Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment

Size: px
Start display at page:

Download "Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment"

Transcription

1 Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment

2 Outline Highway alignment Vehicle cornering forces Minimum radius Circular curve elements Transition curve Design horizontal curve for stopping sight distance

3 Highway Alignment in 2D 3

4 Highway Alignment in 3D 4

5 Highway Positioning The length of the facility is measured along the horizontal alignment of a control line usually the center line of a highway and usually expressed in terms of 100-m stations from a reference point. 5

6 Straight Segments + Shortest connection between two points + Traffic aspects (overtaking space, arrangement of intersections) + Grouping of different transport modes (e.g., road and rail) + Landscape areas (flat valleys) - Incorrect assessment of oncoming and following traffic speed - Risk of drivers being blinded at night by oncoming vehicles - Fitting the straight line into the hilly landscape - Risk of drivers being tired because of monotonous driving style 6

7 Horizontal Curve Horizontal curve transitions the roadway between two straight (tangent) sections Main concern is safety, but designers are also concerned with drainage Other aspects: costs, comfort, environmental protection Vehicle cornering capability is a key concern in horizontal curve design 7

8 Vehicle Cornering 8

9 Forces acting on a vehicle during cornering 9

10 Vehicle Cornering Forces R v = radius defined to the vehicle s traveled path in m = angle of incline in degrees e = number of vertical m of rise per 100 m of horizontal distance W = weight of the vehicle in N W n = vehicle weight normal to the roadway surface in N W p = vehicle weight parallel to the roadway surface in N F f = side frictional force (centripetal, in N) F c = centripetal force (lateral acceleration x mass, in N) F cp = centripetal force acting parallel to the roadway surface in N F cn = centripetal force acting normal to the roadway surface in N K = curvature = C (scale factor) * 1 / R 10

11 Vehicle Cornering Some basic horizontal curve relationships can be derived by noting that: W p + F f = F cp From basic physics this equation can be written as [with Ff = fs(wn + Fcn)]: W sin f s W WV cos gr v 2 sin WV gr v 2 cos f s is the coefficient of side friction 11

12 Vehicle Cornering Dividing both sides of the previous equation by W cos yields: 2 V tan f s 1 f s tan gr v The term tan is referred to as the superelevation of the curve and is denoted e (e = 100 tan ). Being conservative and ignoring the normal component of centripetal force (f s tan ), and with e = 100 tan, the above equation can be rearranged as follows: 2 V Rv e g( fs )

13 Example 1 A roadway is designed for a speed of 110 km/h. At one horizontal curve, it is known that superelevation is 4% and that coefficient of side friction is Determine the minimum radius curve that will provide for the safe vehicle operation.! Minimum radius does not represent the desired design radius. From the perspective of the driver, the longer the radius the better. 13

14 Minimum Radius Selected value of e is critical as high rates of superelevation can cause vehicle steering problems on the horizontal curve On the contrary, in cold climates, ice on the roadway can reduce f s such that vehicles traveling less than the design speed on an excessively superelevated curve could slide inward off the curve by gravitational forces Usually, e is 10% but in cold climates 8% is recommended Selecting a superelevation, e, a design speed, V, and using maximum side friction, f s, a minimum radius is obtained Following table gives AASHTO guidelines for selecting values of e and f s 14

15 AASHTO Guidelines Example 15

16 Curve Options There a few options available for curve types to connect tangent sections: Simple circular curve Reverse curves Compound curve Spiral curve The circular curve has a single, constant radius. 16

17 Simple Circular Horizontal Curve R = radius, usually measured to the centerline of the road, in m = central angle of the curve in degrees PC = point of curve (the beginning point of the horizontal curve) PI = point of tangent intersection PT = point of tangent (the ending point of the horizontal curve) T = tangent length in m M = middle ordinate in m E = external distance in m L = length of curve in ft (m) 17

18 Circular Curve Formulas D T R R R tan 2 Degree of curve: Angle subtended by a 100-m arc along the horizontal curve. Measure of sharpness of the curve. Tangent length 1 E R cos( / 2) 1 M R1 cos 2 L R 180 External distance Middle ordinate Curve length * Measured from the centerline of the road 18

19 Min Radii vs. Min Curve Length Example RAS-L V [km/h] Min R [m] Min L [m]

20 Coordinating Sequence of Radii Example Radii of consecutive curves must be in balanced ratio Radius after straight segment: If L >= 300 m Then min R > 400 m If L < 300 m Then min R > L 20

21 Driving Line vs. Curvature Graph Smoot movement of the steering wheel? Practical vs. theoretical driving line Aesthetics sharp bends Transition to greater camber going towards the inner side of the bend 21

22 Euler Spiral and Transition Curve Has constantly changing curvature Used for developing transition curve Transition curve connects straight-line segments (tangents) with circular curves Transition curves are usually introduces on highspeed sections Clothoid parameter A = sqrt ( L * R) 22

23 Horizontal Projection vs. Clothoid Curvature The curvature alters in a linear fashion with the arc length The driver can turn steering wheel with a constant angular velocity 23

24 From the Driver s Seat 24

25 Development of Superelevation Banking of the cross section is needed on the curved portion of the facility but it is not necessary along the tangent segments of the horizontal alignment AB tangent runout BE superelevation runoff 25

26 Stopping Sight Distance (SSD) Sight distance restrictions on horizontal curves occur from obstructions (e.g., buildings, rock outcroppings) When such an obstruction exists, the stopping-sight distance is measured along the horizontal curve from the center of the traveled lane (the assumed location of the driver s eyes). For a specified stopping distance, some distance, M s (the middle ordinate of a curve that has an arc length equal to the stopping sight distance), must be visually cleared so that the line of sight is such that sufficient stopping-sight distance is available. 26

27 SSD and Clearance 27

28 SSD Assumptions Equations for computing stopping-sight distance relationships for horizontal curves can be derived by first determining the central angle, s, for an arc equal to the required stopping-sight distance (this is not the same as the central angle). Assumption is that the length of the horizontal curve exceeds the required SSD. 28

29 SSD Equations SSD R 180 v s s 180SSD R v Substituting into the general equation for the middle ordinate of a simple horizontal curve gives: M s R v 1 cos 90SSD R v Solving the above equation for SSD gives: SSD R 90 v cos 1 R v M R v s 29

30 Example 2 A horizontal curve is being designed for a new twolane highway (12-ft lanes). The PI is at station , design speed is 65 mi/h, and a maximum superelevation of 0.07 ft/ft is to be used. If the central angle of the curve is 38 degrees, design a curve for the highway by computing the radius and stationing of the PC and PT? 30

31 Example 2 statpi = g=32.2 V=65 e = 0.07 Δ = 38 fs = 0.11 Rv = (V 1.467)2 g(e+fs) = Since the road is two-lane with 12 ft lanes R = Rv + 6 = L = R tan[(δ/2)deg] = statpc = statpi T = statpt = statpc + L =

Horizontal and Vertical Curve Design

Horizontal and Vertical Curve Design Horizontal and Vertical Curve Design CE 576 Highway Design and Traffic Safety Dr. Ahmed Abdel-Rahim Horizontal Alignment Horizontal curve is critical. Vehicle cornering capability is thus a key concern

More information

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves JCE 4600 Fundamentals of Traffic Engineering Horizontal and Vertical Curves Agenda Horizontal Curves Vertical Curves Passing Sight Distance 1 Roadway Design Motivations Vehicle performance Acceleration

More information

Horizontal Alignment

Horizontal Alignment AMRC 2012 MODULE 8 Horizontal Alignment CONTENTS Overview... 8-1 Objectives... 8-1 Procedures... 8-1 8.1 Design Considerations and Circular Curves... 8-3 8.2 Superelevation and Transitional Spiral... 8-5

More information

AED Design Requirements: Superelevation Road Design

AED Design Requirements: Superelevation Road Design US Army Corps of Engineers Afghanistan Engineer District AED Design Requirements: Various Locations, Afghanistan MARCH 2009 TABLE OF CONTENTS AED DESIGN REQUIREMENTS FOR SUPERELEVATION ROAD DESIGN VARIOUS

More information

The Transition Curves (Spiral Curves)

The Transition Curves (Spiral Curves) The Transition Curves (Spiral Curves) The transition curve (spiral) is a curve that has a varying radius. It is used on railroads and most modem highways. It has the following purposes: 1- Provide a gradual

More information

Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment

Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment 02.03.2017 Outline Basic elements of roadway vertical profile design Basic parameters of a vertical curve

More information

ENGI 3703 Surveying and Geomatics

ENGI 3703 Surveying and Geomatics Horizontal Curves (Chapter 24) We ll jump ahead a little today to support the last field school activity, Lab 6 - Horizontal Curve Layout. Today we ll define i) the properties of a horizontal curve and

More information

PE Exam Review - Surveying Demonstration Problem Solutions

PE Exam Review - Surveying Demonstration Problem Solutions PE Exam Review - Surveying Demonstration Problem Solutions I. Demonstration Problem Solutions... 1. Circular Curves Part A.... Circular Curves Part B... 9 3. Vertical Curves Part A... 18 4. Vertical Curves

More information

Transition Curves for Roads Designers Manual

Transition Curves for Roads Designers Manual Transition Curves for Roads Designers Manual Muthanna Husham Alfityan 1 and Adnan Bin Zulkiple 2 1 PhD Student, Universiti Malaysia Pahang muthanaalfit@hotmail.com 2 Faculty of Civil Engineering & Earth

More information

ENGINEERING SURVEYING (221 BE)

ENGINEERING SURVEYING (221 BE) ENGINEERING SURVEYING (221 BE) Horizontal Circular Curves Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile: 016-4975551 INTRODUCTION The centre line of road consists of series of straight lines interconnected

More information

Route Surveying. Topic Outline

Route Surveying. Topic Outline Route Surveying CE 305 Intro To Geomatics By Darrell R. Dean, Jr., P.S., Ph.D. Topic Outline Horizontal alignment Types of Horizontal Curves Degree of Curve Geometric elements of curve Station ti number

More information

Engineering Surveying - II CE313. Route Survey Lecture 03 Muhammad Noman

Engineering Surveying - II CE313. Route Survey Lecture 03 Muhammad Noman Engineering Surveying - II CE313 Route Survey Lecture 03 Muhammad Noman Route Survey Route surveying is comprised of all survey operations required for design and construction of engineering works such

More information

1.4.3 OPERATING SPEED CONSISTENCY

1.4.3 OPERATING SPEED CONSISTENCY Geometric Design Guide for Canadian oads 1.4.3 OPEATING SPEED CONSISTENCY The safety of a road is closely linked to variations in the speed of vehicles travelling on it. These variations are of two kinds:

More information

CE 371 Surveying Circular Curves

CE 371 Surveying Circular Curves Lec. 25 1 CE 371 Surveying Circular Curves Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room LIE15 Overview Introduction Definition of

More information

Sight Distance on Vertical Curves

Sight Distance on Vertical Curves Iowa Department of Transportation Office of Design Sight Distance on Vertical Curves 6D-5 Design Manual Chapter 6 Geometric Design Originally Issued: 01-04-0 Stopping sight distance is an important factor

More information

CIV : CURVES. Table of Contents

CIV : CURVES. Table of Contents Unit CIV2202: Surveying 12.1 CIV2202.12: CURVES Table of Contents PREVIEW...3 Introduction...3 Objectives...3 Readings...3 HORIZONTAL CURVES...3 CIRCULAR HORIZONTAL CURVES...4 Types of Circular Curves...4

More information

Course Instructions. 3 Easy Steps to Complete the Course: 1.) Read the Course PDF Below.

Course Instructions. 3 Easy Steps to Complete the Course: 1.) Read the Course PDF Below. Course Instructions NOTE: The following pages contain a preview of the final exam This final exam is identical to the final exam that you will take online after you purchase the course After you purchase

More information

Components of Alignment. Horizontal Alignment. Vertical Alignment. Highway Design Project. Vertical Alignment. Vertical Alignment.

Components of Alignment. Horizontal Alignment. Vertical Alignment. Highway Design Project. Vertical Alignment. Vertical Alignment. 1/35 Components of Alignment Highway Design Project Horizontal Alignment Vertical Alignment Vertical Alignment Amir Samimi Civil Engineering Department Sharif University of Technology Cross-section /35

More information

CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE IN THREE-DIMENSIONAL SPACE

CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE IN THREE-DIMENSIONAL SPACE National Technical University of Athens School of Civil Engineering Department of Transportation Planning and Engineering Doctoral Dissertation CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE

More information

Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions

Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions TRANSPORTATION RESEARCH RECORD 1500 31 Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions YASSER HASSAN, SAID M. EASA, AND A. 0. ABD EL HALIM For safe and efficient highway operation,

More information

HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday CEE 320

HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday CEE 320 Course Logistics HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday Midterm, 11/5 Geometric Design Anne Goodchild Introduction http://www.youtube.com/watch?v=u_jf_x

More information

Three-Dimensional Analysis of Sight Distance on Interchange Connectors

Three-Dimensional Analysis of Sight Distance on Interchange Connectors TRANSPOR'IAT/ON RESEARCH RECORD 1445 101 Three-Dimensional Analysis of Sight Distance on Interchange Connectors EDDIE SANCHEZ The design of interchange ramps and connectors, especially in large freeway-to-freeway

More information

Bentley Civil Guide. SELECT series 3. Setting Up Superelevation SEP Files. Written By: Lou Barrett, BSW-Development, Civil Design

Bentley Civil Guide. SELECT series 3. Setting Up Superelevation SEP Files. Written By: Lou Barrett, BSW-Development, Civil Design Bentley Civil Guide SELECT series 3 Setting Up Superelevation SEP Files Written By: Lou Barrett, BSW-Development, Civil Design Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 www.bentley.com

More information

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway.

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. VPC: Vertical Point of Curvature VPI: Vertical Point of Intersection VPT: Vertical Point

More information

Construction Surveying Curves

Construction Surveying Curves Construction Surveying Curves Three(3) Continuing Education Hours Course #LS1003 Approved Continuing Education for Licensed Professional Engineers EZ-pdhcom Ezekiel Enterprises, LLC 301 Mission Dr Unit

More information

The Mathematics of Highway Design

The Mathematics of Highway Design The Mathematics of Highway Design Scenario As a new graduate you have gained employment as a graduate engineer working for a major contractor that employs 000 staff and has an annual turnover of 600m.

More information

Approximating Maximum Speed on Road from Curvature Information of Bezier Curve

Approximating Maximum Speed on Road from Curvature Information of Bezier Curve Approximating Maximum Speed on Road from Curvature Information of Bezier Curve M. Y. Misro, A. Ramli, J. M. Ali Abstract Bezier curves have useful properties for path generation problem, for instance,

More information

SURVEYING-II(5 TH CIVIL) CHAPTER-1 Name of the Chapter - Leveling

SURVEYING-II(5 TH CIVIL) CHAPTER-1 Name of the Chapter - Leveling SURVEYING-II(5 TH CIVIL) CHAPTER-1 Name of the Chapter - Leveling 1. Define parallax. [2012] The apparent movement of image relative to the cross hair is known as parallax. This occurs due to imperfect

More information

Clearance in Order to Provide Stopping Sight Distances

Clearance in Order to Provide Stopping Sight Distances Journal of Transportation Technologies, 2017, 7, 221-239 http://www.scirp.org/journal/jtts ISSN Online: 2160-0481 ISSN Print: 2160-0473 Suitability of the Euler s Spiral for Roadside Clearance in Order

More information

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Lecture 18 Vertical Curves and Gradients Dear students, I welcome you back to the

More information

Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves

Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves Ahmed H. Farhan Assist. ecturer / Civil Eng. Dept. / Anbar University Abstract The purpose of highway geometric

More information

Highway Alignment. Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM

Highway Alignment. Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM TRANSPORTATION RESEARCH RECORD 1612 Paper No. 98-0257 17 Highway Alignment Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM Highway geometric

More information

CASE 1 TWO LANE TO FOUR LANE DIVIDED TRANSITION GEO-610-C NOT TO SCALE GEOMETRIC DESIGN GUIDE FOR MATCH LINE LINE MATCH. 2 (0.6m) shoulder transition

CASE 1 TWO LANE TO FOUR LANE DIVIDED TRANSITION GEO-610-C NOT TO SCALE GEOMETRIC DESIGN GUIDE FOR MATCH LINE LINE MATCH. 2 (0.6m) shoulder transition CASE 1 2 (0.6m) Joint Line See sheet #5 for description of variables 4 (1.2m) Transition taper is tangent to Edge of Pavement curve at this point. 1:25 Paved shoulder transition 16 (4.m) Median width 16

More information

AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D

AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D 2009 Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D Contents Introduction... 3 Design Criteria Files... 3 Alignment Geometry... 4 Applying

More information

Geometric Layout for Roadway Design with CAiCE Visual Roads

Geometric Layout for Roadway Design with CAiCE Visual Roads December 2-5, 2003 MGM Grand Hotel Las Vegas Geometric Layout for Roadway Design with CAiCE Visual Roads Mathews Mathai CV32-3 This course describes and demonstrates various tools for defining horizontal

More information

CEE 3604 Transportation Geometric Design. Highways. Transportation Engineering (A.A. Trani)

CEE 3604 Transportation Geometric Design. Highways. Transportation Engineering (A.A. Trani) CEE 3604 Transportation Geometric Design Highways 1 History Roads have been developed in ancient cultures for trade and military reasons Silk Road - 6000 km in length Appian Road - Rome to Brindisi (Italy)

More information

Development of a Spatial Track Module in SIMPACK and Application to a Simple Roller Coaster Example

Development of a Spatial Track Module in SIMPACK and Application to a Simple Roller Coaster Example SIMPACK User Meeting 2004 Wartburg, Eisenach, November 2004 Development of a Spatial Track Module in SIMPACK and Application to a Simple Roller Coaster Example Klaus Schott, Jakub Tobolář klaus.schott@dlr.de,

More information

TRANSITION CURVES E.M.G.S. MANUAL ( 1) Transition Curves (or Easement Curves) SHEET 1 Issue Introduction. 1. Introduction.

TRANSITION CURVES E.M.G.S. MANUAL ( 1) Transition Curves (or Easement Curves) SHEET 1 Issue Introduction. 1. Introduction. TRANSITION CURVES SHEET 1 Transition Curves (or Easement Curves) 1. Introduction. 2. Development of Transition Curves and the Adoption of Superelevation (Cant). 3. General Application of Transition Curves

More information

WYOMING DEPARTMENT OF TRANSPORTATION

WYOMING DEPARTMENT OF TRANSPORTATION PAGE 1 OF 5 WYOMING DEPARTMENT OF TRANSPORTATION ROAD DESIGN MEMORANDUM #02 DATE OF ISSUE: December 01, 2004 Approved by: Paul P. Bercich, P.E. Highway Development Engineer Issued by: Engineering Services,

More information

Roadway Alignments and Profiles

Roadway Alignments and Profiles NOTES Module 15 Roadway Alignments and Profiles In this module, you learn how to create horizontal alignments, surface profiles, layout (design) profiles, and profile views in AutoCAD Civil 3D. This module

More information

NCDOT Civil Geometry for GEOPAK Users

NCDOT Civil Geometry for GEOPAK Users 2018 NCDOT Civil Geometry for GEOPAK Users Oak Thammavong NCDOT Roadway Design Unit 7/31/2018 This page left intentionally blank Copyright 2018 NCDOT DO NOT DISTRIBUTE Printing for student use is permitted

More information

OPTIMAL 3D COORDINATION TO MAXIMIZE THE AVAILABLE STOPPING SIGHT DISTANCE IN TWO-LANE ROADS

OPTIMAL 3D COORDINATION TO MAXIMIZE THE AVAILABLE STOPPING SIGHT DISTANCE IN TWO-LANE ROADS 0 0 0 Moreno, Ana Tsui; Ferrer-Pérez, Vicente; Garcia, Alfredo; Romero, Mario Alfonso. (00). Optimal D Coordination to Mazimize the Available Stopping Sight Distance in Two-Lane Roads In: Proceedings of

More information

Sight Distance Relationships Involving Horizontal Curves

Sight Distance Relationships Involving Horizontal Curves 96 TRANSPORTATON RESEARCH RECORD 1122 Sight Distance Relationships nvolving Horizontal Curves GARY R. WASS! AND DONALD E. CLEVELAND Recent AASHTO design policy developments and research have ncreased needed

More information

SURVEYING AND ROAD DESIGN FUNDAMENTALS

SURVEYING AND ROAD DESIGN FUNDAMENTALS AREA MANAGER ROADS CERTIFICATION PROGRAM AMRC 2012 SURVEYING AND ROAD DESIGN FUNDAMENTALS STUDENT GUIDE FOR EDUCATIONAL PURPOSES ONLY April, 2006 WPC #27810 07/09 2009 by British Columbia Institute of

More information

OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS

OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS Dabbour E. Optimizing Highway Profiles for Individual Cost Items UDC: 656.11.02 DOI: http://dx.doi.org/10.7708/ijtte.2013.3(4).07 OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS Essam Dabbour 1 1

More information

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible.

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. CAM MECHANISMS Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. Cams can provide unusual and irregular motions

More information

AN AUTOMATIC HORIZONTAL CURVE RADII MEASUREMENT METHOD FOR ROADWAY SAFETY ANALYSIS USING GPS DATA

AN AUTOMATIC HORIZONTAL CURVE RADII MEASUREMENT METHOD FOR ROADWAY SAFETY ANALYSIS USING GPS DATA Ai and Tsai 0 AN AUTOMATIC HORIZONTAL CURVE RADII MEASUREMENT METHOD FOR ROADWAY SAFETY ANALYSIS USING GPS DATA Chengbo Ai (corresponding author) Post-Doctoral Fellow School of Civil and Environmental

More information

Civil 3D Introduction

Civil 3D Introduction Civil 3D Introduction Points Overview Points are data collected by surveyors which represent existing site conditions (elevations, boundaries, utilities, etc.). Each point is numbered (or named) and has

More information

How to Perform a Quasi-Static Curving Analysis with SIMPACK Wheel/Rail

How to Perform a Quasi-Static Curving Analysis with SIMPACK Wheel/Rail How to Perform a Quasi-Static Curving Analysis with SIMPACK Wheel/Rail Version 2005-05-11 Table of Contents 1 Introduction 2 1.1 Methods 2 1.1.1 Solving a nonlinear equation system 2 1.1.2 Time integration

More information

Lesson 6: Traffic Analysis Module (TAM)

Lesson 6: Traffic Analysis Module (TAM) Go back to: Table of Contents Go to the next lesson Overview : Traffic Analysis Module (TAM) The Traffic Analysis Module (TAM) may be used to evaluate the operational effects of existing and projected

More information

FACULTY OF CIVIL ENGINEERING & EARTH RESOURCES ENGINEERING SURVEY FIELDWORK. CURVE RANGING COMPUTATION & SETTING-OUT (Standard Of Procedure)

FACULTY OF CIVIL ENGINEERING & EARTH RESOURCES ENGINEERING SURVEY FIELDWORK. CURVE RANGING COMPUTATION & SETTING-OUT (Standard Of Procedure) FACULTY OF CIVIL ENGINEERING & EARTH RESOURCES ENGINEERING SURVEY FIELDWORK CURVE RANGING COMPUTATION & SETTING-OUT (Standard Of Procedure) Subject Code Date Group Number Student Name & ID Number Group

More information

Non-holonomic Planning

Non-holonomic Planning Non-holonomic Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We have learned about RRTs. q new q init q near q rand But the standard

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

ESTIMATION OF THE DESIGN ELEMENTS OF HORIZONTAL ALIGNMENT BY THE METHOD OF LEAST SQUARES

ESTIMATION OF THE DESIGN ELEMENTS OF HORIZONTAL ALIGNMENT BY THE METHOD OF LEAST SQUARES ESTIMATION OF THE DESIGN ELEMENTS OF HORIZONTAL ALIGNMENT BY THE METHOD OF LEAST SQUARES Jongchool LEE, Junghoon SEO and Jongho HEO, Korea ABSTRACT In this study, the road linear shape was sampled by using

More information

Request for FTE Design Exceptions & Variations Checklist

Request for FTE Design Exceptions & Variations Checklist District: Project Name: Project Section BMP: EMP: Exemption BMP: EMP: Request for FTE Design Exceptions & Variations Checklist FPID: New Construction RRR Requested Control Element(s): Design Speed* Horizontal

More information

USING VISUALIZATION FOR THE DESIGN PROCESS OF RURAL ROADS

USING VISUALIZATION FOR THE DESIGN PROCESS OF RURAL ROADS USING VISUALIZATION FOR THE DESIGN PROCESS OF RURAL ROADS W. Kühn 1 & M. K. Jha 2 1 University of Leipzig, Germany 2 Morgan State University, USA ABSTRACT The three-dimensional image of a road, which gives

More information

Land & Lee (1994) Where do we look when we steer

Land & Lee (1994) Where do we look when we steer Automobile Steering Land & Lee (1994) Where do we look when we steer Eye movements of three subjects while driving a narrow dirt road with tortuous curves around Edinburgh Scotland. Geometry demanded almost

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Review for Test 2 MATH 116 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the right triangle. If two sides are given, give angles in degrees and

More information

Bentleyuser.dk Årsmøde 2012 Nordic Civil 2012

Bentleyuser.dk Årsmøde 2012 Nordic Civil 2012 Bentleyuser.dk Årsmøde 2012 Nordic Civil 2012 5.-7. November 2012, Munkebjerg Hotel, Vejle Workshop X13 Advanced Geometrical Layout for Compound and Reversed Curves Team Leader: Richard Bradshaw Bentley

More information

ON THE VELOCITY OF A WEIGHTED CYLINDER DOWN AN INCLINED PLANE

ON THE VELOCITY OF A WEIGHTED CYLINDER DOWN AN INCLINED PLANE ON THE VELOCITY OF A WEIGHTED CYLINDER DOWN AN INCLINED PLANE Raghav Grover and Aneesh Agarwal RG (Grade 12 High School), AA (Grade 11 High School) Department of Physics, The Doon School, Dehradun. raghav.503.2019@doonschool.com,

More information

Computation of Curve Staking out Coordinates on the Excel Spreadsheet

Computation of Curve Staking out Coordinates on the Excel Spreadsheet Computation of Curve Staking out Coordinates on the Excel Spreadsheet This is a Peer Reviewed Paper T.G.Gacoki Kenya National Highways Authority, Kenha SUMMARY A procedure for the computation of curve

More information

Alignments CHAPTER INTRODUCTION OBJECTIVES

Alignments CHAPTER INTRODUCTION OBJECTIVES CHAPTER 5 Alignments INTRODUCTION This and the next four chapters focus on roadway design and its documentation. This chapter concentrates on roadway plan design. The next three chapters focus on the roadway

More information

A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters

A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters ISSN (e): 2250 3005 Volume, 06 Issue, 12 December 2016 International Journal of Computational Engineering Research (IJCER) A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters

More information

Railway car dynamic response to track transition curve and single standard turnout

Railway car dynamic response to track transition curve and single standard turnout Computers in Railways X 849 Railway car dynamic response to track transition curve and single standard turnout J. Droździel & B. Sowiński Warsaw University of Technology, Poland Abstract In this paper

More information

A COST-EFFECTIVE ROAD SURVEYING METHOD FOR THE ASSESSMENT OF ROAD ALIGNMENTS

A COST-EFFECTIVE ROAD SURVEYING METHOD FOR THE ASSESSMENT OF ROAD ALIGNMENTS A COST-EFFECTIVE ROAD SURVEYING METHOD FOR THE ASSESSMENT OF ROAD ALIGNMENTS Basil Psarianos 1, Demetre Paradisis 2, Byron. Nakos 3 and George. Karras 4 1 Laboratory of Transportation Engineering, 2 Satellite

More information

Page 2D-12 Revised the following language in the last sentence on the page from; as shown in Figure 2D-3. To; as shown in Chapter 2H, Figure 2H-35.

Page 2D-12 Revised the following language in the last sentence on the page from; as shown in Figure 2D-3. To; as shown in Chapter 2H, Figure 2H-35. IMPERIAL ROAD DESIGN MANUAL REVISIONS January, 2015 CHAPTER 2A Page 2A-1 Revised the following language at the end of the paragraph under PRELIMINARY ENGINEERING AUTHORIZATION from; Funding Allocation/Verification/Submittal

More information

Interactive Highway Safety Design Model (IHSDM) Workshop Nevada DOT Las Vegas, NV February 13, 2014

Interactive Highway Safety Design Model (IHSDM) Workshop Nevada DOT Las Vegas, NV February 13, 2014 Interactive Highway Safety Design Model (IHSDM) Workshop Nevada DOT Las Vegas, NV February 13, 2014 Overview Hands-on Exercises: IHSDM Crash Prediction Module (CPM) The Crash Prediction Module estimates

More information

CHAPTER 3 MATHEMATICAL MODEL

CHAPTER 3 MATHEMATICAL MODEL 38 CHAPTER 3 MATHEMATICAL MODEL 3.1 KINEMATIC MODEL 3.1.1 Introduction The kinematic model of a mobile robot, represented by a set of equations, allows estimation of the robot s evolution on its trajectory,

More information

Tangents of Parametric Curves

Tangents of Parametric Curves Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 32 Notes These notes correspond to Section 92 in the text Tangents of Parametric Curves When a curve is described by an equation of the form y = f(x),

More information

Bentleyuser.dk Årsmøde 2012 Nordic Civil Bentley Civil Workshop

Bentleyuser.dk Årsmøde 2012 Nordic Civil Bentley Civil Workshop Bentleyuser.dk Årsmøde 2012 Nordic Civil 2012 Bentley Civil Workshop X09 Power Railtrack Presented by: Richard Bradshaw, BSW Development, Civil Design This page left intentionally blank. Workshop: - X09

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI - 6113. DEPARTMENT: CIVIL QUESTION BANK SUBJECT CODE / Name: CE 04 / Surveying -I Unit 5 ENGINEERING SURVEYS PART A ( marks) SEMESTER: III 1. What are the

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? 2. Where does the tangent line to y = 2 through (0, ) intersect the

More information

Theodolite and Angles Measurement

Theodolite and Angles Measurement Building & Construction Technology Engineering Department Theodolite and Angles Measurement Lecture 1 Theodolite and Angles Measurement Lecture No. 1 Main Objectives Lecturer Date of Lecture General advices

More information

DSRC Field Trials Whitepaper

DSRC Field Trials Whitepaper DSRC Field Trials Whitepaper August 19, 2017 www.cohdawireless.com 1 Overview Cohda has performed more than 300 Dedicated Short Range Communications (DSRC) field trials, comparing DSRC radios from multiple

More information

Automated Road Segment Creation Process

Automated Road Segment Creation Process David A. Noyce, PhD, PE Director and Chair Traffic Operations and Safety Laboratory Civil and Environmental Engineering Department Kelvin R. Santiago, MS, PE Assistant Researcher Traffic Operations and

More information

DESIGN CRITERIA MEMORANDUM

DESIGN CRITERIA MEMORANDUM State Route 49 Realignment Study DESIGN CRITERIA MEMORANDUM ATTACHMENT G SR 49 Realignment Study STATE ROUTE 49 El Dorado to Coloma El Dorado County, CA DESIGN CRITERIA MEMORANDUM Introduction The El

More information

Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways

Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways 1 2 Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

More information

What is log a a equal to?

What is log a a equal to? How would you differentiate a function like y = sin ax? What is log a a equal to? How do you prove three 3-D points are collinear? What is the general equation of a straight line passing through (a,b)

More information

Appendix B: Vehicle Dynamics Simulation Results

Appendix B: Vehicle Dynamics Simulation Results Appendix B: Vehicle Dynamics Simulation Results B-1 Vehicle dynamic analyses were undertaken for the three barrier types under each of the curve, shoulder, and barrier placement factors identified. This

More information

11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREA OF A CIRCLE & SECTORS

11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREA OF A CIRCLE & SECTORS 11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREA OF A CIRCLE & SECTORS Section 4.1, Figure 4.2, Standard Position of an Angle, pg. 248 Measuring Angles The measure of an angle is determined by the amount of

More information

Cohda Wireless White Paper DSRC Field Trials

Cohda Wireless White Paper DSRC Field Trials Cohda Wireless White Paper DSRC Field Trials Copyright Cohda Wireless Pty Ltd ABN 84 107 936 309 Cohda Wireless Pty Ltd 82-84 Melbourne Street North Adelaide, SA 5006 Australia P +61 8 8364 4719 F +61

More information

about touching on a topic and then veering off to talk about something completely unrelated.

about touching on a topic and then veering off to talk about something completely unrelated. The Tangent Ratio Tangent Ratio, Cotangent Ratio, and Inverse Tangent 8.2 Learning Goals In this lesson, you will: Use the tangent ratio in a right triangle to solve for unknown side lengths. Use the cotangent

More information

UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT

UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT KNS 1461 CIVIL ENGINEERING LABORATORY 2 LABORATORY MANUAL (Edited : December 2008) CIVIL ENGINEERING LABORATORY 2 KNS 1461

More information

Math For Surveyors. James A. Coan Sr. PLS

Math For Surveyors. James A. Coan Sr. PLS Math For Surveyors James A. Coan Sr. PLS Topics Covered 1) The Right Triangle 2) Oblique Triangles 3) Azimuths, Angles, & Bearings 4) Coordinate geometry (COGO) 5) Law of Sines 6) Bearing, Bearing Intersections

More information

Bentley ConceptStation Workshop 2017 FLUG Spring Training Event

Bentley ConceptStation Workshop 2017 FLUG Spring Training Event Bentley ConceptStation Workshop 2017 FLUG Spring Training Event 430 - QuickStart using OpenRoads ConceptStation Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 www.bentley.com Practice

More information

Stress Analysis of Cross Groove Type Constant Velocity Joint

Stress Analysis of Cross Groove Type Constant Velocity Joint TECHNICAL REPORT Stress Analysis of Cross Groove Type Constant Velocity Joint H. SAITO T. MAEDA The driveshaft is the part that transmits the vehicle's engine torque and rotation to the tires, and predicting

More information

4.5 Conservative Forces

4.5 Conservative Forces 4 CONSERVATION LAWS 4.5 Conservative Forces Name: 4.5 Conservative Forces In the last activity, you looked at the case of a block sliding down a curved plane, and determined the work done by gravity as

More information

FRST 557. Lecture 9c. Switchbacks Vertical and Horizontal Design. Lesson Background and Overview:

FRST 557. Lecture 9c. Switchbacks Vertical and Horizontal Design. Lesson Background and Overview: FST 557 Lecture 9c Switchbacks Vertical and Horizontal Design J u s t g iv e it o n e try, a n d if it don t w o rk w e ll c a ll in th e road crew to fix er up Lesson Background and Overview: Switchbacks

More information

Improved Spiral Geometry for High Speed Rail. Louis T. Klauder Jr. Work Soft 833 Galer Drive Newtown Square, PA

Improved Spiral Geometry for High Speed Rail. Louis T. Klauder Jr. Work Soft 833 Galer Drive Newtown Square, PA Improved Spiral Geometry for High Speed Rail by Louis T. Klauder Jr. Work Soft 833 Galer Drive Newtown Square, PA 19073 (lklauder@wsof.com) Abstract An improved method for the design of spirals for passenger

More information

Alcester Academy Curriculum Planning: Key Stage 4

Alcester Academy Curriculum Planning: Key Stage 4 Department: Maths Year Group: 10 Foundation Term Topic/ subject Assessment Objectives And Knowledge Autumn 1 (7 weeks) The averages Calculate mean, median, mode and range, including from a frequency table.

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 3 Lecture - 1 In an earlier lecture, we have already mentioned that there

More information

EVALUATION OF TRUCK CABIN VIBRATION BY THE USE OF A DRIVING SIMULATOR. Keywords: Road model, Driving simulator, vibrations, front axle vibrations, HGV

EVALUATION OF TRUCK CABIN VIBRATION BY THE USE OF A DRIVING SIMULATOR. Keywords: Road model, Driving simulator, vibrations, front axle vibrations, HGV EVALUATION OF TRUCK CABIN VIBRATION BY THE USE OF A DRIVING SIMULATOR Mattias Hjort Researcher VTI Linköping, Sweden mattias.hjort@vti.se Laban Källgren Research Engineer VTI Linköping, Sweden laban.kallgren@vti.se

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Fast Approximate Path Coordinate Motion Primitives for Autonomous Driving

Fast Approximate Path Coordinate Motion Primitives for Autonomous Driving Fast Approximate Path Coordinate Motion Primitives for Autonomous Driving Matthew Sheckells 1, Timothy M. Caldwell 2, and Marin Kobilarov 3 Abstract In autonomous driving, it is often useful to plan trajectories

More information

Appendix E. Plane Geometry

Appendix E. Plane Geometry Appendix E Plane Geometry A. Circle A circle is defined as a closed plane curve every point of which is equidistant from a fixed point within the curve. Figure E-1. Circle components. 1. Pi In mathematics,

More information

DESIGN OF HIGHWAY USING EXCEL PROGRAM

DESIGN OF HIGHWAY USING EXCEL PROGRAM Arab Acadelny for Science. & Technology & Maritime Transport College of Engineering & Technology Building & Construction Engineering Department Gradution Project DESIGN OF HIGHWAY USING EXCEL PROGRAM Presented

More information

First-Year Engineering Program Roller Coaster Design Calculations

First-Year Engineering Program Roller Coaster Design Calculations Roller Coaster Design Calculations Goal Learn a method for calculating roller coaster velocities 1 Initial Paper Design (8% of course grade) IMPORTANT - Read project description document in your course

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

The Straight Line. m is undefined. Use. Show that mab

The Straight Line. m is undefined. Use. Show that mab The Straight Line What is the gradient of a horizontal line? What is the equation of a horizontal line? So the equation of the x-axis is? What is the gradient of a vertical line? What is the equation of

More information

CHAPTER 11. Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway.

CHAPTER 11. Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway. CHAPTER 11 Superelevation 11.1 Introduction Objectives Project Manager Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway. Calculate Superelevation

More information