An Adaptive Policy Management Approach to Resolving BGP Policy Conflicts

Size: px
Start display at page:

Download "An Adaptive Policy Management Approach to Resolving BGP Policy Conflicts"

Transcription

1 An Adaptive Policy Management Approach to Resolving BGP Policy Conflicts Ibrahim Matta Computer Science Boston University Joint work with: Selma Yilmaz Cisco Systems, CA 1/36

2 Border Gateway Protocol (BGP) Is the de facto inter-domain routing protocol of today s Internet Is policy-based allows ASes to share reachability information according to policies Import policy Accept routes from AS2 for destination A Export policy Always share routes with AS1 2/36

3 Border Gateway Protocol (BGP) BGP does not necessarily solve shortest path routing problem Best path is the path with the highest local preference value assigned by locally defined policies AS1 AS2 AS3 AS4 Path (AS3 AS2 AS1) may have higher preference value than (AS4 AS1) AS5 3/36

4 Problems with Policy-based Routing Collection of locally well-configured policies may cause global conflicts: BGP diverges ASes exchange routing messages indefinitely In this talk, focus on policy-induced oscillations only First shown by Varadhan et al. [USC Technical Report 1996] Statically checking for BGP convergence is NPcomplete [Griffin et al. Sigcomm 1999] 4/36

5 Abstract Model of BGP [Griffin Infocom 2] Stable Paths Problem (SPP) represents the static semantics of BGP Simple Path Vector Protocol (SPVP) represents the dynamic semantics of BGP is a distributed algorithm solving SPP An SPP is called safe if SPVP always converges 5/36

6 Stable Paths Problem (SPP) Nodes represent BGP routers, edges represent BGP sessions Node represents destination Each node has a set of permitted paths Each node v has a ranking function, λ v Example of an SPP instance: Most preferred Least preferred /36

7 Stable Paths Problem (SPP) An SPP instance may have multiple solutions SPVPmay diverge no solution SPVP diverges a unique solution does not mean that SPVP converges to that solution 2 Safe /36

8 Problems with Policy-based Routing An example of divergence (dispute wheel): Most preferred 13 Least preferred / / 1 1/1/1 2/1/2 1/1/1 2/2/1 1/2/2 3 1/1/1 2 8/36

9 Related Work & Talk Outline Static Solution: Gao&Rexford Algorithm [Infocom1] Dynamic Solutions: 1) SPVP Algorithm [Griffin et al. Infocom] 2) Cobb&Musunuri Algorithm [Globecomm4] Focus on dynamic solutions Our scheme (APM) overcomes prior limitations Convergence analysis of APM Simulation comparison 9/36 Conclusion

10 SPVP Algorithm history of path change events carried in Update messages If node u changes its current path from P old to P new If P new is more preferred than P old, path change event is (+, P new ) If P old is more preferred than P new, path change event is (-, P old ) Path whose adoption creates a cycle is suppressed Disadvantage History may get very long, may reveal preferences We want a local solution 1/36

11 SPVP SPVP may lead to simultaneous path eliminations Stabilizes to unreachable destination for all nodes We want to minimize path eliminations step node best path path assignment 1 (1) (+1) 2 (2) (+2) 3 (3) (+3) 1 1 (13) (+13)(+3) 2 (21) (+21)(+1) 3 (32) (+32)(+2) 2 1 (1) (-13)(+32)(+2) 2 (2) (-21)(+13)(+3) 3 (3) (-32)(+21)(+1) 3 1 (13) (+13)(-32)(+21)(+1) 2 (21) (+21)(-13)(+32)(+2) 3 (32) (+32)(-21)(+13)(+3) 4 1 (1) (-13)(+32)(-21)(+13)(+3) 2 (2) (-21)(+13)(-32)(+21)(+1) 3 (3) (-32) (+21)(-13)(+32)(+2) 5 1 epsilon 2 epsilon 3 epsilon 11/36

12 Cobb&Musunuri cost of node increased whenever its new path has lower rank If there is divergence, costs grow Costs are included in Update messages Node rejects better path if cost of next-hop node exceeds a threshold Disadvantages Aggregates paths through same node May lead to simultaneous path rejections We want to minimize path eliminations Re-setting costs may re-introduce resolved conflicts We want gradual probing 12/36

13 Cobb&Musunuri Cobb&Musunuri may lead to unnecessary path eliminations Assume threshold= All nodes stabilize to their lowest preferred paths We want to minimize loss in preference step node count best path 1 (1) 2 (2) 3 (3) 1 1 (13) 2 (21) 3 (32) (1) 2 1 (2) 3 1 (3) (13) 2 1 (21) 3 1 (32) (1) 2 2 (2) 3 2 (3) 5 1 won t use (13) since count(3) 2 2 won t use (21) since count(2) 2 3 won t use (13) since count(3) 2 13/36

14 Our Adaptive Policy Management (APM) Each node involved in a conflict observes route flaps Not every advertisement received is changing Safe path Make the safe path highest preferred path to stop oscillation (rank change) Each node keeps local history to detect flapping paths Countassociated with paths in local history No change to BGP messages Perform rank change probabilistically 14/36

15 Our APM in action Assume threshold= count(2) & (1) & (3) > min threshold, change rank with prob. α Direct paths are safe Node 2 stabilizes to its higher preferred path step node best path local history(path,count) path preference 1 (1) ((1),1) (13)>(1) 2 (2 ((2),1) (21)>(2) 3 (3) ((3),1) (32)>(3) 1 1 (13) ((13),1),((1),1) (13)>(1) 2 (21) ((21),1),((2),1) (21)>(2) 3 (32) ((32),1), ((3),1) (32)>(3) 2 1 (1) ((13),1), ((1),2) (13)>(1) 2 (2) ((21),1), ((2),2) (21)>(2) 3 (3) ((32),1), ((3),2) (32)>(3) 3 1 (13) ((13),2), ((1),2) (13)>(1) 2 (21) ((21),2), ((2),2) (21)>(2) 3 (32) ((32),2), ((3),2) (32)>(3) 4 1 (2) ((13),2), ((1),3) (1)>(13) 2 (1) ((21),2), ((2),3) (21)>(2) 3 (3) ((32),2), ((3),3) (32)>(3) 5 1 (1) (1)>(13) 2 (21) (21)>(2) 3 (3) (32)>(3) 15/36

16 Adaptive Policy Management (APM) count max_threshold min_threshold time Policy conflict free phase Policy conflict avoidance phase Policy conflict control phase max_threshold Due to probabilistic adjustment of path preferences, conflict may remain unresolved If count> max_threshold, suppress the path min_threshold To distinguish between temporary and persistent oscillations Each node independently classifies the state of the network by comparing count values against thresholds 16/36

17 Restoring Local Preferences with APM When the system stabilizes, peers exchange only keepalive messages Nodes use this as indication of convergence Probe the state for improvement, i.e. restoration, in their current policies Probabilistically restore local preference values May introduce instability back to system Use smaller probability β < α It s a feedback control system! E.g. recall TCP congestion operation: timeout vs. multiplicative decrease / linear increase (avoidance) 17/36

18 Convergence Analysis of APM Different path orderings at the nodes specify different states of the network and define different policies Goal: Ignoring recovery, show that starting from an arbitrary state of the system, APM converges to a stable state within a finite number of steps Proof idea: Use sub-stability property of the chosen paths 18/36

19 Definitions (assuming single policy conflict) Conflict-free node is a node which is not involved in any policy conflict and stabilized on its best path Non-flapping (stable) path P=(v,...,destination) is the best path of a conflict-free node v, and this path does not change over time 19/36

20 More Definitions (assuming single policy conflict) Observable safe path P=<u,v,, destination> of a node u is non-flapping path of peer v of node u all nodes along this path are conflict-free Conflicting safe-alternative node is involved in a policy conflict and observes a safe path which is not the most preferred path Conflicting node is involved in a policy conflict, and does not observe any safe path 2/36

21 Convergence Analysis of APM Example: Node 1: conflicting safe-alternative node with safe path (15) Node 2: conflicting safe-alternative node with safe path (25) Node 3: conflicting safe-alternative node with safe path (35) Node 4: conflicting node with no safe path Node 5: conflict-free node with stable path (5) Node 6: conflicting safe-alternative node with safe path (65) Conflicting safe-alternative nodes can break the conflict by holding onto their safe paths, i.e. path rank change If node 2 changes its path preference to prefer (25) more than (215): node 2 becomes conflict-free node path (25) becomes stable path path (425) becomes safe path at node 4 21/36..

22 Multiple Conflicts Example: Nodes in conflict 1 are: 1,2,3 Nodes in conflict 2 are: 4,5, Innermost conflict along path (35) is conflict 2 22/36

23 More Definitions (multiple policy conflicts) Innermost conflict along path P: may be involved in conflict C k-1 may be involved in conflict C i+1 Path P= u k u k-1 u i+1 u i u i-1 u 2 u 1 Conflict-free nodes involved in conflict C i C i is the innermost conflict along P Inactive node with observable safe path is a node that is not an active node on a dispute wheel, and its most preferred path is an observable safe path 23/36

24 Convergence Analysis of APM Theorem: During the execution of APM, size of the set of nodes that are conflict-free increases monotonically Proof: S = set of nodes that are conflict-free and stabilized on their paths S forms a routing tree rooted at the destination, and grows as the nodes in S advertise their chosen paths Using induction, show that S grows monotonically: Basis: S={}. Destination is added. Hypothesis: At step k, assume size of S is n, and up to this point S grew monotonically. Induction Step: Show that at step (k+1), size of S > n. 24/36

25 Convergence Analysis of APM At step (k+1): v advertises P v to u u v p v S with n nodes already stabilized on their paths Case I: At step k, u was a conflicting node and observing flap P1,P2,P1,P2.. Assume: u prefers P1 =(u,w)p w over P2 =(u,v)p v At step (k+1) one of the following occurs: a) v is in S and stabilized on P v, but w is not in S b) w is in S and stabilized on P w, but v is not in S c) both v and w are in S and stabilized on P v and P w, resp. 25/36

26 Convergence Analysis of APM At step (k+1): v advertises P v to u u v p v S with n nodes already stabilized on their paths Case I(a): u prefers path via w, but w is not in S - (u v)p v is observable safe path at node u Ex: u becomes conflicting safe-alternative node - u performs rank change and stabilizes on (u v)p v Node 2 advertises (2) to node S /36

27 Convergence Analysis of APM Case I(a) con t: At this step, inactive nodes with observable safe paths also enters S iteratively Ex: Node 4 performs rank change, stabilizes on (42) and enters S. At this point, node 6 becomes an inactive node with observable safe path (642) and enters S as well Node 2 advertises (2) to node S /36

28 At step (k+1): Convergence Analysis of APM Case I(b): u prefers path via w, and w is in S, v is not Ex using previous network: Node 5 advertises (5) to node S Node 4 stabilizes on (45) and becomes conflict-free 28/36

29 At step (k+1): Convergence Analysis of APM Case I(c): u prefers path via w, and both w and v are in S Node 5 and node 2 advertise (5) and (2), respectively, to node S Node 4 stabilizes on its most preferred path (45) and becomes conflict-free 29/36

30 Convergence Analysis of APM At step (k+1): v advertises P v to u u v p v S with n nodes already stabilized to their paths Case II: none of the advertised paths is permitted Ex: Node 5 advertises (56) and node 2 advertises (21) to node S Node 4 becomes conflict-free converging to epsilon 3/36

31 Simulation Results Compared performances of APM, SPVP, Cobb&Musunuri, BGP4 using SSFNet simulator APM versions min_threshold=2, max_threshold=3, ka_threshold=6 min_threshold=2, max_threshold=1, ka_threshold=6 Cobb&Musunuri versions cost_threshold=3 cost_threshold=1 SPVP suppress the path only after seeing same conflict twice Buffer size=5bytes; routing packets are given priority over data packets when there is congestion 31/36

32 Simulation Results Topology Path Rankings 32/36

33 Simulation Results Metric: Percentage of the nodes that cannot reach destination SPVP and Cobb&Musunuri algorithm eliminate high number of paths while enforcing stability APM with high max_threshold minimizes path eliminations at min loss in preference value (not shown) 33/36

34 Simulation Results APM has best Metric: Power = throughput/delay performance due to minimum number of path eliminations and small update messages SPVP has longest update messages and eliminates 43% of the paths BGP4 does not cause permanent path elimination 34/36

35 APM Conclusion is a dynamic distributed algorithm uses only local history allows ASes to adapt to the current state of the network, either conflict free or potentially conflicting can catch and resolve policy conflicts in heterogeneous settings 35/36

36 Future Work APM adds machinery to update local policies, which is not visible to policy writers Increase transparency Inform user of policy changes Use APM only to identify and characterize conflicts and report findings to user for manual fix Allow user to specify goal-oriented adaptation Some ASes may cheat by not following APM even when they are aware of a persistent oscillation Propose incentives to improve co-operation among ASes to deploy APM Prototype implementation 36/36

An Adaptive Policy Management Approach to BGP Convergence

An Adaptive Policy Management Approach to BGP Convergence 1 An Adaptive Policy Management Approach to BGP Convergence SELMA YILMAZ IBRAHIM MATTA Computer Science Department Boston University Boston, MA 2215, USA {selma,matta}@cs.bu.edu Technical Report BUCS-TR-25-28

More information

Comprehensive Solution for Anomaly-free BGP

Comprehensive Solution for Anomaly-free BGP Comprehensive Solution for Anomaly-free BGP Ravi Musunuri, Jorge A. Cobb Department of Computer Science, The University of Texas at Dallas, Richardson, TX-7083-0688 musunuri, cobb @utdallas.edu Abstract.

More information

Dynamics of Hot-Potato Routing in IP Networks

Dynamics of Hot-Potato Routing in IP Networks Dynamics of Hot-Potato Routing in IP Networks Jennifer Rexford AT&T Labs Research http://www.research.att.com/~jrex Joint work with Renata Teixeira (UCSD), Aman Shaikh (AT&T), and Timothy Griffin (Intel)

More information

Some Foundational Problems in Interdomain Routing

Some Foundational Problems in Interdomain Routing Some Foundational Problems in Interdomain Routing Nick Feamster, Hari Balakrishnan M.I.T. Computer Science and Artificial Intelligence Laboratory Jennifer Rexford AT&T Labs -- Research The state of interdomain

More information

The Border Gateway Protocol and its Convergence Properties

The Border Gateway Protocol and its Convergence Properties The Border Gateway Protocol and its Convergence Properties Ioana Kalaydjieva (kalaydji@in.tum.de) Seminar Internet Routing, Technical University Munich, June, 2003 Abstract The Border Gateway Protocol

More information

Internet inter-as routing: BGP

Internet inter-as routing: BGP Internet inter-as routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate the reachability

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano June 14, 2005 Outline Hierarchical routing BGP Routing Routing Goal: each router u

More information

Fairness Example: high priority for nearby stations Optimality Efficiency overhead

Fairness Example: high priority for nearby stations Optimality Efficiency overhead Routing Requirements: Correctness Simplicity Robustness Under localized failures and overloads Stability React too slow or too fast Fairness Example: high priority for nearby stations Optimality Efficiency

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano December 10, 2014 Outline Hierarchical routing BGP Routing 2005 2007 Antonio Carzaniga

More information

BGP Route Flap Damping Algorithms

BGP Route Flap Damping Algorithms BGP Route Flap Damping Algorithms Steve Shen and Ljiljana Trajković {wshen, ljilja}@cs.sfu.ca Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University Roadmap Introduction to

More information

Inter-Domain Routing: BGP II

Inter-Domain Routing: BGP II Inter-Domain Routing: BGP II Brad Karp UCL Computer Science (drawn mostly from lecture notes by Hari Balakrishnan and Nick Feamster, MIT) CS 05/GZ01 4 th December 2014 BGP Protocol (cont d) BGP doesn t

More information

On the Impact of Route Processing and MRAI Timers on BGP Convergence Times

On the Impact of Route Processing and MRAI Timers on BGP Convergence Times On the Impact of Route Processing and MRAI Timers on BGP Convergence Times Shivani Deshpande and Biplab Sikdar Department of ECSE, Rensselaer Polytechnic Institute, Troy, NY 12180 Abstract Fast convergence

More information

Inter-Domain Routing: BGP II

Inter-Domain Routing: BGP II Inter-Domain Routing: BGP II Mark Handley UCL Computer Science CS 3035/GZ01 BGP Protocol (cont d) BGP doesn t chiefly aim to compute shortest paths (or minimize other metric, as do DV, LS) Chief purpose

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 15 BGP Spring 2018 Rachit Agarwal Autonomous System (AS) or Domain Region of a network under a single administrative entity Border Routers Interior

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

Practical Verification Techniques for Wide-Area Routing

Practical Verification Techniques for Wide-Area Routing Practical Verification Techniques for Wide-Area Routing Nick Feamster M.I.T. Computer Science and Artificial Intelligence Laboratory feamster@lcs.mit.edu http://nms.lcs.mit.edu/bgp/ (Thanks to Hari Balakrishnan

More information

Why dynamic route? (1)

Why dynamic route? (1) Routing Why dynamic route? (1) Static route is ok only when Network is small There is a single connection point to other network No redundant route 2 Why dynamic route? (2) Dynamic Routing Routers update

More information

Configuring BGP. Cisco s BGP Implementation

Configuring BGP. Cisco s BGP Implementation Configuring BGP This chapter describes how to configure Border Gateway Protocol (BGP). For a complete description of the BGP commands in this chapter, refer to the BGP s chapter of the Network Protocols

More information

Towards the Design of Robust Inter-domain Routing Protocols

Towards the Design of Robust Inter-domain Routing Protocols Towards the Design of Robust Inter-domain Routing Protocols Aaron D. Jaggard Dept. of Mathematics, Tulane University adj@math.tulane.edu Vijay Ramachandran Dept. of Computer Science, Yale University vijayr@cs.yale.edu

More information

Configuring BGP community 43 Configuring a BGP route reflector 44 Configuring a BGP confederation 44 Configuring BGP GR 45 Enabling Guard route

Configuring BGP community 43 Configuring a BGP route reflector 44 Configuring a BGP confederation 44 Configuring BGP GR 45 Enabling Guard route Contents Configuring BGP 1 Overview 1 BGP speaker and BGP peer 1 BGP message types 1 BGP path attributes 2 BGP route selection 6 BGP route advertisement rules 6 BGP load balancing 6 Settlements for problems

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

Towards a Logic for Wide-Area Internet Routing

Towards a Logic for Wide-Area Internet Routing Towards a Logic for Wide-Area Internet Routing Nick Feamster and Hari Balakrishnan M.I.T. Computer Science and Artificial Intelligence Laboratory {feamster,hari}@lcs.mit.edu ; #, $. ', - -, * - ' * 4 *

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea CS 640 2 Internet Structure Today CS 640 3 Route Propagation in the Internet Autonomous System (AS) corresponds to

More information

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella CS 640: Introduction to Computer Networks Aditya Akella Lecture 11 - Inter-Domain Routing - BGP (Border Gateway Protocol) Intra-domain routing The Story So Far Routing protocols generate the forwarding

More information

Outline Computer Networking. Inter and Intra-Domain Routing. Internet s Area Hierarchy Routing hierarchy. Internet structure

Outline Computer Networking. Inter and Intra-Domain Routing. Internet s Area Hierarchy Routing hierarchy. Internet structure Outline 15-441 15-441 Computer Networking 15-641 Lecture 10: Inter-Domain outing Border Gateway Protocol -BGP Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 outing hierarchy Internet structure

More information

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355 BGP Commands Use the commands in this chapter to configure and monitor Border Gateway Protocol (BGP). For BGP configuration information and examples, refer to the Configuring BGP chapter of the Network

More information

Important Lessons From Last Lecture Computer Networking. Outline. Routing Review. Routing hierarchy. Internet structure. External BGP (E-BGP)

Important Lessons From Last Lecture Computer Networking. Outline. Routing Review. Routing hierarchy. Internet structure. External BGP (E-BGP) Important Lessons From Last Lecture 15-441 Computer Networking Inter-Domain outing BGP (Border Gateway Protocol) Every router needs to be able to forward towards any destination Forwarding table must be

More information

Configuration prerequisites 45 Configuring BGP community 45 Configuring a BGP route reflector 46 Configuring a BGP confederation 46 Configuring BGP

Configuration prerequisites 45 Configuring BGP community 45 Configuring a BGP route reflector 46 Configuring a BGP confederation 46 Configuring BGP Contents Configuring BGP 1 Overview 1 BGP speaker and BGP peer 1 BGP message types 1 BGP path attributes 2 BGP route selection 6 BGP route advertisement rules 6 BGP load balancing 6 Settlements for problems

More information

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS BLM696 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS Prof. Dr. Hasan Hüseyin BALIK (7 th Week) 7. Routing 7.Outline Routing in Packet-Switching Networks Examples: Routing in ARPANET Internet Routing Protocols

More information

BGP Route Flap Damping Algorithms

BGP Route Flap Damping Algorithms BGP Route Flap Damping Algorithms Wei Shen and Ljiljana Trajković * Simon Fraser University Vancouver, British Columbia, Canada {wshen, ljilja}@cs.sfu.ca Keywords: Routing protocols, BGP, route flap damping,

More information

BGP Route Flap Damping Algorithms

BGP Route Flap Damping Algorithms BGP Route Flap Damping Algorithms Wei Steve Shen wshen@cs.sfu.ca Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University Roadmap Introduction to Route Flap Damping (RFD) ns-2

More information

BGP. BGP Overview. Formats of BGP Messages. I. Header

BGP. BGP Overview. Formats of BGP Messages. I. Header Overview Three early versions of are -1 (RFC1105), -2 (RFC1163) and -3 (RFC1267). The current version in use is -4 (RFC1771). -4 is rapidly becoming the defacto Internet exterior routing protocol standard

More information

Operation Manual BGP. Table of Contents

Operation Manual BGP. Table of Contents Table of Contents Table of Contents... 1-1 1.1 BGP/MBGP Overview... 1-1 1.1.1 Introduction to BGP... 1-1 1.1.2 BGP Message Types... 1-2 1.1.3 BGP Routing Mechanism... 1-2 1.1.4 MBGP... 1-3 1.1.5 BGP Peer

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

Routing Unicast routing protocols

Routing Unicast routing protocols Routing Unicast routing protocols Jens A Andersson Electrical and Information Technology R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 10 R5 1 Router A router is a type

More information

TELE 301 Network Management

TELE 301 Network Management TELE 301 Network Management Lecture 24: Exterior Routing and BGP Haibo Zhang Computer Science, University of Otago TELE301 Lecture 16: Remote Terminal Services 1 Today s Focus How routing between different

More information

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Inter-AS routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Chapter 4:

More information

PART III. Implementing Inter-Network Relationships with BGP

PART III. Implementing Inter-Network Relationships with BGP PART III Implementing Inter-Network Relationships with BGP ICNP 2002 Routing Protocols Autonomous System BGP-4 BGP = Border Gateway Protocol Is a Policy-Based routing protocol Is the de facto EGP of today

More information

Routing. Jens A Andersson Communication Systems

Routing. Jens A Andersson Communication Systems Routing Jens A Andersson Communication Systems R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 R5 10 Router A router is a type of internetworking device that passes data

More information

Next Lecture: Interdomain Routing : Computer Networking. Outline. Routing Hierarchies BGP

Next Lecture: Interdomain Routing : Computer Networking. Outline. Routing Hierarchies BGP Next Lecture: Interdomain Routing BGP 15-744: Computer Networking L-3 BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet Ooops 2 Outline Need

More information

Protecting an EBGP peer when memory usage reaches level 2 threshold 66 Configuring a large-scale BGP network 67 Configuring BGP community 67

Protecting an EBGP peer when memory usage reaches level 2 threshold 66 Configuring a large-scale BGP network 67 Configuring BGP community 67 Contents Configuring BGP 1 Overview 1 BGP speaker and BGP peer 1 BGP message types 1 BGP path attributes 2 BGP route selection 6 BGP route advertisement rules 6 BGP load balancing 6 Settlements for problems

More information

Università degli Studi di Roma Tre. Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy

Università degli Studi di Roma Tre. Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy R O M A TRE DIA Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy How Stable is Stable in Interdomain Routing: Efficiently Detectable

More information

Internet Routing Protocols Lecture 01 & 02

Internet Routing Protocols Lecture 01 & 02 Internet Routing Protocols Lecture 01 & 02 Advanced Systems Topics Lent Term, 2010 Timothy G. Griffin Computer Lab Cambridge UK Internet Routing Outline Lecture 1 : Inter-domain routing architecture, the

More information

Routing(2) Inter-domain Routing

Routing(2) Inter-domain Routing Routing(2) Inter-domain Routing Information Network I Youki Kadobayashi 1 Outline! Distance vector routing! Link state routing! IGP and EGP Intra-domain routing protocol, inter-domain routing protocol!

More information

Routing(2) Inter-domain Routing

Routing(2) Inter-domain Routing Routing(2) Inter-domain Routing Information Network I Youki Kadobayashi 1 Outline Continued from previous lecture on: Distance vector routing Link state routing IGP and EGP Interior gateway protocol, Exterior

More information

NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS A NEW SUFFICIENT CONDITION FOR ROBUST INTERDOMAIN ROUTING. John Henrik Rogers

NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS A NEW SUFFICIENT CONDITION FOR ROBUST INTERDOMAIN ROUTING. John Henrik Rogers NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS A NEW SUFFICIENT CONDITION FOR ROBUST INTERDOMAIN ROUTING by John Henrik Rogers June 2007 Thesis Advisor: Second Reader: Geoffrey Xie John Gibson Approved

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355 BGP Commands Use the commands in this chapter to configure and monitor Border Gateway Protocol (BGP). For BGP configuration information and examples, refer to the Configuring BGP chapter of the Network

More information

Interdomain Routing Reading: Sections P&D 4.3.{3,4}

Interdomain Routing Reading: Sections P&D 4.3.{3,4} Interdomain Routing Reading: Sections P&D 4.3.{3,4} EE122: Intro to Communication Networks Fall 2006 (MW 4:00-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/

More information

Interdomain Routing. EE122 Fall 2011 Scott Shenker

Interdomain Routing. EE122 Fall 2011 Scott Shenker Interdomain Routing EE122 Fall 2011 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton and UC Berkeley

More information

Policy Disputes In BGP: Analysis, Detection And Proposed Solution

Policy Disputes In BGP: Analysis, Detection And Proposed Solution Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2012 Policy Disputes In BGP: Analysis, Detection And Proposed Solution Baha U. Kazi Ryerson University Follow this and additional

More information

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Autumn 03/04 John Kristoff - DePaul University 1 IPv4 unicast routing All Internet hosts perform basic routing for local net destinations, forward to local host for non-local

More information

ECE 428 Internet Protocols (Network Layer: Layer 3)

ECE 428 Internet Protocols (Network Layer: Layer 3) ECE 428 Internet Protocols (Network Layer: Layer 3) 1 Done so far MAC protocols (with PHYsical layer) Transport bits from one node to another. Key element: Determine WHEN to transmit DLC protocol (running

More information

15-744: Computer Networking BGP

15-744: Computer Networking BGP 15-744: Computer Networking BGP Next Lecture: Interdomain Routing BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet 2 Outline Need for hierarchical

More information

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet Chapter 5: outline 5.1 introduction 5.5 The SDN control 5.2 routing protocols plane link state 5.6 ICMP: The Internet distance vector Control Message 5.3 intra-as routing in Protocol the Internet t 5.7

More information

BGP Path Exploration Damping (PED)

BGP Path Exploration Damping (PED) BGP Path Exploration Damping (PED) Mattia Rossi mrossi@swin.edu.au Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology Outline Introduction Motivation Path Exploration

More information

Routing part 2. Electrical and Information Technology

Routing part 2. Electrical and Information Technology Routing part 2 Jens A Andersson Electrical and Information Technology Routing Introduction Inside the Router Unicast Routing Intra Domain Routing Inter Domain Routing MANET and AdHoc routing Multicast

More information

Link State Routing & Inter-Domain Routing

Link State Routing & Inter-Domain Routing Link State Routing & Inter-Domain Routing CS640, 2015-02-26 Announcements Assignment #2 is due Tuesday Overview Link state routing Internet structure Border Gateway Protocol (BGP) Path vector routing Inter

More information

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding 0/6/08 Interpla between routing and forwarding Routing Algorithms Link State Distance Vector BGP routing routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving

More information

ETSF10 Internet Protocols Routing on the Internet

ETSF10 Internet Protocols Routing on the Internet ETSF10 Internet Protocols Routing on the Internet 2014, Part 2, Lecture 1.2 Jens Andersson Internet Hierarchy 2014-11-10 ETSF05/ETSF05/ETSF10 - Internet Protocols 2 Hierarchical Routing aggregate routers

More information

Routing on the Internet. Routing on the Internet. Hierarchical Routing. Computer Networks. Lecture 17: Inter-domain Routing and BGP

Routing on the Internet. Routing on the Internet. Hierarchical Routing. Computer Networks. Lecture 17: Inter-domain Routing and BGP Routing on the Internet Computer Networks Lecture 17: Inter-domain Routing and BGP In the beginning there was the ARPANET: route using GGP (Gateway-to-Gateway Protocol), a distance vector routing protocol

More information

CS644 Advanced Networks

CS644 Advanced Networks Outline CS644 Advanced Networks Lecture 9 Intra Domain Routing Andreas Terzis Spring 2004 1 So far we have talked about E2E mechanisms Routing is the other big component of the network Largest distributed

More information

Robust Path-Vector Routing Despite Inconsistent Route Preferences

Robust Path-Vector Routing Despite Inconsistent Route Preferences Robust Path-Vector Routing Despite Inconsistent Route Preferences Aaron D. Jaggard Department of Mathematics Tulane University New Orleans, LA USA adj@math.tulane.edu Vijay Ramachandran Department of Computer

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Q&A Session Rüdiger Birkner Tobias Bühler https://comm-net.ethz.ch/ ETH Zürich August 6 2018 Old exam from 2016 3 hours instead of 2.5 Topics which we did not discuss

More information

Inter-AS routing and BGP. Network Layer 4-1

Inter-AS routing and BGP. Network Layer 4-1 Inter-AS routing and BGP Network Layer 4-1 Review: intra-as routing v Also known as interior gateway protocols (IGP) v Most common intra-as routing protocols: RIP: Routing Information Protocol, distance

More information

CS 43: Computer Networks. 24: Internet Routing November 19, 2018

CS 43: Computer Networks. 24: Internet Routing November 19, 2018 CS 43: Computer Networks 24: Internet Routing November 19, 2018 Last Class Link State + Fast convergence (reacts to events quickly) + Small window of inconsistency Distance Vector + + Distributed (small

More information

Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process

Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process Document ID: 107615 Contents Introduction Before You Begin Conventions Prerequisites Components Used Understanding BGP Processes

More information

Advanced Topics in Routing

Advanced Topics in Routing Advanced Topics in Routing EE122 Fall 2012 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton and UC

More information

Configuring Advanced BGP

Configuring Advanced BGP CHAPTER 6 This chapter describes how to configure advanced features of the Border Gateway Protocol (BGP) on the Cisco NX-OS switch. This chapter includes the following sections: Information About Advanced

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 14, 2013 1 Reading Quiz Hierarchical routing Our routing study thus far - idealization all routers identical network flat

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri Internet structure: network of networks local ISP Tier

More information

Incentives for Honest Path Announcement in BGP

Incentives for Honest Path Announcement in BGP Rationality and Traffic Attraction Incentives for Honest Path Announcement in BGP $ Sharon Goldberg Shai Halevi Aaron D. Jaggard Vijay Ramachandran Rebecca N. Wright University University SIGCOMM 2008

More information

Interdomain Routing Reading: Sections K&R EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277)

Interdomain Routing Reading: Sections K&R EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277) Interdomain Routing Reading: Sections K&R 4.6.3 EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277) Guest Lecture by Brighten Godfrey Instructor: Vern Paxson TAs: Lisa Fowler, Daniel

More information

CS BGP v4. Fall 2014

CS BGP v4. Fall 2014 CS 457 - BGP v4 Fall 2014 Autonomous Systems What is an AS? a set of routers under a single technical administration uses an interior gateway protocol (IGP) and common metrics to route packets within the

More information

Course Routing Classification Properties Routing Protocols 1/39

Course Routing Classification Properties Routing Protocols 1/39 Course 8 3. Routing Classification Properties Routing Protocols 1/39 Routing Algorithms Types Static versus dynamic Single-path versus multipath Flat versus hierarchical Host-intelligent versus router-intelligent

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

CS519: Computer Networks. Lecture 4, Part 5: Mar 1, 2004 Internet Routing:

CS519: Computer Networks. Lecture 4, Part 5: Mar 1, 2004 Internet Routing: : Computer Networks Lecture 4, Part 5: Mar 1, 2004 Internet Routing: AS s, igp, and BGP As we said earlier, the Internet is composed of Autonomous Systems (ASs) Where each AS is a set of routers, links,

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Towards a Realistic Model of Incentives in Interdomain Routing: Decoupling Forwarding from Signaling

Towards a Realistic Model of Incentives in Interdomain Routing: Decoupling Forwarding from Signaling Towards a Realistic Model of Incentives in Interdomain Routing: Decoupling Forwarding from Signaling Aaron D. Jaggard DIMACS Rutgers University Joint work with Vijay Ramachandran (Colgate) and Rebecca

More information

The Case for Separating Routing from Routers

The Case for Separating Routing from Routers The Case for Separating Routing from Routers Nick Feamster, Hari Balakrishnan M.I.T. Computer Science and Artificial Intelligence Laboratory Jennifer Rexford, Aman Shaikh, Kobus van der Merwe AT&T Labs

More information

This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics:

This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics: Appendix C BGP Supplement This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics: BGP Route Summarization Redistribution with IGPs Communities Route

More information

Internetwork Expert s CCNP Bootcamp. Redistribution & Layer 3 Path Control. Route Redistribution Overview

Internetwork Expert s CCNP Bootcamp. Redistribution & Layer 3 Path Control. Route Redistribution Overview Internetwork Expert s CCNP Bootcamp Redistribution & Layer 3 Path Control http:// Route Redistribution Overview Process of exchanging reachability information between routing domains e.g. OSPF to EIGRP

More information

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011 Lecture 4: Intradomain Routing CS 598: Advanced Internetworking Matthew Caesar February 1, 011 1 Robert. How can routers find paths? Robert s local DNS server 10.1.8.7 A 10.1.0.0/16 10.1.0.1 Routing Table

More information

CS Networks and Distributed Systems. Lecture 8: Inter Domain Routing

CS Networks and Distributed Systems. Lecture 8: Inter Domain Routing CS 3700 Networks and Distributed Systems Lecture 8: Inter Domain Routing Revised 2/4/2014 Network Layer, Control Plane 2 Data Plane Application Presentation Session Transport Network Data Link Physical

More information

Introduction to IP Routing. Geoff Huston

Introduction to IP Routing. Geoff Huston Introduction to IP Routing Geoff Huston Routing How do packets get from A to B in the Internet? A Internet B Connectionless Forwarding Each router (switch) makes a LOCAL decision to forward the packet

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 16, 2017 1 Hierarchical routing Our routing study thus far - idealization all routers identical network flat not true in

More information

Inter-Domain Routing: BGP

Inter-Domain Routing: BGP Inter-Domain Routing: BGP Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Inter-Domain Routing Internet is a network of networks Hierarchy

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Network Layer Derek Leonard Hendrix College November 17, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 4: Roadmap 4.1 Introduction

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Winter 2002 John Kristoff - DePaul University 1 IP routing Performed by routers Table (information base) driven Forwarding decision on a hop-by-hop basis Route determined

More information

Lecture 16: Interdomain Routing. CSE 123: Computer Networks Stefan Savage

Lecture 16: Interdomain Routing. CSE 123: Computer Networks Stefan Savage Lecture 16: Interdomain Routing CSE 123: Computer Networks Stefan Savage Overview Autonomous Systems Each network on the Internet has its own goals Path-vector Routing Allows scalable, informed route selection

More information

Lecture 13: Traffic Engineering

Lecture 13: Traffic Engineering Lecture 13: Traffic Engineering CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman, Nick Feamster Lecture 13 Overview Evolution of routing in the ARPAnet Today s TE: Adjusting

More information

Lecture 18: Border Gateway Protocol

Lecture 18: Border Gateway Protocol Lecture 18: Border Gateway Protocol CSE 123: Computer Networks Alex C. Snoeren HW 3 due Wednesday Some figures courtesy Mike Freedman & Craig Labovitz Lecture 18 Overview Path-vector Routing Allows scalable,

More information

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Daniel Zappala CS 460 Computer Networking Brigham Young University 2/20 Scaling Routing for the Internet scale 200 million destinations - can t store all destinations or all prefixes in routing tables

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Hierarchical routing our routing study thus far - idealization

More information

Chapter 13 Configuring BGP4

Chapter 13 Configuring BGP4 Chapter 13 Configuring BGP4 This chapter provides details on how to configure Border Gateway Protocol version 4 (BGP4) on HP products using the CLI and the Web management interface. BGP4 is supported on

More information

Interplay Between Routing, Forwarding

Interplay Between Routing, Forwarding Internet Routing 1 Interplay Between Routing, Forwarding routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 1 value in arriving packet s header 0111 3 1 Graph Abstraction

More information

BGP Inbound Optimization Using Performance Routing

BGP Inbound Optimization Using Performance Routing BGP Inbound Optimization Using Performance Routing The PfR BGP Inbound Optimization feature introduced support for the best entrance selection for traffic that originates from prefixes outside an autonomous

More information