Particle Filter for Robot Localization ECE 478 Homework #1

Size: px
Start display at page:

Download "Particle Filter for Robot Localization ECE 478 Homework #1"

Transcription

1 Particle Filter for Robot Localization ECE 478 Homework #1 Phil Lamb November 15,

2 Contents 1 Introduction 3 2 Implementation Assumptions and Simplifications Simulation Variables Possible Improvements Results PC = PC = Noise = A Python Source Code 7 List of Figures 1 Simulation 1(P C = 2000, σ M = 0.5, S N = 5) Simulation 1(P C = 2000, σ M = 0.5, S N = 5) Simulation 1(P C = 500, σ M = 0.5, S N = 250)

3 1 Introduction This report summarizes the implementation of and results from a simulation of robot localization in 2D space using a particle filter. 1.1 Particle Filters In general a particle filter is a statistical model used to track the evolution of a variable with possibly non-gausian distribution [?]. The particle filter maintains many copies (particles) of the variable, each particle having a weight indicating the quality of that particle [?]. In robotics the particle filter is often used to localize a robot, or estimate its location given inputs from sensors and a model of the robots motion. The particle filter has been successfully applied to solve both general localization tasks as well as the more difficult kidnapped robot problem where a robot is moved to an entirely new location and is able to re-establish its location [?]. The particle filter is continuously iterated to improve the localization estimate and update localization after the robot moves. This happens in three steps: Prediction, Update, and Resample[?]. More details on the implementation of these steps are given in section??. In the prediction step each particle is modified based on the robot s motion model. The motion model takes into account movement and odometry errors (e.g. if commanded to move forward 5m a robot may not travel in a perfectly straight line and may not travel exactly 5m). This prediction step is described by equation?? where p is the previous position of the particle, p + is the new position of the particle, function M represents the motion model, and x is the commanded motion of the robot. p + = p + M( x) (1) In the update step the weight of each particle is modified based on the likelyhood that that particle represents the correct position value from the robot s sensor readings. The particle weighting assumes a gaussian distribution (gaussian error on sensor measurements). After all particles have been updated the weights are normalized so that the sum of all particles weight is one. The final step is to resample the particles. In this step all previous particles are discarded and new particles are chosen from a weighted distribution of the previous particles. Particles from the previous iteration with a higher weight are more likely to be chosen for the succeeding iteration. This discards low-probability particles and preserves high-probability cycles for the next iteration of the filter. If the particles are not resampled the population becomes depelted with low-probability particles not contributing to the solution [?]. Resampling does not necessarially need to be done on every iteration. 3

4 2 Implementation The particle filter simulation was implemented in Python. The program simulates a simple robot that can move and localize itself in 2D space. Source code for the simulation can be found in appendix??. 2.1 Assumptions and Simplifications A number of simplifications and assumptions about the robot were made in order to simplify the simulation. Even with these simplifications the simulation demonstrates the application of particle filters to robot localization. This simulation assumes that the robot is in a square room of variable size and can measure its location from each wall (determine its (X, Y ) position). For the purposes of this simulation all error in the motion model is assumed to be gaussian where µ = 0 and σ = σ M (see section??). During the update step of the particle filter the weight of the particle is determined by its difference from the measured position of the robot. This measurement is the actual value of the robot with added error. The measurement error (e) is assumed to be uniform where N S e N S (see section??). The particle resampling step is accomplished by associating elements of two lists. The first list contains particles, the second contains a cumulative sum of the particles weights which sum to one (the cdf of the particle distribution). A random value is chosen from a uniform distribution between zero and one and the index in the weight list is chosen by locating the index in the array where the randomly chosen value would be inserted. This is accomplished using Python s array bisection (binary search) algorithm (bisect) [?]. The particle in the matching index in the particle array is chosen for the next iteration. In this simulation resampling happens after every iteration. 2.2 Simulation Variables The simulation may be modified using a number of variables: WORLDSIZE - This defines the size of the robot s world or room. This value is the maximum X and Y value of the room. ROBOTSPEED (RS) - This value gives the maximum forward speed of the robot (the maximum speed is actually ROBOTSPEED 2 due to implementation of the motion simulation). PARTICLECOUNT (P C) - This specifies the number of particles to be used. WEIGHTSIGMADIVISOR (σ w ) - This is used to determine the width (σ) of the normal distribution used to determine particle weight during the prediction phase. The weight is determined by: d 2 w = e 2 σw 2 where w is the particle weight and d is the difference between the particle and the measured location of the robot. 4

5 MOTIONMODELSIGMA (σ M ) - This value is used to determine the width of the normal distribution used in the motion model. The σ of the normal distribution is equal to σ M RS. MEASNOISE (N S ) - Maximum magnitude of noise added to a simulated sensor measurement. 2.3 Possible Improvements The simulation could be improved in the future by using non-gaussian distributions for the motion model and measurement noise. This may better highlight the strengths of the particle filter over similar Kalman filter approaches. The simulation may also be improved by creating a more complex environment for the robot to navigate. This would be a more realistic example of particle filter usage. 3 Results All simulations are run in a 500x500 pixel world with the robot starting at the center. The position of the initial particles (x, y) are chosen randomly from a uniform distribution where 0 x 500 and 0 y 500. The robot s motion is generated by adjusting the heading of the robot by a randomly chosen value h from a uniform distribution where π 8 h < π 8. The robot is then moved distance x in the direction of its heading where 0 x < 2 ROBOTSPEED. The robot s position is updated on every iteration of the simulation. The following sections contain results and analysis of three simulations. 3.1 Simulation 1 (Baseline) The first simulation is used as a baseline for comparison of other simulations. In this simulation 2000 particles are generated. The measurement error is randomly selected from a uniform distribution [ 5, 5] (N S = 5). The motion model noise is randomly selected from a gaussian distribution where σ = 0.5 ROBOTSPEED (σ M = 0.5). As seen in figure?? the localization estimate quickly reaches a reasonably accurate location fix. The minimum size of the particle cloud is limited by the error in the motion model. 3.2 Simulation 2 (Few Particles) The second simulation uses the same sensor and motion model errors as the first simulation (N S = 5, σ M = 0.5). However this simulation uses a much smaller number of particles (P C = 50). The results can be seen in figure??. 5

6 Figure 1: Simulation 1 (P C = 2000, σ M = 0.5, S N = 5) 6

7 Figure 2: Simulation 2 (P C = 50, σ M = 0.5, S N = 5) 7

8 Figure 3: Simulation 3 (P C = 500, σ M = 0.5, S N = 250) 3.3 Simulation 3 (High Sensor Noise) The third simulation shows an interesting property of the particle filter: even with very high sensor noise the robot can eventually be localized. For this simulation the motion model noise remains the same as the previous simulations (σ M = 0.5) however the sensor noise is increased drastically to S N = 250. This is half the size of the robot s world! As can be seen in figure?? the localization takes much longer than in previous simulations but eventually reaches a result similar to that of the previous simulations. References [1] I. M. Rekleitis, A particle filter tutorial for mobile robot localization, tech. rep., Centre for Intelligent Machines, McGill University, [2] S. Thrun, Particle filters in robotics, in Uncertainty in AI (UAI), [3] H. d.-s. Kaijen Hsiao and J. Miller, Particle filters and their applications, [4] M. J. Laubachf, particle filter demo. 8

9 A Simulator Source Code [linenos=true,stepnumber=10]python../python/particlefilter.py 9

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM 1 Introduction In this assignment you will implement a particle filter to localize your car within a known map. This will

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

AUTONOMOUS SYSTEMS. PROBABILISTIC LOCALIZATION Monte Carlo Localization

AUTONOMOUS SYSTEMS. PROBABILISTIC LOCALIZATION Monte Carlo Localization AUTONOMOUS SYSTEMS PROBABILISTIC LOCALIZATION Monte Carlo Localization Maria Isabel Ribeiro Pedro Lima With revisions introduced by Rodrigo Ventura Instituto Superior Técnico/Instituto de Sistemas e Robótica

More information

Particle Filter Tutorial. Carlos Esteves and Daphne Ippolito. Introduction. Prediction. Update. Resample. November 3, 2016

Particle Filter Tutorial. Carlos Esteves and Daphne Ippolito. Introduction. Prediction. Update. Resample. November 3, 2016 November 3, 2016 Outline 1 2 3 4 Outline 1 2 3 4 The Following material is from Ioannis Rekleitis "A for Mobile Robot Localization" Outline 1 2 3 4 Motion model model motion step as rotation, followed

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Particle Filter Localization

Particle Filter Localization E190Q Autonomous Mobile Robots Lab 4 Particle Filter Localization INTRODUCTION Determining a robots position in a global coordinate frame is one of the most important and difficult problems to overcome

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta 1 Monte Carlo Localization using Dynamically Expanding Occupancy Grids Karan M. Gupta Agenda Introduction Occupancy Grids Sonar Sensor Model Dynamically Expanding Occupancy Grids Monte Carlo Localization

More information

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Simon Thompson and Satoshi Kagami Digital Human Research Center National Institute of Advanced

More information

F1/10 th Autonomous Racing. Localization. Nischal K N

F1/10 th Autonomous Racing. Localization. Nischal K N F1/10 th Autonomous Racing Localization Nischal K N System Overview Mapping Hector Mapping Localization Path Planning Control System Overview Mapping Hector Mapping Localization Adaptive Monte Carlo Localization

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms L10. PARTICLE FILTERING CONTINUED NA568 Mobile Robotics: Methods & Algorithms Gaussian Filters The Kalman filter and its variants can only model (unimodal) Gaussian distributions Courtesy: K. Arras Motivation

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology Basics of Localization, Mapping and SLAM Jari Saarinen Aalto University Department of Automation and systems Technology Content Introduction to Problem (s) Localization A few basic equations Dead Reckoning

More information

Final Exam Practice Fall Semester, 2012

Final Exam Practice Fall Semester, 2012 COS 495 - Autonomous Robot Navigation Final Exam Practice Fall Semester, 2012 Duration: Total Marks: 70 Closed Book 2 hours Start Time: End Time: By signing this exam, I agree to the honor code Name: Signature:

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Charged Particle Reconstruction in HIC Detectors

Charged Particle Reconstruction in HIC Detectors Charged Particle Reconstruction in HIC Detectors Ralf-Arno Tripolt, Qiyan Li [http://de.wikipedia.org/wiki/marienburg_(mosel)] H-QM Lecture Week on Introduction to Heavy Ion Physics Kloster Marienburg/Mosel,

More information

Localization of Multiple Robots with Simple Sensors

Localization of Multiple Robots with Simple Sensors Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada July 2005 Localization of Multiple Robots with Simple Sensors Mike Peasgood and Christopher Clark Lab

More information

Design and Implementation of a Target Tracker Final Report

Design and Implementation of a Target Tracker Final Report Design and Implementation of a Target Tracker Final Report JTracker Development Team Team Members: Ly Luu Tim Lindblom Danny Peterson Nicholas Rancourt Date: May 5, 2006 Technical Advisor: Prof. Antonia

More information

Kaijen Hsiao. Part A: Topics of Fascination

Kaijen Hsiao. Part A: Topics of Fascination Kaijen Hsiao Part A: Topics of Fascination 1) I am primarily interested in SLAM. I plan to do my project on an application of SLAM, and thus I am interested not only in the method we learned about in class,

More information

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING By Michael Lowney Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Minh Do May 2015

More information

Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform. Project Proposal. Cognitive Robotics, Spring 2005

Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform. Project Proposal. Cognitive Robotics, Spring 2005 Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform Project Proposal Cognitive Robotics, Spring 2005 Kaijen Hsiao Henry de Plinval Jason Miller Introduction In the context

More information

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping CSE-571 Probabilistic Robotics Fast-SLAM Mapping Particle Filters Represent belief by random samples Estimation of non-gaussian, nonlinear processes Sampling Importance Resampling (SIR) principle Draw

More information

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Particle Filtering CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Particle Filtering 1 / 28 Introduction Introduction

More information

What is the SLAM problem?

What is the SLAM problem? SLAM Tutorial Slides by Marios Xanthidis, C. Stachniss, P. Allen, C. Fermuller Paul Furgale, Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart What is the SLAM problem? The

More information

7630 Autonomous Robotics Probabilities for Robotics

7630 Autonomous Robotics Probabilities for Robotics 7630 Autonomous Robotics Probabilities for Robotics Basics of probability theory The Bayes-Filter Introduction to localization problems Monte-Carlo-Localization Based on material from R. Triebel, R. Kästner

More information

Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation

Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation 242 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001 Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation José E. Guivant and Eduardo

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Evaluation

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Learning from Data: Adaptive Basis Functions

Learning from Data: Adaptive Basis Functions Learning from Data: Adaptive Basis Functions November 21, 2005 http://www.anc.ed.ac.uk/ amos/lfd/ Neural Networks Hidden to output layer - a linear parameter model But adapt the features of the model.

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang Localization, Mapping and Exploration with Multiple Robots Dr. Daisy Tang Two Presentations A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping, by Thrun, Burgard

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

CSE 490R P3 - Model Learning and MPPI Due date: Sunday, Feb 28-11:59 PM

CSE 490R P3 - Model Learning and MPPI Due date: Sunday, Feb 28-11:59 PM CSE 490R P3 - Model Learning and MPPI Due date: Sunday, Feb 28-11:59 PM 1 Introduction In this homework, we revisit the concept of local control for robot navigation, as well as integrate our local controller

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Motion Models (cont) 1 3/15/2018

Motion Models (cont) 1 3/15/2018 Motion Models (cont) 1 3/15/018 Computing the Density to compute,, and use the appropriate probability density function; i.e., for zeromean Gaussian noise: 3/15/018 Sampling from the Velocity Motion Model

More information

ECE 497 Introduction to Mobile Robotics Spring 09-10

ECE 497 Introduction to Mobile Robotics Spring 09-10 Final Project: Localization and Map Making Lectures: 8-1 and 8-2 Reading: Ch. 11, Introduction to AI Robotics (Demonstrations due in class on Monday and Tuesday of Week 10) (Competition in Kahn room on

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Sebastian Lembcke SLAM 1 / 29 MIN Faculty Department of Informatics Simultaneous Localization and Mapping Visual Loop-Closure Detection University of Hamburg Faculty of Mathematics, Informatics and Natural

More information

BBR Progress Report 006: Autonomous 2-D Mapping of a Building Floor

BBR Progress Report 006: Autonomous 2-D Mapping of a Building Floor BBR Progress Report 006: Autonomous 2-D Mapping of a Building Floor Andy Sayler & Constantin Berzan November 30, 2010 Abstract In the past two weeks, we implemented and tested landmark extraction based

More information

Project 1 : Dead Reckoning and Tracking

Project 1 : Dead Reckoning and Tracking CS3630 Spring 2012 Project 1 : Dead Reckoning and Tracking Group : Wayward Sons Sameer Ansari, David Bernal, Tommy Kazenstein 2/8/2012 Wayward Sons CS3630 Spring 12 Project 1 Page 2 of 12 CS 3630 (Spring

More information

Image Processing

Image Processing Image Processing 159.731 Canny Edge Detection Report Syed Irfanullah, Azeezullah 00297844 Danh Anh Huynh 02136047 1 Canny Edge Detection INTRODUCTION Edges Edges characterize boundaries and are therefore

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Supervisor: A/Prof Lindsay Kleeman

Supervisor: A/Prof Lindsay Kleeman AIR HOCKEY TABLE James Osborne Eric Rivera Supervisor: A/Prof Lindsay Kleeman PROJECT REQUIREMENTS Track puck movement with an analog video camera Predict where the puck will go, and move the paddles accordingly

More information

Offline Simultaneous Localization and Mapping (SLAM) using Miniature Robots

Offline Simultaneous Localization and Mapping (SLAM) using Miniature Robots Offline Simultaneous Localization and Mapping (SLAM) using Miniature Robots Objectives SLAM approaches SLAM for ALICE EKF for Navigation Mapping and Network Modeling Test results Philipp Schaer and Adrian

More information

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little + Presented by Matt Loper CS296-3: Robot Learning and Autonomy Brown

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms L17. OCCUPANCY MAPS NA568 Mobile Robotics: Methods & Algorithms Today s Topic Why Occupancy Maps? Bayes Binary Filters Log-odds Occupancy Maps Inverse sensor model Learning inverse sensor model ML map

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics SLAM Grid-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 The SLAM Problem SLAM stands for simultaneous localization

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make). Webots simulation software. Webots User Guide Webots Reference Manual. The

More information

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be Robot Learning Winter Semester 22/3, Homework 2 Prof. Dr. J. Peters, M.Eng. O. Kroemer, M. Sc. H. van Hoof Due date: Wed 6 Jan. 23 Note: Please fill in the solution on this sheet but add sheets for the

More information

1 Lab 5: Particle Swarm Optimization

1 Lab 5: Particle Swarm Optimization 1 Lab 5: Particle Swarm Optimization This laboratory requires the following: (The development tools are installed in GR B0 01 already): C development tools (gcc, make, etc.) Webots simulation software

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking

CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking DUE Tues, November 25-11:55pm Here you are going to experiment with a particle filter tracker such as was described in class. Recall that

More information

IMU and Encoders. Team project Robocon 2016

IMU and Encoders. Team project Robocon 2016 IMU and Encoders Team project Robocon 2016 Harsh Sinha, 14265, harshsin@iitk.ac.in Deepak Gangwar, 14208, dgangwar@iitk.ac.in Swati Gupta, 14742, swatig@iitk.ac.in March 17 th 2016 IMU and Encoders Module

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

PEER Report Addendum.

PEER Report Addendum. PEER Report 2017-03 Addendum. The authors recommend the replacement of Section 3.5.1 and Table 3.15 with the content of this Addendum. Consequently, the recommendation is to replace the 13 models and their

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#05 (Wednesday, September 12) Mapping

Statistical Techniques in Robotics (16-831, F12) Lecture#05 (Wednesday, September 12) Mapping Statistical Techniques in Robotics (16-831, F12) Lecture#05 (Wednesday, September 12) Mapping Lecturer: Alex Styler (in for Drew Bagnell) Scribe: Victor Hwang 1 1 Occupancy Mapping When solving the localization

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies"

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing Larry Matthies ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies" lhm@jpl.nasa.gov, 818-354-3722" Announcements" First homework grading is done! Second homework is due

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make), already installed in GR B001 Webots simulation software Webots User Guide Webots

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Experiments with Edge Detection using One-dimensional Surface Fitting

Experiments with Edge Detection using One-dimensional Surface Fitting Experiments with Edge Detection using One-dimensional Surface Fitting Gabor Terei, Jorge Luis Nunes e Silva Brito The Ohio State University, Department of Geodetic Science and Surveying 1958 Neil Avenue,

More information

Monte Carlo Localization

Monte Carlo Localization Monte Carlo Localization P. Hiemstra & A. Nederveen August 24, 2007 Abstract In this paper we investigate robot localization with the Augmented Monte Carlo Localization (amcl) algorithm. The goal of the

More information

Attentional Based Multiple-Object Tracking

Attentional Based Multiple-Object Tracking Attentional Based Multiple-Object Tracking Mark Calafut Stanford University mcalafut@stanford.edu Abstract This paper investigates the attentional based tracking framework of Bazzani et al. (2011) and

More information

Computational Optical Imaging - Optique Numerique. -- Multiple View Geometry and Stereo --

Computational Optical Imaging - Optique Numerique. -- Multiple View Geometry and Stereo -- Computational Optical Imaging - Optique Numerique -- Multiple View Geometry and Stereo -- Winter 2013 Ivo Ihrke with slides by Thorsten Thormaehlen Feature Detection and Matching Wide-Baseline-Matching

More information

Occupancy Grid Based Path Planning and Terrain Mapping Scheme for Autonomous Mobile Robots

Occupancy Grid Based Path Planning and Terrain Mapping Scheme for Autonomous Mobile Robots IJCTA, 8(3), 2015, pp. 1053-1061 International Science Press Occupancy Grid Based Path Planning and Terrain Mapping Scheme for Autonomous Mobile Robots C. Saranya 1, Manju Unnikrishnan 2, S. Akbar Ali

More information

An Integrated Particle Filter and Potential Field Method Applied To Cooperative Multi-Robot Target Tracking

An Integrated Particle Filter and Potential Field Method Applied To Cooperative Multi-Robot Target Tracking An Integrated Particle Filter and Potential Field Method Applied To Cooperative Multi-Robot Target Tracking Roozbeh Mottaghi, Richard Vaughan Autonomy Laboratory, School of Computing Science Simon Fraser

More information

Adapting the Sample Size in Particle Filters Through KLD-Sampling

Adapting the Sample Size in Particle Filters Through KLD-Sampling Adapting the Sample Size in Particle Filters Through KLD-Sampling Dieter Fox Department of Computer Science & Engineering University of Washington Seattle, WA 98195 Email: fox@cs.washington.edu Abstract

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Final Report: Dynamic Dubins-curve based RRT Motion Planning for Differential Constrain Robot

Final Report: Dynamic Dubins-curve based RRT Motion Planning for Differential Constrain Robot Final Report: Dynamic Dubins-curve based RRT Motion Planning for Differential Constrain Robot Abstract This project develops a sample-based motion-planning algorithm for robot with differential constraints.

More information

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Sebastian Scherer, Young-Woo Seo, and Prasanna Velagapudi October 16, 2007 Robotics Institute Carnegie

More information

UNIVERSITÀ DEGLI STUDI DI GENOVA MASTER S THESIS

UNIVERSITÀ DEGLI STUDI DI GENOVA MASTER S THESIS UNIVERSITÀ DEGLI STUDI DI GENOVA MASTER S THESIS Integrated Cooperative SLAM with Visual Odometry within teams of autonomous planetary exploration rovers Author: Ekaterina Peshkova Supervisors: Giuseppe

More information

Adapting the Sample Size in Particle Filters Through KLD-Sampling

Adapting the Sample Size in Particle Filters Through KLD-Sampling Adapting the Sample Size in Particle Filters Through KLD-Sampling Dieter Fox Department of Computer Science & Engineering University of Washington Seattle, WA 98195 Email: fox@cs.washington.edu Abstract

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Reference Tracking System for a Mobile Skid Steer Robot (Version 1.00)

Reference Tracking System for a Mobile Skid Steer Robot (Version 1.00) CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY IN PRAGUE Reference Tracking System for a Mobile Skid Steer Robot (Version 1.00) Vladimír Kubelka, Vladimír Burian, Přemysl Kafka kubelka.vladimir@fel.cvut.cz

More information

Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Module 7 VIDEO CODING AND MOTION ESTIMATION Version ECE IIT, Kharagpur Lesson Block based motion estimation algorithms Version ECE IIT, Kharagpur Lesson Objectives At the end of this less, the students

More information

From Personal Computers to Personal Robots

From Personal Computers to Personal Robots From Personal Computers to Personal Robots Challenges in Computer Science Education Nikolaus Correll Department of Computer Science University of Colorado at Boulder Mechanism vs. Computer Unimate (1961)

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Dec. 4, 2008 Harpreet S. Sawhney hsawhney@sarnoff.com Plan IBR / Rendering applications of motion / pose

More information