Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences

Size: px
Start display at page:

Download "Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences"

Transcription

1 Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences Michal Perďoch Supervisor: Jiří Matas Center for Machine Perception, Department of Cb Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague Ph.D. thesis defense 2 nd December 2011

2 The Correspondence Problem Given two images of the same scene or object, find a pair(s) of locations that are projections of the same physical entity 2/23

3 Correspondence Problem Arises in 3D Reconstruction Panorama stitching Image retrieval and also in registration, tracking, optical flow, etc 3/23

4 The Local Features Approach Overview of the approach 1. Detection of distinguished regions 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification Detection (MSERs) Description Matching Verification Local geometry + Descriptor = Local feature 4/23

5 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification 5/23

6 Maximally Stable Extremal Regions Baseline method [Matas et al. BMVC 02] Given an ordering of pixel intensities, a union find based algorithm enumerates all thresholdings of an image and tracks 4 connected components Extremal Regions (ER) Maximally Stable Extremal Regions (MSERs) selected among ER as local extrema of a stability function 6/23

7 Maximally Stable Extremal Regions Contribution 1 Proposed new stability functions that reduces MSER s sensitivity to blur Verified on standard datasets baseline * proposed First published in the thesis. 7/23

8 Maximally Stable Extremal Regions Contribution 2 Proposed an implementation that achieves twofold speedup over the baseline method by reducing the memory footprint of the algorithm by reducing the computational costs of the output phase >10Mpixel satellite images First published in the thesis. 8/23

9 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification 9/23

10 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification 10/23

11 MSER + Local Affine Frames Problem 1 Partially occluded MSERs cannot be matched Solution Local Affine Frames (LAFs) [Obdržálek and Matas BMVC 02] One of the constructions concavities of an extremal region MSER detection Concavities on MSERs LAFs from concavities Problem 2 MSER + LAF method the stability of whole region is required Solution lower the sensitivity and get over represented image, or Published in: M. Perďoch, J. Matas, J. and Š. Obdržálek: Stable Affine Frames on Isophotes. In ICCV 07. WoS: 1 citation, Google scholar: 5 citations 11/23

12 Stable Affine Frames Contribution 3 A new concept of Stable Affine Frames that relaxes the necessity of a stable region Frames constructed on all extremal regions and stable ones are selected Detect all ER Concavities on ERs Stable LAFs selection Properties Provides better repeatability and coverage of the image than MSER+LAF More time consuming Published in: M. Perďoch, J. Matas, J. and Š. Obdržálek: Stable Affine Frames on Isophotes. In ICCV 07. WoS: 1 citation, Google scholar: 5 citations 12/23

13 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification 13/23

14 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames Efficient Local Geometry Representation 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification 14/23

15 Efficient Representation of Local Geometry Overview of an Image Retrieval System with Spatial Verification Region detection Bag of words, Video Google [Šivic 03] Local appearance Visual vocabulary Indexed images word1,,word word2,, word 1 word, word 1, word 2,2, wordword, word8,8,... word word... word 88, word word word,word , word ,word ,word d L l geometry Local g millions of images Representation Representation 5 or 6 numbers per feature = 50GB for 5M images!!! 1 number per feature = 10GB for 5M images >> Published in: M.Perďoch, O. Chum, and J. Matas: Efficient Representation of Local Geometry for Large Scale Object Retrieval. CVPR WoS: 12 citations, Google scholar: 34 citations 15/23

16 Efficient Representation of Local Geometry Contribution 4 A method for learning a geometric vocabulary that captures the variety of ellipse shapes in a small set ( ) of ellipse prototypes Local geometry Compressed geometry millions of images Geom. vocabulary x 1,y 1,E x1 x 1,y 1,E 1 x 1 x,y 2,y 1,E 1 1 x,y 2,E 2,y 1,E 2,E x 2 xx,y 3,y 2,E 2,y 3,E 3,y 2,E 5 3,E x 3,y ,E 3,y 3,E xx N...,y N,E N,y N,E x N,y N,E N,y N,E N Representation ~1 number per feature = 10GB for 5M images!!! Training set of ellipses Published in: M.Perďoch, O. Chum, and J. Matas: Efficient Representation of Local Geometry for Large Scale Object Retrieval. CVPR WoS: 12 citations, Google scholar: 34 citations 16/23

17 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames Efficient Local Geometry Representation 2. Geometric and photometric normalization and description 3. Matching or indexing 4. Geometry verification 17/23

18 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames Efficient Local Geometry Representation 2. Geometric and photometric normalization and description 3. Matching or indexing Higher orderstructures symmetries 4. Geometry verification 18/23

19 Applications Symmetry Detection Contribution 5 Hypothesize an axis of symmetry from a single LAF correspondence and collect evidence with Hough transform for fast detection of bilateral symmetry y Published in: H. Cornelius, M. Perďoch, J. Matas, and G. Loy: Efficient Symmetry Detection Using Local Affine Frames. SCIA WoS: 4 citations, Google Scholar: 7 citations 19/23

20 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames Efficient Local Geometry Representation 2. Geometric and photometric normalization and description 3. Matching or indexing Higher orderstructures symmetries 4. Geometry verification 20/23

21 The Local Features Approach Overview of the approach 1. Detection of distinguished regions MaximallyStableExtremalRegions (MSERs) Stable Affine Frames Efficient Local Geometry Representation 2. Geometric and photometric normalization and description 3. Matching or indexing Higher orderstructures symmetries 4. Geometry verification RANSAC 21/23

22 Applications RANSAC Contribution 6 Model of epipolar geometry from two LAF correspondences RANSAC a robust algorithm that estimates model in presence of outliers 7 point to point p correspondences => model of Epipolar pp Geometry (EG) EG from three LAF correspondences works [Chum and Matas DAGM 03] 6 points to estimate EG with fixed focal length [Stewenius et al. CVPR 05] E proportion of inliers m sample size Proportion of inliers - E m 50% 45% 40% 35% 30% 25% 20% 15% Published in: M. Perďoch, J. Matas, and O. Chum: Epipolar Geometry from Two Correspondences. ICPR WoS: 3 citations, Google Scholar: 4 citations 22/23

23 Summary Contributions Improvements to the detection, matching and verification stages of the correspondence problem. Applications The state of the art MSER implementation, widely used State of the art text in the wild detection and recognition based on the fast MS(ER)s implementation (Google Award 2011) Efficient geometry representation allowed a fast image retrieval from 5 million images on a single machine Image retrieval system acquired by Samsung (2011) Stats of M. Perďoch ISI Web of Knowledge (WoS) 37 citations, h index: 3 Google Scholar 163 citations, h index: 5. 23/23

24 Questions Have the algorithms or improvements been incorporated into a bigger software product? If so, how important have they proven to be? How did they influence the overall performance of that product? Have also the results from Chapter 3 been published in some way? 24/23

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perďoch Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague IEEE Computer Society

More information

Construction of Precise Local Affine Frames

Construction of Precise Local Affine Frames Construction of Precise Local Affine Frames Andrej Mikulik, Jiri Matas, Michal Perdoch, Ondrej Chum Center for Machine Perception Czech Technical University in Prague Czech Republic e-mail: mikulik@cmp.felk.cvut.cz

More information

Large Scale Image Retrieval

Large Scale Image Retrieval Large Scale Image Retrieval Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague Features Affine invariant features Efficient descriptors Corresponding regions

More information

Efficient Symmetry Detection Using Local Affine Frames

Efficient Symmetry Detection Using Local Affine Frames Efficient Symmetry Detection Using Local Affine Frames Hugo Cornelius 1,MichalPerd och 2,Jiří Matas 2,andGarethLoy 1 1 CVAP, Royal Institute of Technology, Stockholm, Sweden 2 Center for Machine Perception,

More information

Video Google: A Text Retrieval Approach to Object Matching in Videos

Video Google: A Text Retrieval Approach to Object Matching in Videos Video Google: A Text Retrieval Approach to Object Matching in Videos Josef Sivic, Frederik Schaffalitzky, Andrew Zisserman Visual Geometry Group University of Oxford The vision Enable video, e.g. a feature

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

Requirements for region detection

Requirements for region detection Region detectors Requirements for region detection For region detection invariance transformations that should be considered are illumination changes, translation, rotation, scale and full affine transform

More information

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perd och, Ondřej Chum and Jiří Matas Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering,

More information

Min-Hashing and Geometric min-hashing

Min-Hashing and Geometric min-hashing Min-Hashing and Geometric min-hashing Ondřej Chum, Michal Perdoch, and Jiří Matas Center for Machine Perception Czech Technical University Prague Outline 1. Looking for representation of images that: is

More information

Keypoint-based Recognition and Object Search

Keypoint-based Recognition and Object Search 03/08/11 Keypoint-based Recognition and Object Search Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Notices I m having trouble connecting to the web server, so can t post lecture

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry

CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry Some material taken from: David Lowe, UBC Jiri Matas, CMP Prague http://cmp.felk.cvut.cz/~matas/papers/presentations/matas_beyondransac_cvprac05.ppt

More information

Multi-modal Registration of Visual Data. Massimiliano Corsini Visual Computing Lab, ISTI - CNR - Italy

Multi-modal Registration of Visual Data. Massimiliano Corsini Visual Computing Lab, ISTI - CNR - Italy Multi-modal Registration of Visual Data Massimiliano Corsini Visual Computing Lab, ISTI - CNR - Italy Overview Introduction and Background Features Detection and Description (2D case) Features Detection

More information

RANSAC: RANdom Sampling And Consensus

RANSAC: RANdom Sampling And Consensus CS231-M RANSAC: RANdom Sampling And Consensus Roland Angst rangst@stanford.edu www.stanford.edu/~rangst CS231-M 2014-04-30 1 The Need for RANSAC Why do I need RANSAC? I know robust statistics! Robust Statistics

More information

Para-catadioptric Camera Auto Calibration from Epipolar Geometry

Para-catadioptric Camera Auto Calibration from Epipolar Geometry Para-catadioptric Camera Auto Calibration from Epipolar Geometry Branislav Mičušík and Tomáš Pajdla Center for Machine Perception http://cmp.felk.cvut.cz Department of Cybernetics Faculty of Electrical

More information

Shape Descriptors for Maximally Stable Extremal Regions

Shape Descriptors for Maximally Stable Extremal Regions Shape Descriptors for Maximally Stable Extremal Regions Per-Erik Forssén and David G. Lowe Department of Computer Science University of British Columbia {perfo,lowe}@cs.ubc.ca Abstract This paper introduces

More information

Local Feature Extraction and Description for

Local Feature Extraction and Description for Local Feature Extraction and Description for Wide-Baseline Matching, Object Recognition and Image Retrieval Methods, Stitching and more Jiří Matas and Ondra Chum Center for Machine Perception, Czech Technical

More information

RANSAC RANdom SAmple Consensus

RANSAC RANdom SAmple Consensus Talk Outline importance for computer vision principle line fitting epipolar geometry estimation RANSAC RANdom SAmple Consensus Tomáš Svoboda, svoboda@cmp.felk.cvut.cz courtesy of Ondřej Chum, Jiří Matas

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Region matching for omnidirectional images using virtual camera planes

Region matching for omnidirectional images using virtual camera planes Computer Vision Winter Workshop 2006, Ondřej Chum, Vojtěch Franc (eds.) Telč, Czech Republic, February 6 8 Czech Pattern Recognition Society Region matching for omnidirectional images using virtual camera

More information

Lecture 14: Indexing with local features. Thursday, Nov 1 Prof. Kristen Grauman. Outline

Lecture 14: Indexing with local features. Thursday, Nov 1 Prof. Kristen Grauman. Outline Lecture 14: Indexing with local features Thursday, Nov 1 Prof. Kristen Grauman Outline Last time: local invariant features, scale invariant detection Applications, including stereo Indexing with invariant

More information

A New Class of Learnable Detectors for Categorisation

A New Class of Learnable Detectors for Categorisation CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY A New Class of Learnable Detectors for Categorisation Jiří Matas, Karel Zimmermann zimmerk@cmp.felk.cvut.cz REPRINT Jiří Matas, Karel Zimmermann

More information

Towards Visual Words to Words

Towards Visual Words to Words Towards Visual Words to Words Text Detection with a General Bag of Words Representation Rakesh Mehta Dept. of Signal Processing, Tampere Univ. of Technology in Tampere Ondřej Chum, Jiří Matas Centre for

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza http://rpg.ifi.uzh.ch/ 1 Lab exercise today replaced by Deep Learning Tutorial by Antonio Loquercio Room

More information

Learning a Fine Vocabulary

Learning a Fine Vocabulary Learning a Fine Vocabulary Andrej Mikulík, Michal Perdoch, Ondřej Chum, and Jiří Matas CMP, Dept. of Cybernetics, Faculty of EE, Czech Technical University in Prague Abstract. We present a novel similarity

More information

Object Recognition and Augmented Reality

Object Recognition and Augmented Reality 11/02/17 Object Recognition and Augmented Reality Dali, Swans Reflecting Elephants Computational Photography Derek Hoiem, University of Illinois Last class: Image Stitching 1. Detect keypoints 2. Match

More information

Automatic Image Alignment

Automatic Image Alignment Automatic Image Alignment with a lot of slides stolen from Steve Seitz and Rick Szeliski Mike Nese CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2018 Live Homography

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

Automatic Image Alignment

Automatic Image Alignment Automatic Image Alignment Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2010 Live Homography DEMO Check out panoramio.com

More information

Bundling Features for Large Scale Partial-Duplicate Web Image Search

Bundling Features for Large Scale Partial-Duplicate Web Image Search Bundling Features for Large Scale Partial-Duplicate Web Image Search Zhong Wu, Qifa Ke, Michael Isard, and Jian Sun Microsoft Research Abstract In state-of-the-art image retrieval systems, an image is

More information

SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY. Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang

SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY. Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang State Key Laboratory of Software Development Environment Beihang University, Beijing 100191,

More information

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds 9 1th International Conference on Document Analysis and Recognition Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds Weihan Sun, Koichi Kise Graduate School

More information

Sub-linear Indexing for Large Scale Object Recognition

Sub-linear Indexing for Large Scale Object Recognition Sub-linear Indexing for Large Scale Object Recognition Štěpán Obdržálek and Jiří Matas Center for Machine Perception, Czech Technical University Prague Abstract Realistic approaches to large scale object

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

From Structure-from-Motion Point Clouds to Fast Location Recognition

From Structure-from-Motion Point Clouds to Fast Location Recognition From Structure-from-Motion Point Clouds to Fast Location Recognition Arnold Irschara1;2, Christopher Zach2, Jan-Michael Frahm2, Horst Bischof1 1Graz University of Technology firschara, bischofg@icg.tugraz.at

More information

Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi

Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi hrazvi@stanford.edu 1 Introduction: We present a method for discovering visual hierarchy in a set of images. Automatically grouping

More information

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015 3D Photography Marc Pollefeys, Torsten Sattler Spring 2015 Schedule (tentative) Feb 16 Feb 23 Mar 2 Mar 9 Mar 16 Mar 23 Mar 30 Apr 6 Apr 13 Apr 20 Apr 27 May 4 May 11 May 18 May 25 Introduction Geometry,

More information

Reinforcement Matching Using Region Context

Reinforcement Matching Using Region Context Reinforcement Matching Using Region Context Hongli Deng 1 Eric N. Mortensen 1 Linda Shapiro 2 Thomas G. Dietterich 1 1 Electrical Engineering and Computer Science 2 Computer Science and Engineering Oregon

More information

Measuring camera translation by the dominant apical angle

Measuring camera translation by the dominant apical angle Measuring camera translation by the dominant apical angle Akihiko Torii 1 Michal Havlena 1 Tomáš Pajdla 1 1 CMP, Czech Technical University Prague, Czech Republic {torii,havlem1,pajdla}@cmp.felk.cvut.cz

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

Patch Descriptors. CSE 455 Linda Shapiro

Patch Descriptors. CSE 455 Linda Shapiro Patch Descriptors CSE 455 Linda Shapiro How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

The Correspondence Problem in Perspective Images PhD Thesis Proposal

The Correspondence Problem in Perspective Images PhD Thesis Proposal CENTER FOR MACHINE PERCEPTION The Correspondence Problem in Perspective Images PhD Thesis Proposal CZECH TECHNICAL UNIVERSITY Ondřej Chum chum@cmp.felk.cvut.cz CTU CMP 23 3 January 31, 23 RESEARCH REPORT

More information

Patch Descriptors. EE/CSE 576 Linda Shapiro

Patch Descriptors. EE/CSE 576 Linda Shapiro Patch Descriptors EE/CSE 576 Linda Shapiro 1 How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

Published in: MM '10: proceedings of the ACM Multimedia 2010 International Conference: October 25-29, 2010, Firenze, Italy

Published in: MM '10: proceedings of the ACM Multimedia 2010 International Conference: October 25-29, 2010, Firenze, Italy UvA-DARE (Digital Academic Repository) Landmark Image Retrieval Using Visual Synonyms Gavves, E.; Snoek, C.G.M. Published in: MM '10: proceedings of the ACM Multimedia 2010 International Conference: October

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Object Recognition in Large Databases Some material for these slides comes from www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture18_index.pptx

More information

Prof. Feng Liu. Spring /26/2017

Prof. Feng Liu. Spring /26/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/26/2017 Last Time Re-lighting HDR 2 Today Panorama Overview Feature detection Mid-term project presentation Not real mid-term 6

More information

Bag of Optical Flow Volumes for Image Sequence Recognition 1

Bag of Optical Flow Volumes for Image Sequence Recognition 1 RIEMENSCHNEIDER, DONOSER, BISCHOF: BAG OF OPTICAL FLOW VOLUMES 1 Bag of Optical Flow Volumes for Image Sequence Recognition 1 Hayko Riemenschneider http://www.icg.tugraz.at/members/hayko Michael Donoser

More information

Robust Online Object Learning and Recognition by MSER Tracking

Robust Online Object Learning and Recognition by MSER Tracking Computer Vision Winter Workshop 28, Janez Perš (ed.) Moravske Toplice, Slovenia, February 4 6 Slovenian Pattern Recognition Society, Ljubljana, Slovenia Robust Online Object Learning and Recognition by

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Local invariant features

Local invariant features Local invariant features Tuesday, Oct 28 Kristen Grauman UT-Austin Today Some more Pset 2 results Pset 2 returned, pick up solutions Pset 3 is posted, due 11/11 Local invariant features Detection of interest

More information

A Comparison of SIFT, PCA-SIFT and SURF

A Comparison of SIFT, PCA-SIFT and SURF A Comparison of SIFT, PCA-SIFT and SURF Luo Juan Computer Graphics Lab, Chonbuk National University, Jeonju 561-756, South Korea qiuhehappy@hotmail.com Oubong Gwun Computer Graphics Lab, Chonbuk National

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

Text Localization in Real-world Images using Efficiently Pruned Exhaustive Search

Text Localization in Real-world Images using Efficiently Pruned Exhaustive Search Text Localization in Real-world Images using Efficiently Pruned Exhaustive Search Lukáš Neumann Centre for Machine Perception, Dept. of Cybernetics Czech Technical University, Prague, Czech Republic neumalu@cmp.felk.cvut.cz

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Evaluation and comparison of interest points/regions

Evaluation and comparison of interest points/regions Introduction Evaluation and comparison of interest points/regions Quantitative evaluation of interest point/region detectors points / regions at the same relative location and area Repeatability rate :

More information

DescriptorEnsemble: An Unsupervised Approach to Image Matching and Alignment with Multiple Descriptors

DescriptorEnsemble: An Unsupervised Approach to Image Matching and Alignment with Multiple Descriptors DescriptorEnsemble: An Unsupervised Approach to Image Matching and Alignment with Multiple Descriptors 林彥宇副研究員 Yen-Yu Lin, Associate Research Fellow 中央研究院資訊科技創新研究中心 Research Center for IT Innovation, Academia

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 5 - Class 1: Matching, Stitching, Registration September 26th, 2017 ??? Recap Today Feature Matching Image Alignment Panoramas HW2! Feature Matches Feature

More information

Indexing local features and instance recognition May 14 th, 2015

Indexing local features and instance recognition May 14 th, 2015 Indexing local features and instance recognition May 14 th, 2015 Yong Jae Lee UC Davis Announcements PS2 due Saturday 11:59 am 2 We can approximate the Laplacian with a difference of Gaussians; more efficient

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Automated Scene Matching in Movies

Automated Scene Matching in Movies Automated Scene Matching in Movies F. Schaffalitzky and A. Zisserman Robotics Research Group Department of Engineering Science University of Oxford Oxford, OX1 3PJ fsm,az @robots.ox.ac.uk Abstract. We

More information

3D Vision. Viktor Larsson. Spring 2019

3D Vision. Viktor Larsson. Spring 2019 3D Vision Viktor Larsson Spring 2019 Schedule Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar 25 Apr 1 Apr 8 Apr 15 Apr 22 Apr 29 May 6 May 13 May 20 May 27 Introduction Geometry, Camera Model, Calibration Features,

More information

Local Image Features

Local Image Features Local Image Features Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial This section: correspondence and alignment

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

Total Recall II: Query Expansion Revisited

Total Recall II: Query Expansion Revisited Total Recall II: Query Expansion Revisited Ondr ej Chum Andrej Mikulı k Michal Perdoch Jir ı Matas Centre for Machine Perception Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical

More information

Sampling Strategies for Object Classifica6on. Gautam Muralidhar

Sampling Strategies for Object Classifica6on. Gautam Muralidhar Sampling Strategies for Object Classifica6on Gautam Muralidhar Reference papers The Pyramid Match Kernel Grauman and Darrell Approximated Correspondences in High Dimensions Grauman and Darrell Video Google

More information

Specular 3D Object Tracking by View Generative Learning

Specular 3D Object Tracking by View Generative Learning Specular 3D Object Tracking by View Generative Learning Yukiko Shinozuka, Francois de Sorbier and Hideo Saito Keio University 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama, Japan shinozuka@hvrl.ics.keio.ac.jp

More information

Indexing local features and instance recognition May 16 th, 2017

Indexing local features and instance recognition May 16 th, 2017 Indexing local features and instance recognition May 16 th, 2017 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

3D Modeling using multiple images Exam January 2008

3D Modeling using multiple images Exam January 2008 3D Modeling using multiple images Exam January 2008 All documents are allowed. Answers should be justified. The different sections below are independant. 1 3D Reconstruction A Robust Approche Consider

More information

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell Large-scale Image Search and location recognition Geometric Min-Hashing Jonathan Bidwell Nov 3rd 2009 UNC Chapel Hill Large scale + Location Short story... Finding similar photos See: Microsoft PhotoSynth

More information

Robust Multiview Reconstruction

Robust Multiview Reconstruction CENTER FOR MACHINE PERCEPTION Robust Multiview Reconstruction CZECH TECHNICAL UNIVERSITY IN PRAGUE Daniel Martinec martid1@cmp.felk.cvut.cz CTU CMP 2008 01 July 2, 2008 PhD THESIS ISSN 1213-2365 Available

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

AK Computer Vision Feature Point Detectors and Descriptors

AK Computer Vision Feature Point Detectors and Descriptors AK Computer Vision Feature Point Detectors and Descriptors 1 Feature Point Detectors and Descriptors: Motivation 2 Step 1: Detect local features should be invariant to scale and rotation, or perspective

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

Today s lecture. Image Alignment and Stitching. Readings. Motion models

Today s lecture. Image Alignment and Stitching. Readings. Motion models Today s lecture Image Alignment and Stitching Computer Vision CSE576, Spring 2005 Richard Szeliski Image alignment and stitching motion models cylindrical and spherical warping point-based alignment global

More information

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 Image Features: Local Descriptors Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 [Source: K. Grauman] Sanja Fidler CSC420: Intro to Image Understanding 2/ 58 Local Features Detection: Identify

More information

Generalized RANSAC framework for relaxed correspondence problems

Generalized RANSAC framework for relaxed correspondence problems Generalized RANSAC framework for relaxed correspondence problems Wei Zhang and Jana Košecká Department of Computer Science George Mason University Fairfax, VA 22030 {wzhang2,kosecka}@cs.gmu.edu Abstract

More information

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-21 April 2012, Tallinn, Estonia LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS Shvarts, D. & Tamre, M. Abstract: The

More information

WISE: Large Scale Content Based Web Image Search. Michael Isard Joint with: Qifa Ke, Jian Sun, Zhong Wu Microsoft Research Silicon Valley

WISE: Large Scale Content Based Web Image Search. Michael Isard Joint with: Qifa Ke, Jian Sun, Zhong Wu Microsoft Research Silicon Valley WISE: Large Scale Content Based Web Image Search Michael Isard Joint with: Qifa Ke, Jian Sun, Zhong Wu Microsoft Research Silicon Valley 1 A picture is worth a thousand words. Query by Images What leaf?

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Feature Matching and RANSAC

Feature Matching and RANSAC Feature Matching and RANSAC Recognising Panoramas. [M. Brown and D. Lowe,ICCV 2003] [Brown, Szeliski, Winder, CVPR 2005] with a lot of slides stolen from Steve Seitz, Rick Szeliski, A. Efros Introduction

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM

COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM Arnau Ramisa, Ramón López de Mántaras Artificial Intelligence Research Institute, UAB Campus, 08193, Bellaterra, SPAIN aramisa@iiia.csic.es,

More information

CS 558: Computer Vision 4 th Set of Notes

CS 558: Computer Vision 4 th Set of Notes 1 CS 558: Computer Vision 4 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Keypoint matching Hessian

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1. Efficient Sequential Correspondence Selection by Cosegmentation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1. Efficient Sequential Correspondence Selection by Cosegmentation IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Efficient Sequential Correspondence Selection by Cosegmentation Jan Čech, Member, IEEE, Jiří Matas, Member, IEEE, Michal Perd och, Member,

More information

Image stitching. Digital Visual Effects Yung-Yu Chuang. with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac

Image stitching. Digital Visual Effects Yung-Yu Chuang. with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac Image stitching Digital Visual Effects Yung-Yu Chuang with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac Image stitching Stitching = alignment + blending geometrical registration

More information

3D Metric Reconstruction from Uncalibrated Omnidirectional Images

3D Metric Reconstruction from Uncalibrated Omnidirectional Images CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY 3D Metric Reconstruction from Uncalibrated Omnidirectional Images Branislav Mičušík, Daniel Martinec and Tomáš Pajdla micusb1@cmp.felk.cvut.cz,

More information

Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases

Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases James Philbin 1, Ondřej Chum 2, Michael Isard 3, Josef Sivic 4, Andrew Zisserman 1 1 Visual Geometry Group, Department

More information

Fuzzy based Multiple Dictionary Bag of Words for Image Classification

Fuzzy based Multiple Dictionary Bag of Words for Image Classification Available online at www.sciencedirect.com Procedia Engineering 38 (2012 ) 2196 2206 International Conference on Modeling Optimisation and Computing Fuzzy based Multiple Dictionary Bag of Words for Image

More information

Methods for Representing and Recognizing 3D objects

Methods for Representing and Recognizing 3D objects Methods for Representing and Recognizing 3D objects part 1 Silvio Savarese University of Michigan at Ann Arbor Object: Building, 45º pose, 8-10 meters away Object: Person, back; 1-2 meters away Object:

More information

Place Recognition and Online Learning in Dynamic Scenes with Spatio-Temporal Landmarks

Place Recognition and Online Learning in Dynamic Scenes with Spatio-Temporal Landmarks LEARNING IN DYNAMIC SCENES WITH SPATIO-TEMPORAL LANDMARKS 1 Place Recognition and Online Learning in Dynamic Scenes with Spatio-Temporal Landmarks Edward Johns and Guang-Zhong Yang ej09@imperial.ac.uk

More information

Vision and Image Processing Lab., CRV Tutorial day- May 30, 2010 Ottawa, Canada

Vision and Image Processing Lab., CRV Tutorial day- May 30, 2010 Ottawa, Canada Spatio-Temporal Salient Features Amir H. Shabani Vision and Image Processing Lab., University of Waterloo, ON CRV Tutorial day- May 30, 2010 Ottawa, Canada 1 Applications Automated surveillance for scene

More information

A Comparison of Affine Region Detectors

A Comparison of Affine Region Detectors International Journal of Computer Vision 65(1/2), 43 72, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. DOI: 10.1007/s11263-005-3848-x A Comparison of Affine Region

More information

Learning Vocabularies over a Fine Quantization

Learning Vocabularies over a Fine Quantization International Journal of Computer Vision manuscript No. (will be inserted by the editor) Learning Vocabularies over a Fine Quantization Andrej Mikulik Michal Perdoch Ondřej Chum Jiří Matas Received: date

More information

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Classification 3: Bag of Words Aaron Bobick School of Interactive Computing Administrivia PS 6 is out. Due Tues Nov 25th, 11:55pm. One more assignment after that Mea culpa This

More information

Detecting Multiple Symmetries with Extended SIFT

Detecting Multiple Symmetries with Extended SIFT 1 Detecting Multiple Symmetries with Extended SIFT 2 3 Anonymous ACCV submission Paper ID 388 4 5 6 7 8 9 10 11 12 13 14 15 16 Abstract. This paper describes an effective method for detecting multiple

More information