How do we troubleshoot this? How does Esmeralda know how to fix this?

Size: px
Start display at page:

Download "How do we troubleshoot this? How does Esmeralda know how to fix this?"

Transcription

1

2 How do we troubleshoot this? How does Esmeralda know how to fix this? 2

3 Goal Find bugs in networked applications Large complex unknown applications!!! Large complex unknown networks!!! Understandable output / fix 3

4 Motivation pache Server Chrome Client 4

5 Motivation Chrome Client probing ping Different traffic (ICMP) Often different result pache Server 6

6 Motivation Chrome Client Requires detailed protocol / app knowledge packet capture pache Server 9

7 Motivation Need a model per application pache Server Chrome Client Model Model apps Magpie, Xtrace, Pip... Model 12

8 Motivation Chrome Client Header Space nalysis, etc. Network Config nalysis pache Server Model & Config Model & Config Model & Config Model & Config 14

9 Motivation Chrome Client Need detailed network knowledge HW + config Network Config nalysis pache Server Model & Config Model & Config Model & Config Model & Config 15

10 Motivation pache Server Chrome Client? 16

11 NetCheck Chrome Client programmer programmer pache Server 17

12 NetCheck Chrome Client programmer programmer pache Server 18

13 NetCheck Chrome Client programmer programmer pache Server Model Programmer s Understanding Deutsch s Fallacies 19

14 Outline Motivation NetCheck Overview Trace Ordering Network Model Fault Classification Results / Conclusion 20

15 NetCheck overview pplication Fail Traces NetCheck Likely Faults 21

16 NetCheck overview pplication Fail Traces ktrace strace NetCheck Likely Faults 22

17 NetCheck overview pplication Traces Host Traces Ordering lgorithm Diagnoses Engine Diagnosis NetCheck Input syscall simulation result Network Model simulation state errors Output NetCheck Likely Faults 23

18 NetCheck overview pplication Traces Network Configuration Issues NetCheck Likely Faults Traffic Statistics Problem Detected 24

19 Outline Motivation NetCheck Overview Trace Ordering Network Model Fault Classification Results / Conclusion Traces (a) Trace Ordering 25

20 Traces Series of locally ordered system calls Don t want to modify apps or use a global clock Gathered by strace, ktrace, systrace, truss, etc. Call arguments and return values! socket() = 3 bind(3, ) Call arguments = 0 listen(3, 1) = 0 accept(3, ) = 4 recv(4, "HTTP", ) = 4 Return values close(4) = 0 Return buffer 26

21 What we see is this:! Node Node B 1. socket() = 3 1. socket() = 3 2. bind(3,...) = 0 2. connect(3,...) = 0 3. listen(3, 1) = 0 3. send(3, "Hello",.) = 5 4. accept(3,...) = 4 4. close(3) = 0 5. recv(4,"hello",..) = 5 6. close(4) = 0 - one trace per host - local order but no global order Q: how do we reconstruct what really happened? 27

22 What we want is this 1. socket() = 3 B1. socket() = 3 2. bind(3,...) = 0 3. listen(3, 1) = 0 B2. connect(3,...) = 0 4. accept(3,...) = 4 B3. send(3, "Hello",...) = 5 5. recv(4, "Hello",...) = 5 B4. close(3) = 0 6. close(4) = 0 The ground truth B 28

23 What we want is this 1. socket() = 3 B1. socket() = 3 2. bind(3,...) = 0 3. listen(3, 1) = 0 B2. connect(3,...) = 0 4. accept(3,...) = 4 B3. send(3, "Hello",...) = 5 5. recv(4, "Hello",...) = 5 B4. close(3) = 0 6. close(4) = 0 The ground truth!!!!!!! Goal: find an equivalent interleaving B 29

24 Observation 1: Order Equivalence! Node Node B 1. socket() = 3 1. socket() = 3 2. bind(3,...) = 0 2. connect(3,...) = 0 3. listen(3, 1) = 0 3. send(3, "Hello",.) = 5 4. accept(3,...) = 4 4. close(3) = 0 5. recv(4,"hello",..) = 5 6. close(4) = 0 - one trace per host - local order but no global order Q: how do we reconstruct what really happened? The socket() calls are not visible to the other side Some orders are equivalent! 30

25 Observation 2: Return Values Guide Ordering! Node Node B 1. socket() = 3 1. socket() = 3 2. bind(3,...) = 0 2. connect(3,...) = 0 3. listen(3, 1) = 0 3. send(3, "Hello",.) = 5 4. accept(3,...) = 4 4. close(3) = 0 5. recv(4,"hello",..) = 5 6. close(4) = 0 - one trace per host - local order but no global order Q: how do we reconstruct what really happened? 31

26 Return values guide ordering! 2. bind(3,...) = 0! 3. listen(3, 1) = 0 B2. connect(3,...) = 0! One valid ordering: all syscalls returned successfully. 2. bind(3,...) = 0 B2. connect(3,...) = -1, ECONNREFUSED second valid ordering: connect failed with ECONNREFUSED. 3. listen(3, 1) = 0! call s return value may-depend-on a remote call s action Result indicates order of calls 32

27 Deciding call order bind socket getsockname getsockopt, setsockopt accept getpeername poll, select connect recv, recvfrom, recvmsg, read listen close, shutdown send, sendto, sendmsg, write, writev, sendfile full set of may-depend-on relations 33

28 Ordering lgorithm Input traces B socket socket lgorithm process bind listen connect send Output Ordering accept recv 34

29 Ordering lgorithm Input traces B socket socket lgorithm process Try socket on host : accepted bind listen accept connect send Output Ordering socket recv 35

30 Ordering lgorithm Input traces B lgorithm process listen connect Try connect on host B: rejected accept send Output Ordering recv B socket socket bind 36

31 Ordering lgorithm Input traces B lgorithm process listen connect Try listen on host : accepted accept send Output Ordering recv B socket socket bind listen 37

32 Ordering lgorithm recv Input traces B send lgorithm process Try recv on host : rejected TCP BUFFER: Output Ordering B B socket socket bind listen connect accept Hola! 38

33 Ordering lgorithm Input traces B recv None send lgorithm process Try send on host B: accepted TCP BUFFER: Output Ordering B B socket socket bind listen connect accept B send Hola! 39

34 Ordering lgorithm Input traces B recv None lgorithm process Try send on host B: accepted TCP BUFFER: Hello Output Ordering B B socket socket bind listen connect accept B send Hola! 40

35 Ordering lgorithm Input traces B lgorithm process recv TCP BUFFER: Hello None Try recv on host : Fatal Error Output Ordering B B socket socket bind listen connect accept B send Hola! 41

36 Outline Motivation NetCheck Overview Trace Ordering Network Model Fault Classification Results / Conclusion Model Fatal Error ccept Reject 42

37 Network Model Simulates invocation of a syscall datagrams sent/lost reordering / duplication is notable track pending connections buffer lengths and contents send -> put data into buffer recv -> pop data from buffer! Simulation outcome ccept can process (correct buffer) Reject wrong order (incomplete buffer) Model Fatal Error Permanent reject abnormal behavior (incorrect buffer) ccept Reject 43

38 Network Model Simulates invocation of a syscall Capture programmer assumptions ssumes a simplified network view ssume transitive connectivity Little, random loss No middle boxes ssume uniform platform Flag OS differences 44

39 How Model Return Values Impact Trace Ordering Blackbox Tracing mechanism Host Traces Ordering lgorithm Diagnoses Engine Diagnosis Input syscall simulation result simulation state errors Output Network Model NetCheck Trace Ordering: linear running time (total trace length) * number of traces 45

40 Outline Motivation NetCheck Overview Trace Ordering Network Model Fault Classification Results / Conclusion (c) Fault Classifier Output 46 46

41 Fault Classifier Goal: Decide what to output Problem: Show relevant information Fault classifier: global (rather than local) view uncovers high-level patterns by extracting low-level features Examples: middleboxes, non-transitive connectivity, MTU, mobility, network disconnection ll look like loss, but have different patterns in the context of other flows 47

42 Fault Classifier Options to show different levels of detail Network admins / developers detailed info Network Configuration Issues End users Classification Recommendations Traffic Statistics Problem Detected 48

43 Outline Motivation NetCheck Overview Trace Ordering Network Model Fault Classification Results / Conclusion 49

44 Evaluation: Production pplication Bugs Reproduce reported bugs from bug trackers (Python, pache, Ruby, Firefox, etc.) total of 71 bugs Grouped into 23 categories Virtualization incurred/portability bugs SO_REUSEDDR behaves differently across OSes accept inherit O_NONBLOCK Correct analysis of >95% bugs 50

45 Evaluation: Observed Network Faults Twenty faults observed in practice on a live network MTU bug Intermediary device Port forward Traffic sent to non-relevant addresses Provide supplemental info packet loss buffers being closed with data in 90% of cases correctly detected 51

46 General Findings in Practice Middle boxes Multiple unaccepted connections client behind NT in FTP TCP/UDP non-transitive connectivity in VLC Complex failures o VirtualBox send data larger than buffer size o Pidgin returned IP different from bind o Skype NT + close socket from a different thread Used on Seattle Testbed seattle.poly.edu 52

47 NetCheck Performance Overhead VLC Skype Telnet Firefox SSH 53

48 Conclusion Built and evaluated NetCheck, a tool to diagnose network failures in complex apps! Key insights: model the programmer s misconceptions relation between calls reconstruct order NetCheck is effective Everyday applications & networks Real network / application bugs No per-network knowledge No per-application knowledge Try it here: 54

NetCheck: Network Diagnoses from Blackbox Traces

NetCheck: Network Diagnoses from Blackbox Traces NetCheck: Network Diagnoses from Blackbox Traces Yanyan Zhuang *^, Eleni Gessiou *, Fraida Fund *, Steven Portzer @, Monzur Muhammad^, Ivan Beschastnikh^, Justin Cappos *! (*) New York University, (^)

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

Light & NOS. Dan Li Tsinghua University

Light & NOS. Dan Li Tsinghua University Light & NOS Dan Li Tsinghua University Performance gain The Power of DPDK As claimed: 80 CPU cycles per packet Significant gain compared with Kernel! What we care more How to leverage the performance gain

More information

CptS 360 (System Programming) Unit 17: Network IPC (Sockets)

CptS 360 (System Programming) Unit 17: Network IPC (Sockets) CptS 360 (System Programming) Unit 17: Network IPC (Sockets) Bob Lewis School of Engineering and Applied Sciences Washington State University Spring, 2018 Motivation Processes need to talk to each other

More information

Interprocess Communication

Interprocess Communication Interprocess Communication B.Ramamurthy CSE421 11/5/02 B.R 1 Topics Pipes (process level) Sockets (OS level) Distributed System Methods (Java s) Remote Method Invocation (PL Level) Other communication

More information

Contents. Part 1. Introduction and TCP/IP 1. Foreword Preface. xix. I ntroduction 31

Contents. Part 1. Introduction and TCP/IP 1. Foreword Preface. xix. I ntroduction 31 Foreword Preface Xvii xix Part 1. Introduction and TCP/IP 1 Chapter 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 Chapter 2. 2.1 2.2 2.3 I ntroduction I ntroduction 3 A Simple Daytime Client 6

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2014 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Project #1 Starts in one week Is your Linux environment all ready? Bring your laptop Work time after quick

More information

Z/TPF TCP/IP SOCK Driver 12/14/10. z/tpf TCP/IP SOCKET Driver Users Guide. Copyright IBM Corp. 2010

Z/TPF TCP/IP SOCK Driver 12/14/10. z/tpf TCP/IP SOCKET Driver Users Guide. Copyright IBM Corp. 2010 z/tpf TCP/IP SOCKET Driver Users Guide Copyright IBM Corp. 2010 1. 1.0 Introduction Z/TPF TCP/IP SOCK Driver 12/14/10 The socket driver consists of multiple DLMs that issue TCP/IP API calls to send and

More information

UNIX Sockets. Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

UNIX Sockets. Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. UNIX Sockets Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Socket and Process Communication application layer User Process Socket transport layer (TCP/UDP) network layer (IP)

More information

Network programming(ii) Lenuta Alboaie

Network programming(ii) Lenuta Alboaie Network programming(ii) Lenuta Alboaie adria@info.uaic.ro 1 Content let s remember: iterative TCP client/server UDP client/server model I/O primitives Advanced programming aspects in Internet socket API

More information

A Client-Server Exchange

A Client-Server Exchange Socket programming A Client-Server Exchange A server process and one or more client processes Server manages some resource. Server provides service by manipulating resource for clients. 1. Client sends

More information

Hybrid of client-server and P2P. Pure P2P Architecture. App-layer Protocols. Communicating Processes. Transport Service Requirements

Hybrid of client-server and P2P. Pure P2P Architecture. App-layer Protocols. Communicating Processes. Transport Service Requirements Announcements CS 5565 Network Architecture and Protocols Lecture 5 Godmar Back Problem Set 1 due Feb 17 Project 1 handed out shortly 2 Layer The Layer Let s look at some s (in keeping with top-down) architectures:

More information

LESSON PLAN. Sub. Code & Name : IT2351 & Network Programming and Management Unit : I Branch: IT Year : III Semester: VI.

LESSON PLAN. Sub. Code & Name : IT2351 & Network Programming and Management Unit : I Branch: IT Year : III Semester: VI. Unit : I Branch: IT Year : III Semester: VI Page: 1 of 6 UNIT I ELEMENTARY TCP SOCKETS 9 Introduction to Socket Programming Overview of TCP/IP Protocols Introduction to Sockets Socket address Structures

More information

Lecture 2. Outline. Layering and Protocols. Network Architecture. Layering and Protocols. Layering and Protocols. Chapter 1 - Foundation

Lecture 2. Outline. Layering and Protocols. Network Architecture. Layering and Protocols. Layering and Protocols. Chapter 1 - Foundation Lecture 2 Outline Wireshark Project 1 posted, due in a week Lab from a different textbook Work through the lab and answer questions at the end Chapter 1 - Foundation 1.1 Applications 1.2 Requirements 1.3

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur QUESTION BANK

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur QUESTION BANK SRM Nagar, Kattankulathur 603 203 IV SEMESTER MC7404 NETWORK PROGRAMMING Regulation 2013 Academic Year 2017 18 Prepared by Mr. M.Asan Nainar, Assistant Professor/MCA UNIT I - INTRODUCTION Overview of UNIX

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Transport Layer Dmitri Loguinov Texas A&M University February 22, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

9th Slide Set Computer Networks

9th Slide Set Computer Networks Prof. Dr. Christian Baun 9th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 9th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

PROGRAMMING ASSIGNMENTS 3 & 4 TAO

PROGRAMMING ASSIGNMENTS 3 & 4 TAO PROGRAMMING ASSIGNMENTS 3 & 4 TAO INTRODUCTION Create network programs using Socket APIs Language is not limited C, Python, Java, Your program will interact with the CSE3300 server Server is hosted at

More information

sottotitolo Socket Programming Milano, XX mese 20XX A.A. 2016/17 Federico Reghenzani

sottotitolo Socket Programming Milano, XX mese 20XX A.A. 2016/17 Federico Reghenzani Titolo presentazione Piattaforme Software per la Rete sottotitolo Socket Programming Milano, XX mese 20XX A.A. 2016/17 Outline 1) Introduction to Sockets 2) UDP communication 3) TCP communication 4) RAW

More information

CSE 422 Jeopardy. Sockets TCP/UDP IP Routing Link $100 $200 $300 $400. Sockets - $100

CSE 422 Jeopardy. Sockets TCP/UDP IP Routing Link $100 $200 $300 $400. Sockets - $100 CSE 422 Jeopardy Sockets TCP/UDP IP Routing Link $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 Sockets - $100 True or False:

More information

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably?

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably? CSE/EE 461 Lecture 14 Connections Last Time We began on the Transport layer Focus How do we send information reliably? Topics ARQ and sliding windows Application Presentation Session Transport Network

More information

CSE 461 Connections. David Wetherall

CSE 461 Connections. David Wetherall CSE 461 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

Computer Networks SYLLABUS CHAPTER - 2 : NETWORK LAYER CHAPTER - 3 : INTERNETWORKING

Computer Networks SYLLABUS CHAPTER - 2 : NETWORK LAYER CHAPTER - 3 : INTERNETWORKING i SYLLABUS UNIT - 1 CHAPTER - 1 : INTRODUCTION Uses of Computer Networks, Network Hardware, Network Software, Reference Models (ISO-OSI, TCP/IP). CHAPTER - 2 : NETWORK LAYER Network Layer Design Issues,

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich Operating Systems and Networks Network Lecture 8: Transport Layer Adrian Perrig Network Security Group ETH Zürich I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services.

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services. Operating Systems and s Lecture 8: Transport Layer I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it Adrian Perrig Security Group ETH Zürich 2 Where we are in the

More information

Sistemas Operativos /2016 Support Document N o 1. Files, Pipes, FIFOs, I/O Redirection, and Unix Sockets

Sistemas Operativos /2016 Support Document N o 1. Files, Pipes, FIFOs, I/O Redirection, and Unix Sockets Universidade de Coimbra Departamento de Engenharia Electrotécnica e de Computadores Sistemas Operativos - 2015/2016 Support Document N o 1 Files, Pipes, FIFOs, I/O Redirection, and Unix Sockets 1 Objectives

More information

Lecture 5 Overview! Last Lecture! This Lecture! Next Lecture! I/O multiplexing! Source: Chapter 6 of Stevens book!

Lecture 5 Overview! Last Lecture! This Lecture! Next Lecture! I/O multiplexing! Source: Chapter 6 of Stevens book! Lecture 5 Overview! Last Lecture! I/O multiplexing! Source: Chapter 6 of Stevens book! This Lecture! Socket options! Source: Chapter 7 of Stevens book! Elementary UDP sockets! Source: Chapter 8 of Stevens

More information

(Refer Slide Time: 1:09)

(Refer Slide Time: 1:09) Computer Networks Prof. S. Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecturer # 30 UDP and Client Server Good day, today we will start our discussion

More information

Motivation of VPN! Overview! VPN addressing and routing! Two basic techniques for VPN! ! How to guarantee privacy of network traffic?!

Motivation of VPN! Overview! VPN addressing and routing! Two basic techniques for VPN! ! How to guarantee privacy of network traffic?! Overview!! Last Lecture!! Daemon processes and advanced I/O functions!! This Lecture!! VPN, NAT, DHCP!! Source: Chapters 19&22 of Comer s book!! Unix domain protocols and non-blocking I/O!! Source: Chapters

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 16 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 TRANSMISSION CONTROL PROTOCOL ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 ETI 2506 - TELECOMMUNICATION SYLLABUS Principles of Telecom (IP Telephony and IP TV) - Key Issues to remember 1.

More information

CSE 461 The Transport Layer

CSE 461 The Transport Layer CSE 461 The Transport Layer The Transport Layer Focus How do we (reliably) connect processes? This is the transport layer Topics Naming end points UDP: unreliable transport TCP: reliable transport Connection

More information

Interprocess Communication Mechanisms

Interprocess Communication Mechanisms Interprocess Communication 1 Interprocess Communication Mechanisms shared storage These mechanisms have already been covered. examples: shared virtual memory shared files processes must agree on a name

More information

shared storage These mechanisms have already been covered. examples: shared virtual memory message based signals

shared storage These mechanisms have already been covered. examples: shared virtual memory message based signals Interprocess Communication 1 Interprocess Communication Mechanisms shared storage These mechanisms have already been covered. examples: shared virtual memory shared files processes must agree on a name

More information

Lecture 13: Transportation layer

Lecture 13: Transportation layer Lecture 13: Transportation layer Contents Goals of transportation layer UDP TCP Port vs. Socket QoS AE4B33OSS Lecture 12 / Page 2 Goals of transportation layer End-to-end communication Distinguish different

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MCA QUESTION BANK UNIT 1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MCA QUESTION BANK UNIT 1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MCA QUESTION BANK SUBJECT: NETWORK PROGRAMMING/MC9241 YEAR/ SEM: II /I V 1 CCET UNIT 1 1. What are the steps involved in obtaining a shared

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 15 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture The network layer

More information

Outline. Distributed Computing Systems. Socket Basics (1 of 2) Socket Basics (2 of 2) 3/28/2014

Outline. Distributed Computing Systems. Socket Basics (1 of 2) Socket Basics (2 of 2) 3/28/2014 Outline Distributed Computing Systems Sockets Socket basics Socket details (TCP and UDP) Socket options Final notes Socket Basics (1 of 2) An end-point for an Internet network connection what application

More information

Configure Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) Service Settings on a Switch

Configure Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) Service Settings on a Switch Configure Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) Service Settings on a Switch Objective Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are transportation

More information

Socket Programming. Omer Ozarslan

Socket Programming. Omer Ozarslan Socket Programming Omer Ozarslan omer@utdallas.edu 1 Outline Background Using TCP Example: hello_tcp Using UDP Example: hello_udp Blocking Calls and Threads Some Advises Code Examples Questions 2 Socket

More information

Transport Layer Review

Transport Layer Review Transport Layer Review Mahalingam Mississippi State University, MS October 1, 2014 Transport Layer Functions Distinguish between different application instances through port numbers Make it easy for applications

More information

Chapter 8: I/O functions & socket options

Chapter 8: I/O functions & socket options Chapter 8: I/O functions & socket options 8.1 Introduction I/O Models In general, there are normally two phases for an input operation: 1) Waiting for the data to arrive on the network. When the packet

More information

Overview. Exercise 0: Implementing a Client. Setup and Preparation

Overview. Exercise 0: Implementing a Client. Setup and Preparation Overview This Lab assignment is similar to the previous one, in that you will be implementing a simple clientserver protocol. There are several differences, however. This time you will use the SOCK_DGRAM

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Sliding

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

Outline. Operating Systems. Socket Basics An end-point for a IP network connection. Ports. Network Communication. Sockets and the OS

Outline. Operating Systems. Socket Basics An end-point for a IP network connection. Ports. Network Communication. Sockets and the OS Outline Operating Systems Socket basics Socket details Socket options Final notes Project 3 Sockets Socket Basics An end-point for a IP network connection what the application layer plugs into programmer

More information

Configuring Traffic Policies

Configuring Traffic Policies CHAPTER 11 Date: 4/23/09 Cisco Application Networking Manager helps you configure class maps and policy maps to provide a global level of classification for filtering traffic received by or passing through

More information

CSE 461 Module 11. Connections

CSE 461 Module 11. Connections CSE 461 Module 11 Connections This Time More on the Transport Layer Focus How do we connect processes? Topics Naming processes Connection setup / teardown Flow control Application Presentation Session

More information

Python Networking Chris Seddon

Python Networking Chris Seddon Python Networking Chris Seddon seddon-software@keme.co.uk 2000-13 CRS Enterprises Ltd 1 2000-13 CRS Enterprises Ltd 2 Python Networking 1. Networking 2. Sockets 3. SocketServer 4. Secure Sockets 5. Other

More information

L41: Lab 4 - The TCP State Machine

L41: Lab 4 - The TCP State Machine L41: Lab 4 - The TCP State Machine Dr Robert N. M. Watson 29 January 2016 Dr Robert N. M. Watson L41: Lab 4 - The TCP State Machine 29 January 2016 1 / 10 L41: Lab 4 - The TCP State Machine The TCP state

More information

Operating Systems. 17. Sockets. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski

Operating Systems. 17. Sockets. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski Operating Systems 17. Sockets Paul Krzyzanowski Rutgers University Spring 2015 1 Sockets Dominant API for transport layer connectivity Created at UC Berkeley for 4.2BSD Unix (1983) Design goals Communication

More information

Information Network 1 TCP 1/2. Youki Kadobayashi NAIST

Information Network 1 TCP 1/2. Youki Kadobayashi NAIST Information Network 1 TCP 1/2 Youki Kadobayashi NAIST 1 Transport layer: a birds-eye view Hosts maintain state for each transport-layer endpoint Routers don t maintain per-host state H R R R R H Transport

More information

UNIX Network Programming

UNIX Network Programming UNIX Network Programming The Sockets Networking API Volume 1 Third Edition W. Richard Stevens Bill Fenner Andrew M. Rudoff AAddison-Wesley Boston San Francisco New York Toronto Montreal London Munich Paris

More information

Outline. Option Types. Socket Options SWE 545. Socket Options. Out-of-Band Data. Advanced Socket. Many socket options are Boolean flags

Outline. Option Types. Socket Options SWE 545. Socket Options. Out-of-Band Data. Advanced Socket. Many socket options are Boolean flags Outline SWE 545 Socket Options POSIX name/address conversion Out-of-Band Data Advanced Socket Programming 2 Socket Options Various attributes that are used to determine the behavior of sockets Setting

More information

Outline. Distributed Computer Systems. Socket Basics An end-point for a IP network connection. Ports. Sockets and the OS. Transport Layer.

Outline. Distributed Computer Systems. Socket Basics An end-point for a IP network connection. Ports. Sockets and the OS. Transport Layer. Outline Distributed Computer Systems Socket basics Socket details (TCP and UDP) Socket options Final notes Sockets Socket Basics An end-point for a IP network connection what the application layer plugs

More information

CS 351 Week 15. Course Review

CS 351 Week 15. Course Review CS 351 Week 15 Course Review Objectives: 1. To review the contents from different weeks. 2. To have a complete understanding of important concepts from different weeks. Concepts: 1. Important Concepts

More information

ICS 351: Networking Protocols

ICS 351: Networking Protocols ICS 351: Networking Protocols IP packet forwarding application layer: DNS, HTTP transport layer: TCP and UDP network layer: IP, ICMP, ARP data-link layer: Ethernet, WiFi 1 Networking concepts each protocol

More information

Overview. Last Lecture. This Lecture. Daemon processes and advanced I/O functions

Overview. Last Lecture. This Lecture. Daemon processes and advanced I/O functions Overview Last Lecture Daemon processes and advanced I/O functions This Lecture Unix domain protocols and non-blocking I/O Source: Chapters 15&16&17 of Stevens book Unix domain sockets A way of performing

More information

EECS122 Communications Networks Socket Programming. Jörn Altmann

EECS122 Communications Networks Socket Programming. Jörn Altmann EECS122 Communications Networks Socket Programming Jörn Altmann Questions that will be Addressed During the Lecture What mechanisms are available for a programmer who writes network applications? How to

More information

Socket Programming for TCP and UDP

Socket Programming for TCP and UDP CSCI4430 Data Communication and Computer Networks Socket Programming for TCP and UDP ZHANG, Mi Jan. 19, 2017 Outline Socket Programming for TCP Introduction What is TCP What is socket TCP socket programming

More information

CS631 - Advanced Programming in the UNIX Environment Interprocess Communication II

CS631 - Advanced Programming in the UNIX Environment Interprocess Communication II CS631 - Advanced Programming in the UNIX Environment Slide 1 CS631 - Advanced Programming in the UNIX Environment Interprocess Communication II Department of Computer Science Stevens Institute of Technology

More information

NETWORK PROGRAMMING. Ipv4 and Ipv6 interoperability

NETWORK PROGRAMMING. Ipv4 and Ipv6 interoperability NETWORK PROGRAMMING UNIT V ADVANCED SOCKETS Ipv4 and Ipv6 interoperability threaded servers thread creation and termination TCP echo server using threads Mutexes condition variables raw sockets raw socket

More information

Connections. Topics. Focus. Presentation Session. Application. Data Link. Transport. Physical. Network

Connections. Topics. Focus. Presentation Session. Application. Data Link. Transport. Physical. Network Connections Focus How do we connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Flow control Application Presentation Session Transport Network Data Link

More information

Configuring IP SLAs TCP Connect Operations

Configuring IP SLAs TCP Connect Operations This module describes how to configure an IP Service Level Agreements (SLAs) TCP Connect operation to measure the response time taken to perform a TCP Connect operation between a Cisco router and devices

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

Configuring IP SLAs TCP Connect Operations

Configuring IP SLAs TCP Connect Operations This chapter describes how to configure an IP Service Level Agreements (SLAs) TCP Connect operation to measure the response time taken to perform a TCP Connect operation between a Cisco switch and devices

More information

Application Programming Interfaces

Application Programming Interfaces Application Programming Interfaces The TCP/IP protocol suite provides only the protocols that can be used by processes to communicate across a network. Though standarized, how these protocols are implemented

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

Memory-Mapped Files. generic interface: vaddr mmap(file descriptor,fileoffset,length) munmap(vaddr,length)

Memory-Mapped Files. generic interface: vaddr mmap(file descriptor,fileoffset,length) munmap(vaddr,length) File Systems 38 Memory-Mapped Files generic interface: vaddr mmap(file descriptor,fileoffset,length) munmap(vaddr,length) mmap call returns the virtual address to which the file is mapped munmap call unmaps

More information

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link.

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link. Internet Layers Application Application Transport Transport Network Network Network Network Link Link Link Link Ethernet Fiber Optics Physical Layer Wi-Fi ARP requests and responses IP: 192.168.1.1 MAC:

More information

Chapter 2: Interprocess Communication

Chapter 2: Interprocess Communication 1 Chapter 2: Interprocess Communication Topics: IPC (Inter-Process Communication) primitives, blocking/nonblocking send/receive, transient/persistent communication, Mach IPC, Java and Unix sockets. 2.1

More information

Joseph Faber Wonderful Talking Machine (1845)

Joseph Faber Wonderful Talking Machine (1845) Joseph Faber Wonderful Talking Machine (1845) Connected World Human-to-Human communication Human-Machine interaction Machine-to-Machine communication (M2M) Internet-of-Things (IOT) Internet of Things How

More information

How To Manually Open Ports In Internet Connection Firewall In Windows 8 >>>CLICK HERE<<<

How To Manually Open Ports In Internet Connection Firewall In Windows 8 >>>CLICK HERE<<< How To Manually Open Ports In Internet Connection Firewall In Windows 8 The Windows Firewall (formerly known as Internet Connection Firewall) Resetting the firewall settings will enable the firewall regardless

More information

Flowreplay Design Notes

Flowreplay Design Notes Flowreplay Design Notes Aaron Turner http://synfin.net/ Last Edited: October 23, 2003 1 1 Overview Tcpreplay 1 was designed to replay traffic previously captured in the pcap format back onto the wire for

More information

Overview. ACE Appliance Device Manager Overview CHAPTER

Overview. ACE Appliance Device Manager Overview CHAPTER 1 CHAPTER This section contains the following: ACE Appliance Device Manager, page 1-1 Logging Into ACE Appliance Device Manager, page 1-3 Changing Your Account Password, page 1-4 ACE Appliance Device Manager

More information

Announcements. CS 5565 Network Architecture and Protocols. Queuing. Demultiplexing. Demultiplexing Issues (1) Demultiplexing Issues (2)

Announcements. CS 5565 Network Architecture and Protocols. Queuing. Demultiplexing. Demultiplexing Issues (1) Demultiplexing Issues (2) Announcements CS 5565 Network Architecture and Protocols Problem Set 1 due Feb 18 Project 1A due Feb 19 Lecture 5 Godmar Back 2 Queuing Demultiplexing send queues Layer k+1 Layer k recv queues End systems

More information

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C 1 CSIS0234A Computer and Communication Networks Socket Programming in C References Beej's Guide to Network Programming Official homepage: http://beej.us/guide/bgnet/ Local mirror http://www.cs.hku.hk/~c0234a/bgnet/

More information

Server algorithms and their design

Server algorithms and their design Server algorithms and their design slide 1 many ways that a client/server can be designed each different algorithm has various benefits and problems are able to classify these algorithms by looking at

More information

ch02 True/False Indicate whether the statement is true or false.

ch02 True/False Indicate whether the statement is true or false. ch02 True/False Indicate whether the statement is true or false. 1. No matter what medium connects computers on a network copper wires, fiber-optic cables, or a wireless setup the same protocol must be

More information

Secure Communications Over a Network

Secure Communications Over a Network Secure Communications Over a Network Course: MITS:5400G Proffessor: Dr. Xiaodong Lin By: Geoff Vaughan 100309160 March 20th 2012 Abstract The purpose of this experiment is to transmit an encrypted message

More information

The Internetworking Problem. Internetworking. A Translation-based Solution

The Internetworking Problem. Internetworking. A Translation-based Solution Cloud Cloud Cloud 1 The Internetworking Problem Internetworking Two nodes communicating across a network of networks How to transport packets through this heterogeneous mass? A B The Internetworking Problem

More information

Overview. Exercise 0: Implementing a Client. Setup and Preparation

Overview. Exercise 0: Implementing a Client. Setup and Preparation Overview This Lab assignment is similar to the previous one, in that you will be implementing a simple client server protocol. There are several differences, however. This time you will use the SOCK_DGRAM

More information

Session NM056. Programming TCP/IP with Sockets. Geoff Bryant Process software

Session NM056. Programming TCP/IP with Sockets. Geoff Bryant Process software Session NM056 Programming TCP/IP with Sockets Geoff Bryant Process software Course Roadmap Slide 57 NM055 (11:00-12:00) Important Terms and Concepts TCP/IP and Client/Server Model Sockets and TLI Client/Server

More information

CS 640: Introduction to Computer Networks. Today s Lecture. Page 1

CS 640: Introduction to Computer Networks. Today s Lecture. Page 1 CS 640: Introduction to Computer Networks Aditya Akella Lecture 2 Layering, Protocol Stacks, and Standards 1 Today s Lecture Layers and Protocols A bit about s 2 Network Communication: Lots of Functions

More information

Interprocess communication in shared memory systems. Interprocess communcation. Berkeley Sockets

Interprocess communication in shared memory systems. Interprocess communcation. Berkeley Sockets Interprocess communcation slide 1 slide 2 Interprocess communication in shared memory systems in Operating systems we find there are a number of mechanisms used for interprocess communication (IPC) the

More information

Lecture 8: Other IPC Mechanisms. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 8: Other IPC Mechanisms. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 8: Other IPC Mechanisms CSC 469H1F Fall 2006 Angela Demke Brown Topics Messages through sockets / pipes Receiving notification of activity Generalizing the event notification mechanism Kqueue Semaphores

More information

Topics. Lecture 8: Other IPC Mechanisms. Socket IPC. Unix Communication

Topics. Lecture 8: Other IPC Mechanisms. Socket IPC. Unix Communication Topics Lecture 8: Other IPC Mechanisms CSC 469H1F Fall 2006 Angela Demke Brown Messages through sockets / pipes Receiving notification of activity Generalizing the event notification mechanism Kqueue Semaphores

More information

Computer Systems and Networks

Computer Systems and Networks University of the Pacific LECTURE 12: PYTHON BYTES, TCP/IP (LAB 08) Computer Systems and Networks Dr. Pallipuram (vpallipuramkrishnamani@pacific.edu) Today s Agenda Python exercises to simulate network

More information

Inferring the Source of Encrypted HTTP Connections. Michael Lin CSE 544

Inferring the Source of Encrypted HTTP Connections. Michael Lin CSE 544 Inferring the Source of Encrypted HTTP Connections Michael Lin CSE 544 Hiding your identity You can wear a mask, but some distinguishing characteristics are visible: Height Weight Hair Clothing Even if

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Programming with Network Sockets Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Sockets We ve looked at shared memory vs.

More information

IPv4 and ipv6 INTEROPERABILITY

IPv4 and ipv6 INTEROPERABILITY IT2351-NPM/UNIT-4/ 1 IPv4 and ipv6 INTEROPERABILITY Till the time, IPv6 is established all over the world, there is a need for one to host dual stacks that is both IPv4 and IPv6 are running concurrently

More information

Lecture 11: Fragmentation & Addressing. CSE 123: Computer Networks Stefan Savage

Lecture 11: Fragmentation & Addressing. CSE 123: Computer Networks Stefan Savage Lecture 11: Fragmentation & Addressing CSE 123: Computer Networks Stefan Savage So what does IP do? Addressing Fragmentation E.g. FDDI s maximum packet is 4500 bytes while Ethernet is 1500 bytes, how to

More information

Transport Services Internet Transport's Last Chance? Michael Welzl

Transport Services Internet Transport's Last Chance? Michael Welzl Transport Services Internet Transport's Last Chance? Michael Welzl IMDEA Networks 31. October 2014 Outline Problem Solution 2 Problem 3 What s the problem? The Internet works! I work, too! Could be faster

More information

UNIX Sockets. COS 461 Precept 1

UNIX Sockets. COS 461 Precept 1 UNIX Sockets COS 461 Precept 1 Socket and Process Communica;on application layer User Process Socket transport layer (TCP/UDP) OS network stack network layer (IP) link layer (e.g. ethernet) Internet Internet

More information

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015 Paper solution Subject: Computer Networks (TE Computer- 2012 pattern) Marks : 30 Date: 5/2/2015 Q1 a) What is difference between persistent and non persistent HTTP? Also Explain HTTP message format. [6]

More information

Never Lose a Syslog Message

Never Lose a Syslog Message Never Lose a Syslog Message Alexander Bluhm bluhm@openbsd.org September 24, 2017 Agenda 1 Motivation 2 Starting Position 3 Local Improvements 4 Remote Logging 5 Conclusion Why reliable logging? system

More information

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar Socket Programming What is a socket? Using sockets Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar - Advanced Data Communications:

More information

1. Purpose. 2. Description Run-Time Issues Overview

1. Purpose. 2. Description Run-Time Issues Overview 1. Purpose CPS 470/570: Computer Networks Assignment 4, due 11:55 PM, 4-19-2017 Receive an F for this course if dishonesty occurs Receive 5 bonus points if submit it without errors one day before the deadline

More information