User Space Device Drivers Introduction and Implementation using VGAlib library

Size: px
Start display at page:

Download "User Space Device Drivers Introduction and Implementation using VGAlib library"

Transcription

1 User Space Device Drivers Introduction and Implementation using VGAlib library Prabhat K. Saraswat Btech 6th Semester Information and Communication Technology Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) Gandhinagar, Gujarat Abstract This paper contrasts between the basic architecture and utility of a User Space Device Driver over a Kernel Space Device Driver. It also seeks to give a brief overview of the working of a device driver. An implementation of a very basic User Space Device Driver is also done using Linux Framework for User Space Device Drivers. VGAlib, a user space graphics driver is also analyzed and the finer details are understood. The whole idea is to proxy device file callbacks in to user space, allowing the device files to be implemented by daemons instead of kernel code. The study is supplemented with a code written in C utilizing the User Space Device Driver, ie VGAlib. I. Introduction To understand about the basic difference between a Kernel Space and a User Space Device Driver, it is imperative to understand the functioning of two main types of devices available under all UNIX systems, which are character and block devices. Character devices are those for which no buffering is performed, and block devices are those which are accessed through a cache. Block devices must be random access, but character devices are not required to be, though some are. File Systems can only be mounted if they are on block devices. Character devices are read from and written to with two function calls, namely read and write. These calls do not return until the operation is complete. By contrast, block devices do not even implement the read and write functions, and instead have a function which is historically as well as strangely been called the ``strategy routine.'' Reads and writes are done through the buffer cache mechanism by some different generic functions. These functions go through the buffer cache, and so may or may not actually call the strategy routine, depending on whether or not the block requested is in the buffer cache (for reads) or on whether or not the buffer cache is full (for writes). A request can be asynchronous. A generic function can request the strategy routine to schedule reads that have not been asked for, and to do it asynchronously, in the background, in the hopes that they will be needed later. The sources for character devices are kept in drivers/char/, and the sources for block devices are kept in drivers/block/. They have similar interfaces, and are very much alike, except for reading and writing. Because of the difference in reading and writing, initialization is different, as block devices have to register a strategy routine, which is registered in a different way than the read and write routines of a character device driver. II. I/O subsystem and Devices in UNIX Devices by themselves are not intelligent, to control the devices and to make them do something meaningful leads to the need of development of device drivers. A device driver consists of a set of routines that control a peripheral device attached to a workstation. The operating system normally

2 provides a uniform interface to all peripheral devices. Linux and UNIX present peripheral devices at a sufficiently high level of abstraction by observing that a large proportion of I/O devices can be represented as a sequence of bytes. Linux and UNIX use the file--which is a well understood data structure for handling byte sequences--to represent I/O devices. The kernel is not a separate task under Linux. It is as if each process has a copy of the kernel. When a user process executes a system call, it does not transfer control to another process, but changes its execution mode from user to kernel mode. In kernel mode, while executing the system call, the process has access to the kernel address space, and through supporting functions it has access to the address space of the user executing the call. The Linux kernel implements a device-independent I/O system that serves all devices. A device driver provides the I/O system with a standard interface to the hardware, hiding the unique characteristics of the hardware device from the user to the greatest extent possible. The outline of the flow of execution of a system call within the Linux operating system is: 1. User invokes a System call. 2. Call is vectored through a stub in libc library. 3. Call expands to an assembly routine which contains the interrupt instruction 4. The interrupt instruction transfers the call to the kernel entry point 5. System call is executed When a system call is requested, the kernel transfers control to the appropriate device driver routine that executes on behalf of the calling user process. All devices look like files on a Linux system. In fact, the user-level interface to a device is called a ýspecial file These special files (often called device nodes) reside in the /dev directory. Below(Fig 1.1) is the snapshot of execution of ls in /dev. Fig 1.1 i.e. by invoking the command ls -l ttysl0 following status information is yielded: crw-rw-rw 1 root uucp 212, :24 ttysl0 This example indicates that: ttyslo is a block type device, the major number is 212, and minor device number 0 is assigned to the device. Major device numbers are used by the Linux system to map I/O requests to the driver code, thereby deciding which device driver to execute, when a user reads from or writes to the special file. The minor numbers are entirely under the control of the driver writer, and usually refer to ýsub-devicesý of the device. These sub-devices may be separate units attached to a controller. Thus, a disk device driver may, for example, communicate with a hardware controller (the device) which has several disk drives (sub-devices) attached. III. Device Drivers and Linux Operating System A device driver is a collection of subroutines and data within the kernel that constitutes the software interface to an I/O device. When the kernel recognizes that a particular action is required from the device, it calls the appropriate driver routine, which passes control from the user process to the driver routine. Control is returned to the user process when the driver routine has completed. A device driver may be shared simultaneously by user applications and must be protected to ensure its own integrity.

3 The relationship between device driver and the Linux system can be shown in a following way. Fig 1.2 A device driver provides the following features: A set of routines that communicate with a hardware device and provide a uniform interface to the operating system kernel. A self-contained component that can be added to, or removed from, the operating system dynamically. Management of data flow and c ontrol between user programs and a peripheral device. A user-defined section of the kernel that allows a program or a peripheral device to appear as a `` /dev '' device to the rest of the system's software. IV. Kernal Space vs User Space A Linux user process executes in a space isolated from critical system data and other user processes. This protected environment provides security to protect the process from mistakes in other processes. A normal device driver executes in kernel mode, which places few limits on its freedom of action. The driver is assumed to be correct and responsible. A driver has to be part of the kernel in order to service interrupts and access device hardware. A Device Driver Implemented in user space proxies device file callbacks into user-space, allowing device files to be implemented by daemons instead of kernel code. Despite being implemented in user-space, these devices can look and act just like any other file under /dev which is implemented by kernel callbacks. A user-space device driver can do many of the things that kernel drivers can t, such as perform a long-running computation, block while waiting for an event, or read files from the file system. Unlike kernel drivers, a User Space device driver can use other device drivers that is, access the network, talk to a serial port, get interactive input from the user, pop up GUI windows, or read from disks. User-space drivers implemented are much easier to debug; it is impossible for them to crash the machine, are easily traceable using tools such as gdb, and can be killed and restarted without rebooting even if they become corrupted. Another problem that comes up frequently in operating systems is contention for a single resource by multiple competing processes. In UNIX, it s the job of a device driver to coordinate access to such resources. By accepting requests from user processes and (for example) queuing and serializing them, it becomes safe for processes that know nothing about each other to make requests in parallel to the same resource. Of course, kernel drivers do this job already, but they typically operate on top of hardware directly. However, kernel drivers can t easily be layered on top of other device drivers. On the other hand the User Space Device Drivers can be easily layered on other drivers device drivers as it is not a kernel module. Typically, such layering is accomplished by system daemons. For example, the lpd daemon manages printers at a high level. Since it is a user-space process, it can access the physical printer devices using kernel device drivers (for example, using printer or network drivers). In User Space Device Drivers, a daemon/driver can create a standard device file which is accessible by any program that knows how to use the POSIX system call interface. USD Drivers receive the UID, GID, and process ID along with every file operation, allowing the same sorts of security policies to be implemented as would be possible with a real kernel driver.

4 It is not always necessary to write a device driver for a device, especially in applications where no two applications will compete for the device. The most useful example of this is a memory-mapped device, it can also be done with devices in I/O space (devices accessed with inb() and outb(), etc.). If your process is running as superuser (root), the mmap() call can be used to map some of the process memory to actual memory locations, by mmap()'ing a section of /dev/mem. When this mapping has been done, it is pretty easy to write and read from real memory addresses just as any other variables would have been read or written. If the driver needs to respond to interrupts, then working in kernel space is needed, also it is needed to write a real device driver, as there is no good way to deliver interrupts to user processes. VGAlib library A User Space Driver As a part of implementation and testing of User Space Driver, we implemented and used an interesting graphics package for linux system, which also happens to be a good example of a userspace driver is the VGAlib library. VGAlib is a low-level graphics library for Linux. It augments the C programming language, which doesn't provide support for graphics. The standard read() and write() calls are really inadequate for writing a really fast graphics driver, and so instead there is a library which acts conceptually like a device driver, but runs in user space. Any processes which use it must run setuid root, because it uses the ioperm() system call. It is possible for a process that is not setuid root to write to /dev/mem if there is a group mem or kmem which is allowed write permission to /dev/mem and the process is properly setgid, but only a process running as root can execute the ioperm() call. There are several I/O ports associated with VGA graphics. vgalib creates symbolic names for this with #define statements, and then issues the ioperm() call like this to make it possible for the process to read and write directly from and to those ports:

5 It only needs to do error checking once, because the only reason for the ioperm() call to fail is that it is not being called by the superuser, and this status is not going to change. After making this call, the process is allowed to use inb and outb machine instructions, but only on the specified ports. These instructions can be accessed without writing directly in assembly by including <linux/asm>. After arranging for port I/O, vgalib arranges for writing directly to kernel memory with the following code segment: It first opens /dev/mem, then allocates memory enough so that the mapping can be done on a page (4 KB) boundary, and then attempts the map. GRAPH_SIZE is the size of VGA memory, and GRAPH_BASE is the first address of VGA memory in /dev/mem. Then by writing to the address that is returned by mmap(), the process is actually writing to screen memory.

6 A simple code was written using the vgalib library: This code paints a single red pixel on the screen and after the interval of five seconds; it resets your console to text mode and will exit. Note our first statement, vga_init(). This initializes the VGAlib library. The second line, vga_setmode(g320x200x256), sets the screen to mode 5, which is 320x200x256. That is to say, screen becomes a grid which is 320 pixels wide, 200 pixels high, and which supports 256 colors. Alternatively, we could have written vga_setmode(5). Either statement is acceptable. Our next command, vga_setcolor(4), makes red the current color, though any value from 0 to 255 can be chosen. REFERENCES [1] Albinet, A. rlat, J. Fabre, J.-C., Characterization of the impact of faulty drivers on the robustness of the Linux kernel in 2004 International Conference on Dependable Systems and Networks, pp [2] Allessandro Rubini, Jonathan Corbet: Linux Device Drivers 2nd Edition, pp

What is a file system

What is a file system COSC 6397 Big Data Analytics Distributed File Systems Edgar Gabriel Spring 2017 What is a file system A clearly defined method that the OS uses to store, catalog and retrieve files Manage the bits that

More information

Process Time. Steven M. Bellovin January 25,

Process Time. Steven M. Bellovin January 25, Multiprogramming Computers don t really run multiple programs simultaneously; it just appears that way Each process runs to completion, but intermixed with other processes Process 1 6 ticks Process 2 Process

More information

Operating Systems. V. Input / Output

Operating Systems. V. Input / Output Operating Systems V. Input / Output Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ @OS Eurecom Devices of a Computer System Applications OS CPU Memory

More information

I/O Systems. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

I/O Systems. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University I/O Systems Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Device characteristics Block device vs. Character device Direct I/O vs.

More information

I/O Systems. Jo, Heeseung

I/O Systems. Jo, Heeseung I/O Systems Jo, Heeseung Today's Topics Device characteristics Block device vs. Character device Direct I/O vs. Memory-mapped I/O Polling vs. Interrupts Programmed I/O vs. DMA Blocking vs. Non-blocking

More information

ADVANCED OPERATING SYSTEMS

ADVANCED OPERATING SYSTEMS ADVANCED OPERATING SYSTEMS UNIT I INTRODUCTION TO UNIX/LINUX KERNEL BY MR.PRASAD SAWANT Prof.Prasad Sawant,Assitiant Professor,Dept. Of CS PCCCS PREREQUISITES: 1. Working knowledge of C programming. 2.

More information

Comp 204: Computer Systems and Their Implementation. Lecture 18: Devices

Comp 204: Computer Systems and Their Implementation. Lecture 18: Devices Comp 204: Computer Systems and Their Implementation Lecture 18: Devices 1 Today Devices Introduction Handling I/O Device handling Buffering and caching 2 Operating System An Abstract View User Command

More information

Devices. Today. Comp 104: Operating Systems Concepts. Operating System An Abstract View 05/01/2017. Devices. Devices

Devices. Today. Comp 104: Operating Systems Concepts. Operating System An Abstract View 05/01/2017. Devices. Devices Comp 104: Operating Systems Concepts Devices Today Devices Introduction Handling I/O Device handling Buffering and caching 1 2 Operating System An Abstract View User Command Interface Processor Manager

More information

CS5460/6460: Operating Systems. Lecture 24: Device drivers. Anton Burtsev April, 2014

CS5460/6460: Operating Systems. Lecture 24: Device drivers. Anton Burtsev April, 2014 CS5460/6460: Operating Systems Lecture 24: Device drivers Anton Burtsev April, 2014 Device drivers Conceptually Implement interface to hardware Expose some high-level interface to the kernel or applications

More information

Introduction to Computer Systems and Operating Systems

Introduction to Computer Systems and Operating Systems Introduction to Computer Systems and Operating Systems Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University msryu@hanyang.ac.kr Topics Covered 1. Computer History 2. Computer System

More information

Process Monitoring in Operating System Linux

Process Monitoring in Operating System Linux Process Monitoring in Operating System Linux ZDENEK SLANINA, VILEM SROVNAL Department of Measurement and Control VSB Technical University of Ostrava 17. listopadu 15, 708 33 Ostrava-Poruba CZECH REPUBLIC

More information

CIS Operating Systems I/O Systems & Secondary Storage. Professor Qiang Zeng Spring 2018

CIS Operating Systems I/O Systems & Secondary Storage. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems I/O Systems & Secondary Storage Professor Qiang Zeng Spring 2018 Previous class Memory subsystem How to allocate physical memory? How to do address translation? How to be quick?

More information

The Host Environment. Module 2.1. Copyright 2006 EMC Corporation. Do not Copy - All Rights Reserved. The Host Environment - 1

The Host Environment. Module 2.1. Copyright 2006 EMC Corporation. Do not Copy - All Rights Reserved. The Host Environment - 1 The Host Environment Module 2.1 2006 EMC Corporation. All rights reserved. The Host Environment - 1 The Host Environment Upon completion of this module, you will be able to: List the hardware and software

More information

Operating System Review

Operating System Review COP 4225 Advanced Unix Programming Operating System Review Chi Zhang czhang@cs.fiu.edu 1 About the Course Prerequisite: COP 4610 Concepts and Principles Programming System Calls Advanced Topics Internals,

More information

Operating-System Structures

Operating-System Structures Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1 Sana a University,

More information

Introduction: Context Switch

Introduction: Context Switch Introduction: The central module of an operating system. It is the part of the operating system that loads first, and it remains in main memory. Because it stays in memory, it is important for the kernel

More information

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13 I/O Handling ECE 650 Systems Programming & Engineering Duke University, Spring 2018 Based on Operating Systems Concepts, Silberschatz Chapter 13 Input/Output (I/O) Typical application flow consists of

More information

What is an Operating System? A Whirlwind Tour of Operating Systems. How did OS evolve? How did OS evolve?

What is an Operating System? A Whirlwind Tour of Operating Systems. How did OS evolve? How did OS evolve? What is an Operating System? A Whirlwind Tour of Operating Systems Trusted software interposed between the hardware and application/utilities to improve efficiency and usability Most computing systems

More information

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems OPERATING SYSTEMS: Lesson 1: Introduction to Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Why study? a) OS, and its internals, largely

More information

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems, 3rd edition. Uses content with permission from Assoc. Prof. Florin Fortis, PhD

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems, 3rd edition. Uses content with permission from Assoc. Prof. Florin Fortis, PhD OPERATING SYSTEMS #2 After A.S.Tanenbaum, Modern Operating Systems, 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD INTRODUCTION Operating systems structure OPERATING SYSTEM

More information

Example Sheet for Operating Systems I (Part IA)

Example Sheet for Operating Systems I (Part IA) Example Sheet for Operating Systems I (Part IA) 1. (a) Modern computers store data values in a variety of memories, each with differing size and access speeds. Briefly describe each of the following: i.

More information

Module 3: Operating-System Structures

Module 3: Operating-System Structures Module 3: Operating-System Structures System Components Operating-System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation Operating

More information

Four Components of a Computer System

Four Components of a Computer System Four Components of a Computer System Operating System Concepts Essentials 2nd Edition 1.1 Silberschatz, Galvin and Gagne 2013 Operating System Definition OS is a resource allocator Manages all resources

More information

Example Sheet for Operating Systems I (Part IA)

Example Sheet for Operating Systems I (Part IA) Example Sheet for Operating Systems I (Part IA) Solutions for Supervisors Michaelmas 2018 / Last Updated: April 5, 2018 Note these may be updated in the light of feedback. (Check update time.) 1 Processes

More information

CIS Operating Systems I/O Systems & Secondary Storage. Professor Qiang Zeng Fall 2017

CIS Operating Systems I/O Systems & Secondary Storage. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems I/O Systems & Secondary Storage Professor Qiang Zeng Fall 2017 Previous class Memory subsystem How to allocate physical memory? How to do address translation? How to be quick?

More information

Operating System Services

Operating System Services CSE325 Principles of Operating Systems Operating System Services David Duggan dduggan@sandia.gov January 22, 2013 Reading Assignment 3 Chapter 3, due 01/29 1/23/13 CSE325 - OS Services 2 What Categories

More information

Linux System Administration

Linux System Administration System Processes Objective At the conclusion of this module, the student will be able to: Describe and define a process Identify a process ID, the parent process and the child process Learn the PID for

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 18: Naming, Directories, and File Caching

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 18: Naming, Directories, and File Caching CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 18: Naming, Directories, and File Caching 18.0 Main Points How do users name files? What is a name? Lookup:

More information

Operating- System Structures

Operating- System Structures Operating- System Structures 2 CHAPTER Practice Exercises 2.1 What is the purpose of system calls? Answer: System calls allow user-level processes to request services of the operating system. 2.2 What

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 18: Naming, Directories, and File Caching

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 18: Naming, Directories, and File Caching CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2002 Lecture 18: Naming, Directories, and File Caching 18.0 Main Points How do users name files? What is a name? Lookup:

More information

CS 333 Introduction to Operating Systems Class 2 OS-Related Hardware & Software The Process Concept

CS 333 Introduction to Operating Systems Class 2 OS-Related Hardware & Software The Process Concept CS 333 Introduction to Operating Systems Class 2 OS-Related Hardware & Software The Process Concept Jonathan Walpole Computer Science Portland State University 1 Lecture 2 overview OS-Related Hardware

More information

OS and Computer Architecture. Chapter 3: Operating-System Structures. Common System Components. Process Management

OS and Computer Architecture. Chapter 3: Operating-System Structures. Common System Components. Process Management Last class: OS and Architecture OS and Computer Architecture OS Service Protection Interrupts System Calls IO Scheduling Synchronization Virtual Memory Hardware Support Kernel/User Mode Protected Instructions

More information

SysGauge SYSTEM MONITOR. User Manual. Version 3.8. Oct Flexense Ltd.

SysGauge SYSTEM MONITOR. User Manual. Version 3.8. Oct Flexense Ltd. SysGauge SYSTEM MONITOR User Manual Version 3.8 Oct 2017 www.sysgauge.com info@flexense.com 1 1 SysGauge Product Overview SysGauge is a system and performance monitoring utility allowing one to monitor

More information

Chapter 3: Operating-System Structures

Chapter 3: Operating-System Structures Chapter 3: Operating-System Structures System Components Operating System Services System Calls POSIX System Programs System Structure Virtual Machines System Design and Implementation System Generation

More information

Operating System: Chap13 I/O Systems. National Tsing-Hua University 2016, Fall Semester

Operating System: Chap13 I/O Systems. National Tsing-Hua University 2016, Fall Semester Operating System: Chap13 I/O Systems National Tsing-Hua University 2016, Fall Semester Outline Overview I/O Hardware I/O Methods Kernel I/O Subsystem Performance Application Interface Operating System

More information

User-Space Debugging Simplifies Driver Development

User-Space Debugging Simplifies Driver Development QNX Software Systems Ltd. 175 Terence Matthews Crescent Ottawa, Ontario, Canada, K2M 1W8 Voice: 1 800 676-0566 +1 613 591-0931 Email: info@qnx.com Web: www.qnx.com User-Space Debugging Simplifies Driver

More information

NFS Design Goals. Network File System - NFS

NFS Design Goals. Network File System - NFS Network File System - NFS NFS Design Goals NFS is a distributed file system (DFS) originally implemented by Sun Microsystems. NFS is intended for file sharing in a local network with a rather small number

More information

Chapter 3: Operating-System Structures

Chapter 3: Operating-System Structures Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1

More information

UNIT 2. OPERATING SYSTEM STRUCTURES

UNIT 2. OPERATING SYSTEM STRUCTURES This document can be downloaded from www.chetanahegde.in with most recent updates. 1 UNIT 2. OPERATING SYSTEM STRUCTURES 2.1 INTRODUCTION An OS provides the environment within which the programs are executed.

More information

Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction

Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction Lecturer: Eng. Mohamed B. Abubaker Note: Adapted from the resources of textbox Operating System Concepts, 9 th edition What is an

More information

Directory. File. Chunk. Disk

Directory. File. Chunk. Disk SIFS Phase 1 Due: October 14, 2007 at midnight Phase 2 Due: December 5, 2007 at midnight 1. Overview This semester you will implement a single-instance file system (SIFS) that stores only one copy of data,

More information

Process Scheduling Queues

Process Scheduling Queues Process Control Process Scheduling Queues Job queue set of all processes in the system. Ready queue set of all processes residing in main memory, ready and waiting to execute. Device queues set of processes

More information

Chapter 17: Distributed-File Systems. Operating System Concepts 8 th Edition,

Chapter 17: Distributed-File Systems. Operating System Concepts 8 th Edition, Chapter 17: Distributed-File Systems, Silberschatz, Galvin and Gagne 2009 Chapter 17 Distributed-File Systems Background Naming and Transparency Remote File Access Stateful versus Stateless Service File

More information

Module 3: Operating-System Structures. Common System Components

Module 3: Operating-System Structures. Common System Components Module 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1 Common

More information

CSE 486/586: Distributed Systems

CSE 486/586: Distributed Systems CSE 486/586: Distributed Systems Distributed Filesystems Ethan Blanton Department of Computer Science and Engineering University at Buffalo Distributed Filesystems This lecture will explore network and

More information

CSE 4/521 Introduction to Operating Systems. Lecture 24 I/O Systems (Overview, Application I/O Interface, Kernel I/O Subsystem) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 24 I/O Systems (Overview, Application I/O Interface, Kernel I/O Subsystem) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 24 I/O Systems (Overview, Application I/O Interface, Kernel I/O Subsystem) Summer 2018 Overview Objective: Explore the structure of an operating system

More information

Chapter 2: Operating-System Structures

Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Operating System Services User Operating System Interface System Calls (important!) Types of System Calls (important!) System

More information

Chapter 1: Introduction. Chapter 1: Introduction

Chapter 1: Introduction. Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Input-Output (I/O) Input - Output. I/O Devices. I/O Devices. I/O Devices. I/O Devices. operating system must control all I/O devices.

Input-Output (I/O) Input - Output. I/O Devices. I/O Devices. I/O Devices. I/O Devices. operating system must control all I/O devices. Input - Output Input-Output (I/O) operating system must control all I/O devices issue commands to devices catch interrupts handle errors provide interface between devices and rest of system main categories

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole OS-Related Hardware & Software The Process Concept 2 Lecture 2 Overview OS-Related Hardware & Software - complications in real systems - brief introduction to memory

More information

Operating Systems Design Exam 2 Review: Spring 2011

Operating Systems Design Exam 2 Review: Spring 2011 Operating Systems Design Exam 2 Review: Spring 2011 Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 CPU utilization tends to be lower when: a. There are more processes in memory. b. There are fewer processes

More information

Today: I/O Systems. Architecture of I/O Systems

Today: I/O Systems. Architecture of I/O Systems Today: I/O Systems How does I/O hardware influence the OS? What I/O services does the OS provide? How does the OS implement those services? How can the OS improve the performance of I/O? Lecture 20, page

More information

What are some common categories of system calls? What are common ways of structuring an OS? What are the principles behind OS design and

What are some common categories of system calls? What are common ways of structuring an OS? What are the principles behind OS design and What are the services provided by an OS? What are system calls? What are some common categories of system calls? What are the principles behind OS design and implementation? What are common ways of structuring

More information

CS 416: Opera-ng Systems Design March 23, 2012

CS 416: Opera-ng Systems Design March 23, 2012 Question 1 Operating Systems Design Exam 2 Review: Spring 2011 Paul Krzyzanowski pxk@cs.rutgers.edu CPU utilization tends to be lower when: a. There are more processes in memory. b. There are fewer processes

More information

OS Security III: Sandbox and SFI

OS Security III: Sandbox and SFI 1 OS Security III: Sandbox and SFI Chengyu Song Slides modified from Dawn Song 2 Administrivia Lab2 VMs on lab machine Extension? 3 Users and processes FACT: although ACLs use users as subject, the OS

More information

Operating Systems. Operating Systems

Operating Systems. Operating Systems The operating system defines our computing experience. It is the first software we see when we turn on the computer, and the last software we see when the computer is turned off. It's the software that

More information

CSE 153 Design of Operating Systems Fall 18

CSE 153 Design of Operating Systems Fall 18 CSE 153 Design of Operating Systems Fall 18 Lecture 2: OS model and Architectural Support Last time/today l Historic evolution of Operating Systems (and computing!) l Today: We start our journey in exploring

More information

ECEN 449 Microprocessor System Design. Hardware-Software Communication. Texas A&M University

ECEN 449 Microprocessor System Design. Hardware-Software Communication. Texas A&M University ECEN 449 Microprocessor System Design Hardware-Software Communication 1 Objectives of this Lecture Unit Learn basics of Hardware-Software communication Memory Mapped I/O Polling/Interrupts 2 Motivation

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University l Chapter 10: File System l Chapter 11: Implementing File-Systems l Chapter 12: Mass-Storage

More information

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 13 Virtual memory and memory management unit In the last class, we had discussed

More information

CS330: Operating System and Lab. (Spring 2006) I/O Systems

CS330: Operating System and Lab. (Spring 2006) I/O Systems CS330: Operating System and Lab. (Spring 2006) I/O Systems Today s Topics Block device vs. Character device Direct I/O vs. Memory-mapped I/O Polling vs. Interrupts Programmed I/O vs. DMA Blocking vs. Non-blocking

More information

Module 1. Introduction:

Module 1. Introduction: Module 1 Introduction: Operating system is the most fundamental of all the system programs. It is a layer of software on top of the hardware which constitutes the system and manages all parts of the system.

More information

Introduction to Process in Computing Systems SEEM

Introduction to Process in Computing Systems SEEM Introduction to Process in Computing Systems SEEM 3460 1 Programs and Processes One way to describe the hardware of a computer system is to say that it provides a framework for executing programs and storing

More information

Chapter 2: Operating-System Structures

Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Operating System Services User Operating System Interface System Calls Types of System Calls System Programs Operating System

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

ENGR 3950U / CSCI 3020U Midterm Exam SOLUTIONS, Fall 2012 SOLUTIONS

ENGR 3950U / CSCI 3020U Midterm Exam SOLUTIONS, Fall 2012 SOLUTIONS SOLUTIONS ENGR 3950U / CSCI 3020U (Operating Systems) Midterm Exam October 23, 2012, Duration: 80 Minutes (10 pages, 12 questions, 100 Marks) Instructor: Dr. Kamran Sartipi Question 1 (Computer Systgem)

More information

Virtual Memory Outline

Virtual Memory Outline Virtual Memory Outline Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

Background. 20: Distributed File Systems. DFS Structure. Naming and Transparency. Naming Structures. Naming Schemes Three Main Approaches

Background. 20: Distributed File Systems. DFS Structure. Naming and Transparency. Naming Structures. Naming Schemes Three Main Approaches Background 20: Distributed File Systems Last Modified: 12/4/2002 9:26:20 PM Distributed file system (DFS) a distributed implementation of the classical time-sharing model of a file system, where multiple

More information

Computer System Architecture. CMPT 300 Operating Systems I. Summer Segment 3: Computer System Architecture. Melissa O Neill

Computer System Architecture. CMPT 300 Operating Systems I. Summer Segment 3: Computer System Architecture. Melissa O Neill CMPT 300 Operating Systems I Computer System Architecture Summer 1999 disk disk printer tape drives on-line Segment 3: Computer System Architecture CPU disk controller printer controller tape-drive controller

More information

CS2028 -UNIX INTERNALS

CS2028 -UNIX INTERNALS DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY,SIRUVACHUR-621113. CS2028 -UNIX INTERNALS PART B UNIT 1 1. Explain briefly details about History of UNIX operating system? In 1965, Bell Telephone

More information

To understand this, let's build a layered model from the bottom up. Layers include: device driver filesystem file

To understand this, let's build a layered model from the bottom up. Layers include: device driver filesystem file Disks_and_Layers Page 1 So what is a file? Tuesday, November 17, 2015 1:23 PM This is a difficult question. To understand this, let's build a layered model from the bottom up. Layers include: device driver

More information

Linux Operating System

Linux Operating System Linux Operating System Dept. of Computer Science & Engineering 1 History Linux is a modern, free operating system based on UNIX standards. First developed as a small but self-contained kernel in 1991 by

More information

CS 333 Introduction to Operating Systems. Class 2 OS-Related Hardware & Software The Process Concept

CS 333 Introduction to Operating Systems. Class 2 OS-Related Hardware & Software The Process Concept CS 333 Introduction to Operating Systems Class 2 OS-Related Hardware & Software The Process Concept Jonathan Walpole Computer Science Portland State University 1 Administrivia CS333 lecture videos are

More information

Operating-System Structures

Operating-System Structures Operating-System Structures System Components Operating System Services System Calls System Programs System Structure System Design and Implementation System Generation 1 Common System Components Process

More information

Part V. Process Management. Sadeghi, Cubaleska RUB Course Operating System Security Memory Management and Protection

Part V. Process Management. Sadeghi, Cubaleska RUB Course Operating System Security Memory Management and Protection Part V Process Management Sadeghi, Cubaleska RUB 2008-09 Course Operating System Security Memory Management and Protection Roadmap of Chapter 5 Notion of Process and Thread Data Structures Used to Manage

More information

Topics. Operating System. What is an Operating System? Let s Get Started! What is an Operating System? Where in the Book are we?

Topics. Operating System. What is an Operating System? Let s Get Started! What is an Operating System? Where in the Book are we? Topics Operating System What is an OS? OS History OS Concepts OS Structures Introduction Let s Get Started! What is an Operating System? What are some OSes you know? Guess if you are not sure Pick an OS

More information

Chapter 2: Operating-System Structures. Chapter 2: Operating-System Structures. Objectives. Operating System Services

Chapter 2: Operating-System Structures. Chapter 2: Operating-System Structures. Objectives. Operating System Services Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Operating System Services User Operating System Interface System Calls Types of System Calls System Programs Operating System

More information

ELEC 377 Operating Systems. Week 1 Class 2

ELEC 377 Operating Systems. Week 1 Class 2 Operating Systems Week 1 Class 2 Labs vs. Assignments The only work to turn in are the labs. In some of the handouts I refer to the labs as assignments. There are no assignments separate from the labs.

More information

Overview of Operating Systems

Overview of Operating Systems Lecture Outline Overview of Operating Systems Instructor: Dr. Tongping Liu Thank Dr. Dakai Zhu and Dr. Palden Lama for providing their slides. 1 2 Lecture Outline Von Neumann Architecture 3 This describes

More information

Introduction. CS3026 Operating Systems Lecture 01

Introduction. CS3026 Operating Systems Lecture 01 Introduction CS3026 Operating Systems Lecture 01 One or more CPUs Device controllers (I/O modules) Memory Bus Operating system? Computer System What is an Operating System An Operating System is a program

More information

Input/Output Management

Input/Output Management Chapter 11 Input/Output Management This could be the messiest aspect of an operating system. There are just too much stuff involved, it is difficult to develop a uniform and consistent theory to cover

More information

Operating Systems. Operating System Structure. Lecture 2 Michael O Boyle

Operating Systems. Operating System Structure. Lecture 2 Michael O Boyle Operating Systems Operating System Structure Lecture 2 Michael O Boyle 1 Overview Architecture impact User operating interaction User vs kernel Syscall Operating System structure Layers Examples 2 Lower-level

More information

Embedded Linux Architecture

Embedded Linux Architecture Embedded Linux Architecture Types of Operating Systems Real-Time Executive Monolithic Kernel Microkernel Real-Time Executive For MMU-less processors The entire address space is flat or linear with no memory

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 5 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 User Operating System Interface - CLI CLI

More information

UNIX File System. UNIX File System. The UNIX file system has a hierarchical tree structure with the top in root.

UNIX File System. UNIX File System. The UNIX file system has a hierarchical tree structure with the top in root. UNIX File System UNIX File System The UNIX file system has a hierarchical tree structure with the top in root. Files are located with the aid of directories. Directories can contain both file and directory

More information

EECS 3221 Operating System Fundamentals

EECS 3221 Operating System Fundamentals EECS 3221 Operating System Fundamentals Instructor: Prof. Hui Jiang Email: hj@cse.yorku.ca Web: http://www.eecs.yorku.ca/course/3221 General Info 3 lecture hours each week 2 assignments (2*5%=10%) 1 project

More information

EECS 3221 Operating System Fundamentals

EECS 3221 Operating System Fundamentals General Info EECS 3221 Operating System Fundamentals Instructor: Prof. Hui Jiang Email: hj@cse.yorku.ca Web: http://www.eecs.yorku.ca/course/3221 3 lecture hours each week 2 assignments (2*5%=10%) 1 project

More information

Operating System: Chap2 OS Structure. National Tsing-Hua University 2016, Fall Semester

Operating System: Chap2 OS Structure. National Tsing-Hua University 2016, Fall Semester Operating System: Chap2 OS Structure National Tsing-Hua University 2016, Fall Semester Outline OS Services OS-Application Interface OS Structure Chapter2 OS-Structure Operating System Concepts NTHU LSA

More information

C02: Interrupts and I/O

C02: Interrupts and I/O CISC 7310X C02: Interrupts and I/O Hui Chen Department of Computer & Information Science CUNY Brooklyn College 2/8/2018 CUNY Brooklyn College 1 Von Neumann Computers Process and memory connected by a bus

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz I Solutions

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz I Solutions Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.893 Fall 2009 Quiz I Solutions All problems are open-ended questions. In order to receive credit you must

More information

-Device. -Physical or virtual thing that does something -Software + hardware to operate a device (Controller runs port, Bus, device)

-Device. -Physical or virtual thing that does something -Software + hardware to operate a device (Controller runs port, Bus, device) Devices -Host -CPU -Device -Controller device) +memory +OS -Physical or virtual thing that does something -Software + hardware to operate a device (Controller runs port, Bus, Communication -Registers -Control

More information

Overview of Operating Systems

Overview of Operating Systems Lecture Outline Overview of Operating Systems Instructor: Dr. Tongping Liu Operating System: what is it? Evolution of Computer Systems and OS Concepts Different types/variations of Systems/OS Ø Parallel/distributed/real-time/embedded

More information

CSC Operating Systems Fall Lecture - II OS Structures. Tevfik Ko!ar. Louisiana State University. August 27 th, 2009.

CSC Operating Systems Fall Lecture - II OS Structures. Tevfik Ko!ar. Louisiana State University. August 27 th, 2009. CSC 4103 - Operating Systems Fall 2009 Lecture - II OS Structures Tevfik Ko!ar Louisiana State University August 27 th, 2009 1 Announcements TA Changed. New TA: Praveenkumar Kondikoppa Email: pkondi1@lsu.edu

More information

CS 167 Final Exam Solutions

CS 167 Final Exam Solutions CS 167 Final Exam Solutions Spring 2016 Do all questions. 1. The implementation given of thread_switch in class is as follows: void thread_switch() { thread_t NextThread, OldCurrent; } NextThread = dequeue(runqueue);

More information

Chapter 2: Operating-System Structures. Operating System Concepts 9 th Edit9on

Chapter 2: Operating-System Structures. Operating System Concepts 9 th Edit9on Chapter 2: Operating-System Structures Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Objectives To describe the services an operating system provides to users, processes, and

More information

Definition: An operating system is the software that manages resources

Definition: An operating system is the software that manages resources 13-1 Operating Systems 13-1 Definition: An operating system is the software that manages resources in a computer. Resources A resource is (usually) hardware that needs to be accessed. There are rules for

More information

Announcements. Computer System Organization. Roadmap. Major OS Components. Processes. Tevfik Ko!ar. CSC Operating Systems Fall 2009

Announcements. Computer System Organization. Roadmap. Major OS Components. Processes. Tevfik Ko!ar. CSC Operating Systems Fall 2009 CSC 4103 - Operating Systems Fall 2009 Lecture - II OS Structures Tevfik Ko!ar TA Changed. New TA: Praveenkumar Kondikoppa Email: pkondi1@lsu.edu Announcements All of you should be now in the class mailing

More information

Chapter 11: Implementing File Systems

Chapter 11: Implementing File Systems Silberschatz 1 Chapter 11: Implementing File Systems Thursday, November 08, 2007 9:55 PM File system = a system stores files on secondary storage. A disk may have more than one file system. Disk are divided

More information

Architectural Support for Operating Systems. Jinkyu Jeong ( Computer Systems Laboratory Sungkyunkwan University

Architectural Support for Operating Systems. Jinkyu Jeong ( Computer Systems Laboratory Sungkyunkwan University Architectural Support for Operating Systems Jinkyu Jeong ( jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Basic services of OS Basic computer system

More information