the UNIX process model The user API is very simple: fork() creates a

More information

Multiprocessor Solution

Multiprocessor Solution Mutual Exclusion Multiprocessor Solution P(sema S) begin while (TAS(S.flag)==1){}; { busy waiting } S.Count= S.Count-1 if (S.Count < 0){ insert_t(s.qwt) BLOCK(S) {inkl.s.flag=0)!!!} } else S.flag =0 end

More information

REVIEW OF COMMONLY USED DATA STRUCTURES IN OS

REVIEW OF COMMONLY USED DATA STRUCTURES IN OS REVIEW OF COMMONLY USED DATA STRUCTURES IN OS NEEDS FOR EFFICIENT DATA STRUCTURE Storage complexity & Computation complexity matter Consider the problem of scheduling tasks according to their priority

More information

COS 318: Operating Systems. Overview. Prof. Margaret Martonosi Computer Science Department Princeton University

COS 318: Operating Systems. Overview. Prof. Margaret Martonosi Computer Science Department Princeton University COS 318: Operating Systems Overview Prof. Margaret Martonosi Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Announcements Precepts: Tue (Tonight)!

More information

Processes, Context Switching, and Scheduling. Kevin Webb Swarthmore College January 30, 2018

Processes, Context Switching, and Scheduling. Kevin Webb Swarthmore College January 30, 2018 Processes, Context Switching, and Scheduling Kevin Webb Swarthmore College January 30, 2018 Today s Goals What is a process to the OS? What are a process s resources and how does it get them? In particular:

More information

Lecture Topics. Announcements. Today: Uniprocessor Scheduling (Stallings, chapter ) Next: Advanced Scheduling (Stallings, chapter

Lecture Topics. Announcements. Today: Uniprocessor Scheduling (Stallings, chapter ) Next: Advanced Scheduling (Stallings, chapter Lecture Topics Today: Uniprocessor Scheduling (Stallings, chapter 9.1-9.3) Next: Advanced Scheduling (Stallings, chapter 10.1-10.4) 1 Announcements Self-Study Exercise #10 Project #8 (due 11/16) Project

More information

The Microprocessor and its Architecture

The Microprocessor and its Architecture The Microprocessor and its Architecture Contents Internal architecture of the Microprocessor: The programmer s model, i.e. The registers model The processor model (organization) Real mode memory addressing

More information