PASTE: A Networking API for Non-Volatile Main Memory

Size: px
Start display at page:

Download "PASTE: A Networking API for Non-Volatile Main Memory"

Transcription

1 PASTE: A Networking API for Non-Volatile Main Memory Michio Honda (NEC Laboratories Europe) Lars Eggert (NetApp) Douglas Santry (NetApp) TSVAREA@IETF 99, Prague May 22th 2017 More details at our HotNets paper:

2 Motivation Non-Volatile Main Memories (NVMMs) Persistent Byte-addressable Low latency 10s-1000s of ns /persistent-memory.html A lot of work in databases and file systems NVHeap [ASPLOS'11], NOVA [FAST'16], NVWal [ASPLOS'16], HiKV [ATC'17] etc What are implications for networking?

3 Review: Today's Stack with NVMM

4 Review: Today's Stack with NVMM How data move from the network to the storage

5 Case Study: Careful Data Transfer Server persists client s request prior to acknowledgment e.g., 1KB commit:

6 Case Study: Careful Data Transfer Server persists client s request prior to acknowledgment e.g., 1KB commit: client Network stack NIC App DRAM 2030 us Networking (w/o step (4)) takes 40 us (5) (1) read() (3) (2) write()/fsync() or memcpy()/msync() (4) Storage stack SSD/ DIsk

7 Case Study: Careful Data Transfer Server persists client s request prior to acknowledgment e.g., 1KB commit: client (5) (1) us Networking takes 40 us This 2 us is not small read() (3) Network stack (2) DRAM NIC App write()/fsync() or memcpy()/msync() (4) Storage stack NVMM Emulated using a reserved region of DRAM

8 Case Study: Careful Data Transfer Parallel requests are serialized on each core 33 % throughput decrease, 50 % latency increase

9 Data Copies Matter Cache Misses Persisting data (e.g., to a log) always happens to a different destination read() memcpy() kernel buffer app buffer log file (mmap()-ed) Overall cache misses Major Contributor Networking only % net_rx_action() (84%) Networking + NVMM (read() + memcpy() + msync()) % memcpy() (98%) Reported by Linux perf We must avoid data copy!

10 Packet Store (PASTE) Overview Packet buffers on a named NVMM region DMA to NVMM Zero-copy APIs client (1) NVMM (3) Network stack App / mnt/nvmm/ pktbufs (2) NIC Storage stack metadata only (e.g., buffer index) (4) / mnt/pmem/ appmd

11 Fast Persistent Write with PASTE mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) TCP/IP input and output NIC ring

12 Fast Persistent Write with PASTE Unread Read or written mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) TCP/IP input and output NIC ring

13 Fast Persistent Write with PASTE Unread Read or written mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) TCP/IP input and output NIC ring

14 Fast Persistent Write with PASTE Unread Read or written mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) TCP/IP input and output NIC ring

15 Fast Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) TCP/IP input and output NIC ring

16 Fast Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) TCP/IP input and output NIC ring

17 Fast Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) TCP/IP input and output NIC ring

18 Fast Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) TCP/IP input and output NIC ring

19 Fast Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) TCP/IP input and output NIC ring

20 Fast and Selective Persistent Write with PASTE Unread Read or written Flushed mmap() Application Idempotent (1) Read data (zero copy) request (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) Unnecessary data is not flushed to DIMM TCP/IP input and output NIC ring

21 Fast and Selective Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) Unnecessary data is not flushed to DIMM TCP/IP input and output NIC ring

22 Fast and Selective Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) Unnecessary data is not flushed to DIMM TCP/IP input and output NIC ring

23 Fast and Selective Persistent Write with PASTE Unread Read or written Flushed mmap() Application (1) Read data (zero copy) (2) Write metadata entry (3) Flush (buffer and metadata) User Kernel metadata header buf_ofs: 123 metadata entries buf_idx off len /mnt/nvmm/myapp_metadata (static) DMA is performed to L3 cache (DDIO) Unnecessary data is not flushed to DIMM TCP/IP input and output NIC ring

24 Preliminary Results Implementation Extend the netmap framework TCP/IP is also supported % throughput increase, 9-46 % latency reduction

25 Related Work Enhanced network stacks MegaPipe (OSDI 12), Stackmap (ATC 16), Fastsocket (ASPLOS 16) IX and Arrakis (OSDI 14), mtcp (NSDI 13), Sandstorm (SIGCOMM 14), MICA (NSDI 14) No NVMM aware NVMM filesystems BPFS (SOSP 09), NOVA (FAST 15) NVMM databases NVWAL (ASPLOS 15), REWIND (VLDB 15), NV-Tree (FAST 15) No networking aware

26 Conclusion Networking APIs are now a bottleneck for durably storing data Ongoing work Brushing up APIs Smooth integration with Forming a filesystem with Fast data movement between files Use case applications Network Stack NIC App Netmap API NVMM Filesystem

PASTE: A Network Programming Interface for Non-Volatile Main Memory

PASTE: A Network Programming Interface for Non-Volatile Main Memory PASTE: A Network Programming Interface for Non-Volatile Main Memory Michio Honda (NEC Laboratories Europe) Giuseppe Lettieri (Università di Pisa) Lars Eggert and Douglas Santry (NetApp) USENIX NSDI 2018

More information

PASTE: Fast End System Networking with netmap

PASTE: Fast End System Networking with netmap PASTE: Fast End System Networking with netmap Michio Honda, Giuseppe Lettieri, Lars Eggert and Douglas Santry BSDCan 2018 Contact: @michioh, micchie@sfc.wide.ad.jp Code: https://github.com/micchie/netmap/tree/stack

More information

Speeding up Linux TCP/IP with a Fast Packet I/O Framework

Speeding up Linux TCP/IP with a Fast Packet I/O Framework Speeding up Linux TCP/IP with a Fast Packet I/O Framework Michio Honda Advanced Technology Group, NetApp michio@netapp.com With acknowledge to Kenichi Yasukata, Douglas Santry and Lars Eggert 1 Motivation

More information

ECE 598-MS: Advanced Memory and Storage Systems Lecture 7: Unified Address Translation with FlashMap

ECE 598-MS: Advanced Memory and Storage Systems Lecture 7: Unified Address Translation with FlashMap ECE 598-MS: Advanced Memory and Storage Systems Lecture 7: Unified Address Translation with Map Jian Huang Use As Non-Volatile Memory DRAM (nanoseconds) Application Memory Component SSD (microseconds)

More information

RDMA and Hardware Support

RDMA and Hardware Support RDMA and Hardware Support SIGCOMM Topic Preview 2018 Yibo Zhu Microsoft Research 1 The (Traditional) Journey of Data How app developers see the network Under the hood This architecture had been working

More information

THE IN-PLACE WORKING STORAGE TIER OPPORTUNITIES FOR SOFTWARE INNOVATORS KEN GIBSON, INTEL, DIRECTOR MEMORY SW ARCHITECTURE

THE IN-PLACE WORKING STORAGE TIER OPPORTUNITIES FOR SOFTWARE INNOVATORS KEN GIBSON, INTEL, DIRECTOR MEMORY SW ARCHITECTURE THE IN-PLACE WORKING STORAGE TIER OPPORTUNITIES FOR SOFTWARE INNOVATORS KEN GIBSON, INTEL, DIRECTOR MEMORY SW ARCHITECTURE I/O LATENCY WILL SOON EXCEED MEDIA LATENCY 30 NVM Tread 25 NVM xfer Controller

More information

Arrakis: The Operating System is the Control Plane

Arrakis: The Operating System is the Control Plane Arrakis: The Operating System is the Control Plane Simon Peter, Jialin Li, Irene Zhang, Dan Ports, Doug Woos, Arvind Krishnamurthy, Tom Anderson University of Washington Timothy Roscoe ETH Zurich Building

More information

Tailwind: Fast and Atomic RDMA-based Replication. Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, Toni Cortes

Tailwind: Fast and Atomic RDMA-based Replication. Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, Toni Cortes Tailwind: Fast and Atomic RDMA-based Replication Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, Toni Cortes In-Memory Key-Value Stores General purpose in-memory key-value stores are widely used nowadays

More information

Solros: A Data-Centric Operating System Architecture for Heterogeneous Computing

Solros: A Data-Centric Operating System Architecture for Heterogeneous Computing Solros: A Data-Centric Operating System Architecture for Heterogeneous Computing Changwoo Min, Woonhak Kang, Mohan Kumar, Sanidhya Kashyap, Steffen Maass, Heeseung Jo, Taesoo Kim Virginia Tech, ebay, Georgia

More information

SoftRDMA: Rekindling High Performance Software RDMA over Commodity Ethernet

SoftRDMA: Rekindling High Performance Software RDMA over Commodity Ethernet SoftRDMA: Rekindling High Performance Software RDMA over Commodity Ethernet Mao Miao, Fengyuan Ren, Xiaohui Luo, Jing Xie, Qingkai Meng, Wenxue Cheng Dept. of Computer Science and Technology, Tsinghua

More information

Hardware Undo+Redo Logging. Matheus Ogleari Ethan Miller Jishen Zhao CRSS Retreat 2018 May 16, 2018

Hardware Undo+Redo Logging. Matheus Ogleari Ethan Miller Jishen Zhao   CRSS Retreat 2018 May 16, 2018 Hardware Undo+Redo Logging Matheus Ogleari Ethan Miller Jishen Zhao https://users.soe.ucsc.edu/~mogleari/ CRSS Retreat 2018 May 16, 2018 Typical Memory and Storage Hierarchy: Memory Fast access to working

More information

Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740

Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740 Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740 A performance study with NVDIMM-N Dell EMC Engineering September 2017 A Dell EMC document category Revisions Date

More information

Farewell to Servers: Resource Disaggregation

Farewell to Servers: Resource Disaggregation Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation Yiying Zhang 2 Monolithic Computer OS / Hypervisor 3 Can monolithic Application Hardware servers

More information

Designing a True Direct-Access File System with DevFS

Designing a True Direct-Access File System with DevFS Designing a True Direct-Access File System with DevFS Sudarsun Kannan, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau University of Wisconsin-Madison Yuangang Wang, Jun Xu, Gopinath Palani Huawei Technologies

More information

NVthreads: Practical Persistence for Multi-threaded Applications

NVthreads: Practical Persistence for Multi-threaded Applications NVthreads: Practical Persistence for Multi-threaded Applications Terry Hsu*, Purdue University Helge Brügner*, TU München Indrajit Roy*, Google Inc. Kimberly Keeton, Hewlett Packard Labs Patrick Eugster,

More information

Onyx: A Prototype Phase-Change Memory Storage Array

Onyx: A Prototype Phase-Change Memory Storage Array Onyx: A Prototype Phase-Change Memory Storage Array Ameen Akel * Adrian Caulfield, Todor Mollov, Rajesh Gupta, Steven Swanson Non-Volatile Systems Laboratory, Department of Computer Science and Engineering

More information

Soft Updates Made Simple and Fast on Non-volatile Memory

Soft Updates Made Simple and Fast on Non-volatile Memory Soft Updates Made Simple and Fast on Non-volatile Memory Mingkai Dong, Haibo Chen Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University @ NVMW 18 Non-volatile Memory (NVM) ü Non-volatile

More information

LITE Kernel RDMA. Support for Datacenter Applications. Shin-Yeh Tsai, Yiying Zhang

LITE Kernel RDMA. Support for Datacenter Applications. Shin-Yeh Tsai, Yiying Zhang LITE Kernel RDMA Support for Datacenter Applications Shin-Yeh Tsai, Yiying Zhang Time 2 Berkeley Socket Userspace Kernel Hardware Time 1983 2 Berkeley Socket TCP Offload engine Arrakis & mtcp IX Userspace

More information

Near- Data Computa.on: It s Not (Just) About Performance

Near- Data Computa.on: It s Not (Just) About Performance Near- Data Computa.on: It s Not (Just) About Performance Steven Swanson Non- Vola0le Systems Laboratory Computer Science and Engineering University of California, San Diego 1 Solid State Memories NAND

More information

Network stack specialization for performance

Network stack specialization for performance Network stack specialization for performance goo.gl/1la2u6 Ilias Marinos, Robert N.M. Watson, Mark Handley* University of Cambridge, * University College London Motivation Providers are scaling out rapidly.

More information

Kernel Bypass. Sujay Jayakar (dsj36) 11/17/2016

Kernel Bypass. Sujay Jayakar (dsj36) 11/17/2016 Kernel Bypass Sujay Jayakar (dsj36) 11/17/2016 Kernel Bypass Background Why networking? Status quo: Linux Papers Arrakis: The Operating System is the Control Plane. Simon Peter, Jialin Li, Irene Zhang,

More information

SNIA NVM Programming Model Workgroup Update. #OFADevWorkshop

SNIA NVM Programming Model Workgroup Update. #OFADevWorkshop SNIA NVM Programming Model Workgroup Update #OFADevWorkshop Persistent Memory (PM) Vision Fast Like Memory PM Brings Storage PM Durable Like Storage To Memory Slots 2 Latency Thresholds Cause Disruption

More information

Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation

Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation Yiying Zhang Datacenter 3 Monolithic Computer OS / Hypervisor 4 Can monolithic Application Hardware

More information

Persistent Memory over Fabrics

Persistent Memory over Fabrics Persistent Memory over Fabrics Rob Davis, Mellanox Technologies Chet Douglas, Intel Paul Grun, Cray, Inc Tom Talpey, Microsoft Santa Clara, CA 1 Agenda The Promise of Persistent Memory over Fabrics Driving

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Windows Persistent Memory Support

Windows Persistent Memory Support Windows Persistent Memory Support Neal Christiansen Microsoft Agenda Review: Existing Windows PM Support What s New New PM APIs Large & Huge Page Support Dax aware Write-ahead LOG Improved Driver Model

More information

Evolution of the netmap architecture

Evolution of the netmap architecture L < > T H local Evolution of the netmap architecture Evolution of the netmap architecture -- Page 1/21 Evolution of the netmap architecture Luigi Rizzo, Università di Pisa http://info.iet.unipi.it/~luigi/vale/

More information

System Software for Persistent Memory

System Software for Persistent Memory System Software for Persistent Memory Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran and Jeff Jackson 72131715 Neo Kim phoenixise@gmail.com Contents

More information

REMOTE PERSISTENT MEMORY ACCESS WORKLOAD SCENARIOS AND RDMA SEMANTICS

REMOTE PERSISTENT MEMORY ACCESS WORKLOAD SCENARIOS AND RDMA SEMANTICS 13th ANNUAL WORKSHOP 2017 REMOTE PERSISTENT MEMORY ACCESS WORKLOAD SCENARIOS AND RDMA SEMANTICS Tom Talpey Microsoft [ March 31, 2017 ] OUTLINE Windows Persistent Memory Support A brief summary, for better

More information

Application Access to Persistent Memory The State of the Nation(s)!

Application Access to Persistent Memory The State of the Nation(s)! Application Access to Persistent Memory The State of the Nation(s)! Stephen Bates, Paul Grun, Tom Talpey, Doug Voigt Microsemi, Cray, Microsoft, HPE The Suspects Stephen Bates Microsemi Paul Grun Cray

More information

Windows Support for PM. Tom Talpey, Microsoft

Windows Support for PM. Tom Talpey, Microsoft Windows Support for PM Tom Talpey, Microsoft Agenda Industry Standards Support PMDK Open Source Support Hyper-V Support SQL Server Support Storage Spaces Direct Support SMB3 and RDMA Support 2 Windows

More information

Non-Volatile Memory Through Customized Key-Value Stores

Non-Volatile Memory Through Customized Key-Value Stores Non-Volatile Memory Through Customized Key-Value Stores Leonardo Mármol 1 Jorge Guerra 2 Marcos K. Aguilera 2 1 Florida International University 2 VMware L. Mármol, J. Guerra, M. K. Aguilera (FIU and VMware)

More information

Malacology. A Programmable Storage System [Sevilla et al. EuroSys '17]

Malacology. A Programmable Storage System [Sevilla et al. EuroSys '17] Malacology A Programmable Storage System [Sevilla et al. EuroSys '17] Michael A. Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein, Jeff LeFevre, Carlos Maltzahn University of California,

More information

FaRM: Fast Remote Memory

FaRM: Fast Remote Memory FaRM: Fast Remote Memory Problem Context DRAM prices have decreased significantly Cost effective to build commodity servers w/hundreds of GBs E.g. - cluster with 100 machines can hold tens of TBs of main

More information

Rethink the Sync 황인중, 강윤지, 곽현호. Embedded Software Lab. Embedded Software Lab.

Rethink the Sync 황인중, 강윤지, 곽현호. Embedded Software Lab. Embedded Software Lab. 1 Rethink the Sync 황인중, 강윤지, 곽현호 Authors 2 USENIX Symposium on Operating System Design and Implementation (OSDI 06) System Structure Overview 3 User Level Application Layer Kernel Level Virtual File System

More information

I/O Stack Optimization for Smartphones

I/O Stack Optimization for Smartphones I/O Stack Optimization for Smartphones Sooman Jeong 1, Kisung Lee 2, Seongjin Lee 1, Seoungbum Son 2, and Youjip Won 1 1 Dept. of Electronics and Computer Engineering, Hanyang University 2 Samsung Electronics

More information

Persistent Memory. High Speed and Low Latency. White Paper M-WP006

Persistent Memory. High Speed and Low Latency. White Paper M-WP006 Persistent Memory High Speed and Low Latency White Paper M-WP6 Corporate Headquarters: 3987 Eureka Dr., Newark, CA 9456, USA Tel: (51) 623-1231 Fax: (51) 623-1434 E-mail: info@smartm.com Customer Service:

More information

Windows Support for PM. Tom Talpey, Microsoft

Windows Support for PM. Tom Talpey, Microsoft Windows Support for PM Tom Talpey, Microsoft Agenda Windows and Windows Server PM Industry Standards Support PMDK Support Hyper-V PM Support SQL Server PM Support Storage Spaces Direct PM Support SMB3

More information

RISC-V Support for Persistent Memory Systems

RISC-V Support for Persistent Memory Systems RISC-V Support for Persistent Memory Systems Matheus Ogleari, Storage Architecture Engineer June 26, 2018 7/6/2018 Persistent Memory State-of-the-art, hybrid memory + storage properties Supported by hardware

More information

Master s Thesis (Academic Year 2015) Improving TCP/IP stack performance by fast packet I/O framework

Master s Thesis (Academic Year 2015) Improving TCP/IP stack performance by fast packet I/O framework Master s Thesis (Academic Year 2015) Improving TCP/IP stack performance by fast packet I/O framework Keio University Graduate School of Media and Governance Kenichi Yasukata Master s Thesis Academic Year

More information

libvnf: building VNFs made easy

libvnf: building VNFs made easy libvnf: building VNFs made easy Priyanka Naik, Akash Kanase, Trishal Patel, Mythili Vutukuru Dept. of Computer Science and Engineering Indian Institute of Technology, Bombay SoCC 18 11 th October, 2018

More information

Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories

Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories Adrian M. Caulfield Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, Steven Swanson Non-Volatile Systems

More information

Blurred Persistence in Transactional Persistent Memory

Blurred Persistence in Transactional Persistent Memory Blurred Persistence in Transactional Persistent Memory Youyou Lu, Jiwu Shu, Long Sun Tsinghua University Overview Problem: high performance overhead in ensuring storage consistency of persistent memory

More information

Using NVDIMM under KVM. Applications of persistent memory in virtualization

Using NVDIMM under KVM. Applications of persistent memory in virtualization Using NVDIMM under KVM Applications of persistent memory in virtualization Stefan Hajnoczi About me QEMU contributor since 2010 Focus on storage, tracing, performance Work in Red

More information

Protocol-Independent FIB Architecture for Network Overlays

Protocol-Independent FIB Architecture for Network Overlays Protocol-Independent FIB Architecture for Network Overlays ABSTRACT We introduce a new forwarding information base architecture into the stacked layering model for network overlays. In recent data center

More information

STORAGE LATENCY x. RAMAC 350 (600 ms) NAND SSD (60 us)

STORAGE LATENCY x. RAMAC 350 (600 ms) NAND SSD (60 us) 1 STORAGE LATENCY 2 RAMAC 350 (600 ms) 1956 10 5 x NAND SSD (60 us) 2016 COMPUTE LATENCY 3 RAMAC 305 (100 Hz) 1956 10 8 x 1000x CORE I7 (1 GHZ) 2016 NON-VOLATILE MEMORY 1000x faster than NAND 3D XPOINT

More information

The SNIA NVM Programming Model. #OFADevWorkshop

The SNIA NVM Programming Model. #OFADevWorkshop The SNIA NVM Programming Model #OFADevWorkshop Opportunities with Next Generation NVM NVMe & STA SNIA 2 NVM Express/SCSI Express: Optimized storage interconnect & driver SNIA NVM Programming TWG: Optimized

More information

Reducing CPU and network overhead for small I/O requests in network storage protocols over raw Ethernet

Reducing CPU and network overhead for small I/O requests in network storage protocols over raw Ethernet Reducing CPU and network overhead for small I/O requests in network storage protocols over raw Ethernet Pilar González-Férez and Angelos Bilas 31 th International Conference on Massive Storage Systems

More information

Persistent Memory over Fabric (PMoF) Adding RDMA to Persistent Memory Pawel Szymanski Intel Corporation

Persistent Memory over Fabric (PMoF) Adding RDMA to Persistent Memory Pawel Szymanski Intel Corporation Persistent Memory over Fabric (PMoF) Adding RDMA to Persistent Memory Pawel Szymanski Intel Corporation 1 Adding RDMA to Persisteny memory Agenda PMoF Overview Comparison with other remote replication

More information

Advanced Computer Networks. End Host Optimization

Advanced Computer Networks. End Host Optimization Oriana Riva, Department of Computer Science ETH Zürich 263 3501 00 End Host Optimization Patrick Stuedi Spring Semester 2017 1 Today End-host optimizations: NUMA-aware networking Kernel-bypass Remote Direct

More information

SMB3 Extensions for Low Latency. Tom Talpey Microsoft May 12, 2016

SMB3 Extensions for Low Latency. Tom Talpey Microsoft May 12, 2016 SMB3 Extensions for Low Latency Tom Talpey Microsoft Problem Statement Storage Class Memory A new, disruptive class of storage Nonvolatile medium with RAM-like performance Low latency, high throughput,

More information

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory JOY ARULRAJ JUSTIN LEVANDOSKI UMAR FAROOQ MINHAS PER-AKE LARSON Microsoft Research NON-VOLATILE MEMORY [NVM] PERFORMANCE DRAM VOLATILE

More information

L41 - Lecture 5: The Network Stack (1)

L41 - Lecture 5: The Network Stack (1) L41 - Lecture 5: The Network Stack (1) Dr Robert N. M. Watson 27 April 2015 Dr Robert N. M. Watson L41 - Lecture 5: The Network Stack (1) 27 April 2015 1 / 19 Introduction Reminder: where we left off in

More information

Aerie: Flexible File-System Interfaces to Storage-Class Memory [Eurosys 2014] Operating System Design Yongju Song

Aerie: Flexible File-System Interfaces to Storage-Class Memory [Eurosys 2014] Operating System Design Yongju Song Aerie: Flexible File-System Interfaces to Storage-Class Memory [Eurosys 2014] Operating System Design Yongju Song Outline 1. Storage-Class Memory (SCM) 2. Motivation 3. Design of Aerie 4. File System Features

More information

Planning For Persistent Memory In The Data Center. Sarah Jelinek/Intel Corporation

Planning For Persistent Memory In The Data Center. Sarah Jelinek/Intel Corporation Planning For Persistent Memory In The Data Center Sarah Jelinek/Intel Corporation SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies

More information

How Next Generation NV Technology Affects Storage Stacks and Architectures

How Next Generation NV Technology Affects Storage Stacks and Architectures How Next Generation NV Technology Affects Storage Stacks and Architectures Marty Czekalski, Interface and Emerging Architecture Program Manager, Seagate Technology Flash Memory Summit 2013 Santa Clara,

More information

Benchmarking Persistent Memory in Computers

Benchmarking Persistent Memory in Computers Benchmarking Persistent Memory in Computers Testing with MongoDB Presenter: Adam McPadden Co-Authors: Moshik Hershcovitch and Revital Eres August 2017 1 Overview Objective Background System Configuration

More information

Important new NVMe features for optimizing the data pipeline

Important new NVMe features for optimizing the data pipeline Important new NVMe features for optimizing the data pipeline Dr. Stephen Bates, CTO Eideticom Santa Clara, CA 1 Outline Intro to NVMe Controller Memory Buffers (CMBs) Use cases for CMBs Submission Queue

More information

Redrawing the Boundary Between So3ware and Storage for Fast Non- Vola;le Memories

Redrawing the Boundary Between So3ware and Storage for Fast Non- Vola;le Memories Redrawing the Boundary Between So3ware and Storage for Fast Non- Vola;le Memories Steven Swanson Director, Non- Vola;le System Laboratory Computer Science and Engineering University of California, San

More information

Distributed Shared Persistent Memory

Distributed Shared Persistent Memory Distributed Shared Persistent Memory (SoCC 17) Yizhou Shan, Yiying Zhang Persistent Memory (PM/NVM) Byte Addressable Persistent CPU Cache Low Latency Capacity Cost effective PM DRAM 2 Many PM Work, but

More information

Request-Oriented Durable Write Caching for Application Performance appeared in USENIX ATC '15. Jinkyu Jeong Sungkyunkwan University

Request-Oriented Durable Write Caching for Application Performance appeared in USENIX ATC '15. Jinkyu Jeong Sungkyunkwan University Request-Oriented Durable Write Caching for Application Performance appeared in USENIX ATC '15 Jinkyu Jeong Sungkyunkwan University Introduction Volatile DRAM cache is ineffective for write Writes are dominant

More information

Secure and Scalable Infrastructures for Cloud Operations (SSICLOPS) Resource Management in federated OpenStack cloud environments

Secure and Scalable Infrastructures for Cloud Operations (SSICLOPS) Resource Management in federated OpenStack cloud environments Secure and Scalable Infrastructures for Cloud Operations (SSICLOPS) Resource Management in federated OpenStack cloud environments Felix Eberhardt Stefan Klauck Max Plauth Research Areas 02.2015 02.2018

More information

PERSISTENT MEMORY PROGRAMMING

PERSISTENT MEMORY PROGRAMMING 14th ANNUAL WORKSHOP 2018 PERSISTENT MEMORY PROGRAMMING THE REMOTE ACCESS PERSPECTIVE Tom Talpey, Architect Microsoft April 10, 2018 OUTLINE SNIA NVMP Programming Model PMEM Remote Access considerations

More information

Light: A Scalable, High-performance and Fully-compatible User-level TCP Stack. Dan Li ( 李丹 ) Tsinghua University

Light: A Scalable, High-performance and Fully-compatible User-level TCP Stack. Dan Li ( 李丹 ) Tsinghua University Light: A Scalable, High-performance and Fully-compatible User-level TCP Stack Dan Li ( 李丹 ) Tsinghua University Data Center Network Performance Hardware Capability of Modern Servers Multi-core CPU Kernel

More information

NOVA-Fortis: A Fault-Tolerant Non- Volatile Main Memory File System

NOVA-Fortis: A Fault-Tolerant Non- Volatile Main Memory File System NOVA-Fortis: A Fault-Tolerant Non- Volatile Main Memory File System Jian Andiry Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase, Tamires Brito Da Silva, Andy Rudoff (Intel), Steven

More information

RDMA Requirements for High Availability in the NVM Programming Model

RDMA Requirements for High Availability in the NVM Programming Model RDMA Requirements for High Availability in the NVM Programming Model Doug Voigt HP Agenda NVM Programming Model Motivation NVM Programming Model Overview Remote Access for High Availability RDMA Requirements

More information

Virtualization, Xen and Denali

Virtualization, Xen and Denali Virtualization, Xen and Denali Susmit Shannigrahi November 9, 2011 Susmit Shannigrahi () Virtualization, Xen and Denali November 9, 2011 1 / 70 Introduction Virtualization is the technology to allow two

More information

An Efficient Memory-Mapped Key-Value Store for Flash Storage

An Efficient Memory-Mapped Key-Value Store for Flash Storage An Efficient Memory-Mapped Key-Value Store for Flash Storage Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas Institute of Computer Science (ICS) Foundation for Research

More information

Designing a Resource Pooling Transport Protocol

Designing a Resource Pooling Transport Protocol Designing a Resource Pooling Transport Protocol Michio Honda, Keio University Elena Balandina, Nokia Research Center Pasi Sarolahti, Nokia Research Center Lars Eggert, Nokia Research Center Global Internet

More information

FlexNIC: Rethinking Network DMA

FlexNIC: Rethinking Network DMA FlexNIC: Rethinking Network DMA Antoine Kaufmann Simon Peter Tom Anderson Arvind Krishnamurthy University of Washington HotOS 2015 Networks: Fast and Growing Faster 1 T 400 GbE Ethernet Bandwidth [bits/s]

More information

Demystifying Network Cards

Demystifying Network Cards Demystifying Network Cards Paul Emmerich December 27, 2017 Chair of Network Architectures and Services About me PhD student at Researching performance of software packet processing systems Mostly working

More information

Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise)

Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise) Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise) Application vs. Pure Workloads Benchmarks that reproduce application workloads Assist in

More information

Memory Management Strategies for Data Serving with RDMA

Memory Management Strategies for Data Serving with RDMA Memory Management Strategies for Data Serving with RDMA Dennis Dalessandro and Pete Wyckoff (presenting) Ohio Supercomputer Center {dennis,pw}@osc.edu HotI'07 23 August 2007 Motivation Increasing demands

More information

RAMCloud: Scalable High-Performance Storage Entirely in DRAM John Ousterhout Stanford University

RAMCloud: Scalable High-Performance Storage Entirely in DRAM John Ousterhout Stanford University RAMCloud: Scalable High-Performance Storage Entirely in DRAM John Ousterhout Stanford University (with Nandu Jayakumar, Diego Ongaro, Mendel Rosenblum, Stephen Rumble, and Ryan Stutsman) DRAM in Storage

More information

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Pengfei Zuo, Yu Hua, Jie Wu Huazhong University of Science and Technology, China 3th USENIX Symposium on Operating Systems

More information

PM Support in Linux and Windows. Dr. Stephen Bates, CTO, Eideticom Neal Christiansen, Principal Development Lead, Microsoft

PM Support in Linux and Windows. Dr. Stephen Bates, CTO, Eideticom Neal Christiansen, Principal Development Lead, Microsoft PM Support in Linux and Windows Dr. Stephen Bates, CTO, Eideticom Neal Christiansen, Principal Development Lead, Microsoft Windows Support for Persistent Memory 2 Availability of Windows PM Support Client

More information

New Abstractions for Fast Non-Volatile Storage

New Abstractions for Fast Non-Volatile Storage New Abstractions for Fast Non-Volatile Storage Joel Coburn, Adrian Caulfield, Laura Grupp, Ameen Akel, Steven Swanson Non-volatile Systems Laboratory Department of Computer Science and Engineering University

More information

The Network Stack (1)

The Network Stack (1) The Network Stack (1) L41 Lecture 5 Dr Robert N. M. Watson 25 January 2017 Reminder: where we left off last term Long, long ago, but in a galaxy not so far away: Lecture 3: The Process Model (1) Lecture

More information

Flavors of Memory supported by Linux, their use and benefit. Christoph Lameter, Ph.D,

Flavors of Memory supported by Linux, their use and benefit. Christoph Lameter, Ph.D, Flavors of Memory supported by Linux, their use and benefit Christoph Lameter, Ph.D, Twitter: @qant Flavors Of Memory The term computer memory is a simple term but there are numerous nuances

More information

I want to build on Rick Coulson s talk earlier this morning that addressed emerging Persistent Memory technologies. I want to expand on implications

I want to build on Rick Coulson s talk earlier this morning that addressed emerging Persistent Memory technologies. I want to expand on implications I want to build on Rick Coulson s talk earlier this morning that addressed emerging Persistent Memory technologies. I want to expand on implications to the overall Cloud and Enterprise server storage architecture

More information

Fast packet processing in linux with af_xdp

Fast packet processing in linux with af_xdp Fast packet processing in linux with af_xdp Magnus Karlsson and Björn Töpel, Intel Legal Disclaimer Intel technologies may require enabled hardware, specific software, or services activation. Check with

More information

Enabling Fast, Dynamic Network Processing with ClickOS

Enabling Fast, Dynamic Network Processing with ClickOS Enabling Fast, Dynamic Network Processing with ClickOS Joao Martins*, Mohamed Ahmed*, Costin Raiciu, Roberto Bifulco*, Vladimir Olteanu, Michio Honda*, Felipe Huici* * NEC Labs Europe, Heidelberg, Germany

More information

Energy Aware Persistence: Reducing Energy Overheads of Memory-based Persistence in NVMs

Energy Aware Persistence: Reducing Energy Overheads of Memory-based Persistence in NVMs Energy Aware Persistence: Reducing Energy Overheads of Memory-based Persistence in NVMs Sudarsun Kannan College of Computing, Georgia Tech sudarsun@gatech.edu Moinuddin Qureshi School of ECE, Georgia Tech

More information

NEXTGenIO Performance Tools for In-Memory I/O

NEXTGenIO Performance Tools for In-Memory I/O NEXTGenIO Performance Tools for In- I/O holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden 22 nd -23 rd March 2017 Credits Intro slides by Adrian Jackson (EPCC) A new hierarchy New non-volatile

More information

Software Routers: NetMap

Software Routers: NetMap Software Routers: NetMap Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking October 8, 2014 Slides from the NetMap: A Novel Framework for

More information

Using persistent memory and RDMA for Ceph client write-back caching Scott Peterson, Senior Software Engineer Intel

Using persistent memory and RDMA for Ceph client write-back caching Scott Peterson, Senior Software Engineer Intel Using persistent memory and RDMA for Ceph client write-back caching Scott Peterson, Senior Software Engineer Intel 2018 Storage Developer Conference. Intel Corporation. All Rights Reserved. 1 Ceph Concepts

More information

COS 318: Operating Systems. NSF, Snapshot, Dedup and Review

COS 318: Operating Systems. NSF, Snapshot, Dedup and Review COS 318: Operating Systems NSF, Snapshot, Dedup and Review Topics! NFS! Case Study: NetApp File System! Deduplication storage system! Course review 2 Network File System! Sun introduced NFS v2 in early

More information

The Long-Term Future of Solid State Storage Jim Handy Objective Analysis

The Long-Term Future of Solid State Storage Jim Handy Objective Analysis The Long-Term Future of Solid State Storage Jim Handy Objective Analysis Agenda How did we get here? Why it s suboptimal How we move ahead Why now? DRAM speed scaling Changing role of NVM in computing

More information

High Performance Packet Processing with FlexNIC

High Performance Packet Processing with FlexNIC High Performance Packet Processing with FlexNIC Antoine Kaufmann, Naveen Kr. Sharma Thomas Anderson, Arvind Krishnamurthy University of Washington Simon Peter The University of Texas at Austin Ethernet

More information

Closing the Performance Gap Between Volatile and Persistent K-V Stores

Closing the Performance Gap Between Volatile and Persistent K-V Stores Closing the Performance Gap Between Volatile and Persistent K-V Stores Yihe Huang, Harvard University Matej Pavlovic, EPFL Virendra Marathe, Oracle Labs Margo Seltzer, Oracle Labs Tim Harris, Oracle Labs

More information

From server-side to host-side:

From server-side to host-side: From server-side to host-side: Flash memory for enterprise storage Jiri Schindler et al. (see credits) Advanced Technology Group NetApp May 9, 2012 v 1.0 Data Centers with Flash SSDs iscsi/nfs/cifs Shared

More information

Analyzing I/O Performance on a NEXTGenIO Class System

Analyzing I/O Performance on a NEXTGenIO Class System Analyzing I/O Performance on a NEXTGenIO Class System holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden LUG17, Indiana University, June 2 nd 2017 NEXTGenIO Fact Sheet Project Research & Innovation

More information

IsoStack Highly Efficient Network Processing on Dedicated Cores

IsoStack Highly Efficient Network Processing on Dedicated Cores IsoStack Highly Efficient Network Processing on Dedicated Cores Leah Shalev Eran Borovik, Julian Satran, Muli Ben-Yehuda Outline Motivation IsoStack architecture Prototype TCP/IP over 10GE on a single

More information

Fine-grained Metadata Journaling on NVM

Fine-grained Metadata Journaling on NVM 32nd International Conference on Massive Storage Systems and Technology (MSST 2016) May 2-6, 2016 Fine-grained Metadata Journaling on NVM Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang, and Mingdi Xue

More information

High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK

High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK [r.tasker@dl.ac.uk] DataTAG is a project sponsored by the European Commission - EU Grant IST-2001-32459

More information

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Goal: fast and cost-efficient key-value store Store, retrieve, manage key-value objects Get(key)/Put(key,value)/Delete(key) Target: cluster-level

More information

NOVA: The Fastest File System for NVDIMMs. Steven Swanson, UC San Diego

NOVA: The Fastest File System for NVDIMMs. Steven Swanson, UC San Diego NOVA: The Fastest File System for NVDIMMs Steven Swanson, UC San Diego XFS F2FS NILFS EXT4 BTRFS Disk-based file systems are inadequate for NVMM Disk-based file systems cannot exploit NVMM performance

More information

DRAM Tutorial Lecture. Vivek Seshadri

DRAM Tutorial Lecture. Vivek Seshadri DRAM Tutorial 18-447 Lecture Vivek Seshadri DRAM Module and Chip 2 Goals Cost Latency Bandwidth Parallelism Power Energy 3 DRAM Chip Bank I/O 4 Sense Amplifier top enable Inverter bottom 5 Sense Amplifier

More information

Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG

Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG Tom Talpey Microsoft 2018 Storage Developer Conference. SNIA. All Rights Reserved. 1 Outline SNIA NVMP TWG activities Remote Access for

More information

Distributed caching for cloud computing

Distributed caching for cloud computing Distributed caching for cloud computing Maxime Lorrillere, Julien Sopena, Sébastien Monnet et Pierre Sens February 11, 2013 Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 1 / 16 Introduction Context

More information